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A1 Notation
Denote by ‖A‖ =

√
µ(1)(A†A), where µ(1)(A†A) is the largest eigenvalue (which is always real)

of A†A, the spectral norm of a given complex p × p matrix A and by ‖A‖F =
√

tr(A†A) its
Frobenius norm. Similarly, write ‖v‖ =

√∑p
i=1 v

2
i for the Euclidean norm of a p-dimensional vec-

tor v = (v1, . . . , vp)′

A2 Proof of Lemma 1
Let γχij(τ ; `) = E[χit(τ)χjt−`(τ)] and γξij(τ ; `) = E[ξit(τ)ξjt−`(τ)]. By Assumptions (A1), (B1),
and (B4), for any ` ∈ Z,∣∣∣∣∣d2γχij(τ ; `)

dτ2

∣∣∣∣∣ =

∣∣∣∣∣
∞∑
k=0

q∑
s=1

d2

dτ2

{
cisk(τ)cjs,k+|`|(τ)

}∣∣∣∣∣
=

∣∣∣∣∣
∞∑
k=0

q∑
s=1

[d2cisk(τ)
dτ2 cjs,k+|`|(τ) +

d2cjs,k+|`|(τ)
dτ2 cisk(τ)

]∣∣∣∣∣
≤ 2qC2ρ

|`|
χ

∞∑
k=0

ρ2k
χ C1 = 2qC2C1ρ

|`|
χ

1− ρ2
χ

=: K1ρ
|`|
χ , say. (A.1)

Similarly, by Assumptions (A2), (B5), and (B7), for any ` ∈ Z,∣∣∣∣∣d2γξij(τ ; `)
dτ2

∣∣∣∣∣ =

∣∣∣∣∣
∞∑
k=0

∞∑
s=1

d2

dτ2

{
disk(τ)djs,k+|`|(τ)

}∣∣∣∣∣
=

∣∣∣∣∣
∞∑
k=0

∞∑
s=1

[d2disk(τ)
dτ2 djs,k+|`|(τ) +

d2djs,k+|`|(τ)
dτ2 disk(τ)

]∣∣∣∣∣
≤ 2ρ|`|ξ

∞∑
k=0

ρ2k
ξ

∞∑
s=1

B2isB1js =
2B2B1ρ

|`|
ξ

1− ρ2
ξ

=: K2ρ
|`|
ξ , say. (A.2)

Moreover, by Assumption (A3),

σXij (τ ; θ) = σχij(τ ; θ) + σξij(τ ; θ) = 1
2π

∞∑
`=−∞

(γχij(τ ; `) + γξij(τ ; `))e−ι`θ. (A.3)
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Therefore, from (A.1) and (A.2) and noticing that K1 and K2 are independent of i, j, `, and τ , we get

max
1≤i,j≤n

sup
τ∈(0,1)

sup
θ∈[−π,π]

∣∣∣∣∣d2σXij (τ ; θ)
dτ2

∣∣∣∣∣ ≤ 1
2π

{
K1

∞∑
`=−∞

ρ|`|χ +K2

∞∑
`=−∞

ρ
|`|
ξ

}

≤ 1
2π

{
2K1

1− ρχ
+ 2K2

1− ρξ

}
=: K, say, (A.4)

since |e−ιθ`| = 1 for all θ ∈ [−π, π] and all ` ∈ N0. This proves part (i) of the lemma.
Then, because of Assumptions (A1) and (B1), for any ` ∈ Z,

|γχij(τ ; `)| =

∣∣∣∣∣
∞∑
k=0

q∑
s=1

cisk(τ)cjs,k+|`|(τ)

∣∣∣∣∣ ≤
∞∑
k=0

q∑
s=1

C2
1ρ
k
χρ

k+|`|
χ ≤ C2

1ρ
|`|
χ

1− ρ2
χ

=: K3ρ
|`|
χ , say. (A.5)

Similarly, because of Assumptions (A2) and (B5), for any h ∈ Z,

|γξij(τ ; `)| =

∣∣∣∣∣
∞∑
k=0

∞∑
s=1

disk(τ)djs,k+|`|(τ)

∣∣∣∣∣ ≤
∞∑
k=0

∞∑
s=1

B1isB1jsρ
k
ξρ
k+|`|
ξ ≤

B2
1ρ
|`|
ξ

1− ρ2
ξ

=: K4ρ
|`|
ξ , say. (A.6)

Therefore, using again (A.3), from (A.5) and (A.6) and noticing that K3 and K4 are independent
of i, j, `, and τ , we get

max
1≤i,j≤n

sup
τ∈(0,1)

sup
θ∈[−π,π]

∣∣∣∣∣d2σXij (τ ; θ)
dθ2

∣∣∣∣∣ ≤ 1
2π

{
K3

∞∑
`=−∞

|`|2ρ|`|χ +K4

∞∑
`=−∞

|`|2ρ|`|ξ

}

= 1
2π

{
4K3

(1− ρχ)3 + 4K4

(1− ρξ)3

}
=: K′, say. (A.7)

This proves part (ii) of the lemma. �

A3 Proof of Lemma 2
Denote as σξij(τ ; θ) the generic (i, j) entry of Σξ

n(τ ; θ). For any n ∈ N0, τ ∈ (0, 1), and θ ∈ [−π, π], we
have

λξ1;n(τ ; θ) = ‖Σξ
n(τ ; θ)‖ ≤ max

1≤j≤n

n∑
i=1
|σξij(τ ; θ)| ≤ 1

2π max
1≤j≤n

n∑
i,`=1

|di`(τ ; e−ιθ)d†`j(τ ; e−ιθ)|

≤ 1
2π max

1≤j≤n

n∑
i,`=1

∞∑
k=0
|di`k(τ)e−ιθk|

∞∑
h=0
|d†`jh(τ)eιθh| ≤ 1

2π max
1≤j≤n

n∑
i,`=1

∞∑
k=0
|di`k(τ)|

∞∑
h=0
|d†`jh(τ)|

≤ 1
2π max

1≤j≤n

n∑
i,`=1

∞∑
k,h=0

B1i`B1`jρ
k
ξρ
h
ξ ≤

B2
1

2π(1− ρξ)2 ,

because of Assumptions (A2) and (B5). Part (i) is proved by defining Bξ := B2
1/(2π(1− ρξ)2) and

noting that it is independent of n, τ , and θ.
Parts (ii) and (iii) readily follow from Assumption (C) and part (i), and an application of Weyl’s

inequality. �

A4 Proof of Lemma 3
Denote as λζ1;n(τ ; θ) the largest eigenvalue of the spectral density of ζnt(τ). Then, for any n ∈ N0,
τ ∈ (0, 1), and θ ∈ [−π, π] (see also (15))

λζ1;n(τ ; θ) = max
a : a†a=1

a†An(τ ; e−ιθ)Σξ
n(τ ; θ)A′n(τ ; eιθ)a ≤ λξ1;n(τ ; θ)λA1;n(τ ; θ) (A.8)
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where λA1;n(τ ; θ) is the largest eigenvalue of An(τ ; e−ιθ)A′n(τ ; eιθ). Moreover, denoting by λA
(k)

1 (τ ; θ)
the largest eigenvalue of A(k)(τ ; e−ιθ)A(k)′(τ ; eιθ) and recalling that An(τ ;L) is block-diagonal with
diagonal blocks A(1)(τ ;L), . . . ,A(m)(τ ;L), we have

λA1;n(τ ; θ) ≤ max
1≤k≤n

λA
(k)

1 (τ ; θ) ≤ Dζ (A.9)

where Dζ is a constant independent of n, τ , and θ, because of Assumptions (D3) and (D4). By using
Lemma 2 and (A.9) in (A.8), we have λζ1;n(τ ; θ) ≤ BξDζ . Therefore,

µζ1;n(τ) = max
w:w′w=1

w′Γζn(τ)w ≤
∫ π

−π
λζ1;n(τ ; θ)dθ ≤ 2πBξDζ .

The proof is completed by defining Bζ := 2πBξDζ and noting that it is independent of n, τ , and θ. �

A5 Proof of Lemma 4
The proof requires two intermediate results.

Lemma A1. Under Assumptions (A) and (B) there exists a constant A1 (independent of i and t) such
that supτ∈(0,1) E[|Xit(τ)|r∗ ] ≤ A1 for all i ∈ N0 and t ∈ Z, with r∗ as defined in Assumption (A4).

Proof of Lemma A1. By Minkowski inequality,

sup
τ∈(0,1)

{
E[|Xit(τ)|r

∗
]
}1/r∗ ≤ sup

τ∈(0,1)

{
E[|χit(τ)|r

∗
]
}1/r∗ + sup

τ∈(0,1)

{
E[|ξit(τ)|r

∗
]
}1/r∗

. (A.10)

Then, from (6)

sup
τ∈(0,1)

{
E[|χit(τ)|r

∗
]
}1/r∗ = sup

τ∈(0,1)

E


∣∣∣∣∣∣
q∑
j=1

∞∑
k=0

cijk(τ)uj,t−k

∣∣∣∣∣∣
r∗



1/r∗

≤ sup
τ∈(0,1)

q∑
j=1

∞∑
k=0
|cijk(τ)|

{
E
[
|uj,t−k|r

∗]}1/r∗

≤ C1/r∗
0 C1

∞∑
k=0

ρkχ ≤
C

1/r∗
0 C1

1− ρχ
=: A11, say, (A.11)

because of Assumptions (A4) and (B1). Similarly, from (7),

sup
τ∈(0,1)

{
E[|ξit(τ)|r

∗
]
}1/r∗ = sup

τ∈(0,1)

E


∣∣∣∣∣∣
∞∑
j=1

∞∑
k=0

dijk(τ)ηj,t−k

∣∣∣∣∣∣
r∗



1/r∗

≤ sup
τ∈(0,1)

∞∑
j=1

∞∑
k=0
|dijk(τ)|

{
E
[
|ηj,t−k|r

∗]}1/r∗

≤ C1/r∗
0

∞∑
j=1

∞∑
k=0

ρkξB1ij ≤
C

1/r∗
0 B1

1− ρξ
=: A12, say, (A.12)

because of Assumptions (A4) and (B5). Substituting (A.11) and (A.12) into (A.10) and defi-
ning A1 := A11 +A12 completes the proof. �

For all t ∈ Z, let ε := {εt = (u′t η′t)′}, and define Ft := (. . . , εt−1, εt). Moreover, denoting
by ε∗ = {ε∗t = (u∗′t η∗′t )′} an independent copy of ε, define F∗t := (. . . , ε−1, ε

∗
0, ε1, . . . , εt−1, εt), which

is a version of Ft where ε0 is replaced with ε∗0. Note that F∗t = Ft if t < 0.
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Then, from (6) and (7), it is clear that, for any τ ∈ (0, 1), i ∈ N0, and t ∈ Z, we have
that Xit(τ) =: gi(τ ;Ft), where gi : (0, 1)×R∞ → R is a measurable function. Put X∗it(τ) := gi(τ ;F∗t ).
Then, for any r > 0, we define the physical dependence measure (see also Wu, 2005 and Zhang and
Wu, 2019) as

δt,r,i = sup
τ∈(0,1)

{E [(gi(τ ;Ft)− gi(τ ;F∗t ))r]}1/r

= sup
τ∈(0,1)

{E [(Xit(τ)−X∗it(τ))r]}1/r
, i ∈ N0, t ∈ Z. (A.13)

Lemma A2. Under Assumptions (A) and (B) there exists a ρ ∈ [0, 1) and a constant A2 (independent
of r, i, and t) such that δt,r,i ≤ A2ρ

t, i ∈ N0, and t ∈ Z, for all r ≤ r∗ where r∗ is defined in
Assumption (A4).
Proof of Lemma A2. First, notice that

Xit(τ)−X∗it(τ) =
q∑
j=1

cijt(τ)(uj0 − u∗j0) +
∞∑
j=1

dijt(τ)(ηj0 − η∗j0)

=: (χit(τ)− χ∗it(τ)) + (ξit(τ)− ξ∗it(τ)), say. (A.14)

By Minkowski inequality, it follows from (A.13) that

δt,r,i ≤ sup
τ∈(0,1)

{E [(χit(τ)− χ∗it(τ))r]}1/r+ sup
τ∈(0,1)

{E [(ξit(τ)− ξ∗it(τ))r]}1/r =: δχt,r,i+δ
ξ
t,r,i, say. (A.15)

Then, from (A.14), for any r ≤ r∗,

δχt,r,i = sup
τ∈(0,1)

E

∣∣∣∣∣∣
q∑
j=1

cijt(τ)(uj0 − u∗j0)

∣∣∣∣∣∣
r

1/r

≤ sup
τ∈(0,1)

q∑
j=1
|cijt(τ)|

{
E
[∣∣(uj0 − u∗j0)

∣∣r]}1/r ≤ 2C1/r
0 C1ρ

t
χ, (A.16)

because of Assumptions (A4) and (B1), and Minkowski inequality. Similarly, still from (A.14), for
any r ≤ r∗,

δξt,r,i = sup
τ∈(0,1)

E

∣∣∣∣∣∣
∞∑
j=1

dijt(τ)(ηj0 − η∗j0)

∣∣∣∣∣∣
r

1/r

≤ sup
τ∈(0,1)

∞∑
j=1
|dijt(τ)|

{
E
[∣∣(ηj0 − η∗j0)

∣∣r]}1/r ≤ 2C1/r
0

∞∑
j=1

B1ijρ
t
ξ ≤ 2C1/r

0 B1ρ
t
ξ, (A.17)

because of Assumptions (A4) and (B5), and Minkowski inequality. Substituting (A.16) and (A.17)
into (A.15) and defining ρ := max(ρχ, ρξ) and A2 := 2C1/r

0 (C1 +B1) completes the proof. �

For any n ∈ N0, the mean-squared-error satisfies

max
1≤i,j≤n

E
[

sup
τ∈(0,1)

sup
θ∈[−π,π]

∣∣σ̂Xij;T (τ ; θ)− σXij (τ ; θ)
∣∣2] ≤ 2

(
VT + ∆2

T

)
, (A.18)

where

VT := max
1≤i,j≤n

E
[

sup
τ∈(0,1)

sup
θ∈[−π,π]

∣∣σ̂Xij;T (τ ; θ)− E[σ̂Xij;T (τ ; θ)]
∣∣2] and (A.19)

∆2
T := max

1≤i,j≤n
sup

τ∈(0,1)
sup

θ∈[−π,π]

{
E[σ̂Xij;T (τ ; θ)]− σXij (τ ; θ)

}2
. (A.20)
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First, let us consider (A.19). For any α > 0 and r > 0, define the dependent adjusted norm

Φr,α := max
1≤i≤n

sup
k∈N

(k + 1)α
∞∑
t=k

δt,r,i

(see Zhang and Wu, 2019). For any r ≤ r∗,

Φr,α ≤ A2 sup
k∈N

(k + 1)α
∞∑
t=k

ρt = A2

1− ρ sup
k∈N

(k + 1)αρk = A2

1− ρ , (A.21)

because of Lemma A2. Moreover, because of Lemma A1, we can apply Corollary 4.4 in Zhang and
Wu (2019) in the case α > 1/2− 2/r∗, which, along with (A.21), implies

VT ≤ Φ4
r,α

(
K1

mT log T
MT

+K2
m2
TT

4/r(logMT )4+4/r

M2
T

)
≤
(

A2

1− ρ

)4(
K1

mT log T
MT

+K2
m2
TT

4/r(logMT )4+4/r

M2
T

)
, (A.22)

for some constants K1 and K2 (independent of T ) and any r ≤ r∗. Recalling that MT = bTbT c
and mT = b1/hT c, we thus obtain, for any r ≤ r∗,

VT ≤ CX
log T
TbThT

+ C ′X
T 4/r(log T )4+4/r

T 2b2
Th

2
T

= AT + BT,r (A.23)

for some constants CX and C ′X (independent of T and n).
The following Lemma which is similar to Theorem 2.1 in Dahlhaus (2012) (see also Dahlhaus,

1996, Theorem 2.1), is needed to bound the bias.

Lemma A3. Under Assumptions (A), (B), and (F), there exists constants M, L, and H (independent
of i, j, ` and τ), such that

max
1≤i,j≤n

sup
τ∈(0,1)

max
|`|≤(MT−1)

∣∣E[γ̂Xij;T (τ ; `)]− γXij (τ ; `)
∣∣ ≤Mb2

T + o(b2
T ) + L

TbT
+ H
T
. (A.24)

Proof of Lemma A3. Consider (A.20). Let γXij (τ ; `) and γ̂Xij;T (τ ; `) be the (i, j) entries of the
lag ` autocovariance matrix ΓXn (τ ; `) and its estimator Γ̂Xn (τ ; `) as defined in (16), respectively. By
Assumptions (A1), (B1), and (B3):

∣∣γχij(τ ; `)− E[χi,bτTcχ′j,bτTc−`]
∣∣ ≤ ∞∑

k=0

q∑
s=1

∣∣∣cisk(τ)cjs,k+|`|(τ)− c∗isk(bτT c)c∗js,k+|`|(bτT c)
∣∣∣

≤ 2qCχC ′1ρ
|`|
χ

T

∞∑
k=0

ρ2k
χ + o(T−1)

≤ 2qCχC ′1
T (1− ρ2

χ) + o(T−1) =: H1

T
+ o(T−1), say. (A.25)

Similarly, by Assumptions (A2), (B5), and (B6),∣∣γξij(τ ; `)− E[ξi,bτTcξ′j,bτTc−`]
∣∣ ≤ ∞∑

k=0

∞∑
s=1

∣∣∣disk(τ)djs,k+|`|(τ)− d∗isk(bτT c)d∗js,k+|`|(bτT c)
∣∣∣

≤
2ρ|`|ξ
T

∞∑
s=1

BξisB
′
1js

∞∑
k=0

ρ2k
χ + o(T−1)

≤ 2BξB′1
T (1− ρ2

ξ)
+ o(T−1) =: H2

T
+ o(T−1), say. (A.26)
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Notice that, in (A.25) and (A.26), H1 and H2, as well as the remainders, are independent of i, j, `,
and τ . Therefore, from (A.25) and (A.26), because of Assumption (A3) (on the mutual uncorrelated-
ness of the common and idiosyncratic shocks) we have

max
1≤i,j≤n

sup
τ∈(0,1)

sup
`∈Z

∣∣γXij (τ ; `)− E[Xi,bτTcX
′
j,bτTc−`]

∣∣ ≤ H1

T
+ H2

T
+ o(T−1) =: H

T
, say. (A.27)

This is the same result as in, for example, Dahlhaus (2012, equation (73)).
Then, for any τ ∈ (0, 1) and |`| ≤ (MT − 1), using (16) and (A.27),

∣∣E[γ̂Xij;T (τ ; `)]− γXij (τ ; `)
∣∣ =

∣∣∣∣∣∣
 1
MT

T2(τ)∑
s=T1(τ)+`

J
(
s− bτT c
MT

)
E[Xi,s−`X

′
js]

− γXij (τ ; `)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
 1
MT

T2(τ)∑
s=T1(τ)+`

J
(
s− bτT c
MT

)
γXij (s/T ; `)

− γXij (τ ; `)

∣∣∣∣∣∣+ H
T
. (A.28)

Moreover, by a Taylor expansion of order two of σXij (s/T ; θ) in its first argument in a neighborhood
of τ , we have, in view of Assumption (F1), for any T1(τ) + ` ≤ s ≤ T2(τ)

1
MT

T2(τ)∑
s=T1(τ)+`

J
(
s− bτT c
MT

)
γXij (s/T ; `) = 1

2bTbT c

T2(τ)∑
s=T1(τ)+`

J
(
s− bτT c
2bTbT c

)∫ π

−π
eιθ`σXij (s/T ; θ)dθ

≤
∫ 1/2

−1/2
J(u)du

∫ π

−π
eιθ`σXij (τ ; θ)dθ + b2

T

2

∫ 1/2

−1/2
u2J(u)du

∫ π

−π
eιθ`

d2σXij (τ ; θ)
dτ2 dθ + o(b2

T ) + L
TbT

= γXij (τ ; `) + b2
T

2

∫ 1/2

−1/2
u2J(u)du

∫ π

−π
eιθ`

d2σXij (τ ; θ)
dτ2 dθ + o(b2

T ) + L
TbT

, (A.29)

where L and the remainders are independent of i, j, `, and τ due to Assumptions (B4) and (B7). Notice
also that the first-order term of the Taylor expansion of σXij (s/T ; θ) drops out due to the symmetry of
the kernel J about the origin.

Substituting (A.29) into (A.28), we get, in view of Lemma 1(i) (where K is defined),

max
1≤i,j≤n

sup
τ∈(0,1)

max
|`|≤(MT−1)

∣∣E[γ̂Xij;T (τ ; `)]− γXij (τ ; `)
∣∣ ≤ b2

T

K
2

∫ 1/2

−1/2
u2J(u)du+ o(b2

T ) + H
T

+ L
TbT

,

since |eιθ`| = 1 for all θ ∈ [−π, π] and ` ∈ Z. Defining M := K/2
∫ 1/2
−1/2 u

2J(u)du (which is finite by
Assumption (F1)) completes the proof. �

Because of Lemma A3, using in (17) the triangular kernel given in (24), for any θ ∈ [−π, π]
and τ ∈ (0, 1), the bias of our spectral estimator satisfies

2π
{

E[σ̂Xij;T (τ ; θ)]− σXij (τ ; θ)
}

=
mT∑

`=−mT

(
1− |`|

mT

)
E[γ̂Xij (τ ; `)]e−ι`θ −

∞∑
`=−∞

γXij (τ ; `)e−ι`θ

=
mT∑

`=−mT

(
1− |`|

mT

)
γXij (τ ; `)e−ι`θ −

mT∑
`=−mT

γXij (τ ; `)e−ι`θ

+
mT∑

`=−mT

(
1− |`|

mT

){
E[γ̂Xij (τ ; `)]− γXij (τ ; `)

}
e−ι`θ −

∑
|`|>mT

γXij (τ ; `)e−ι`θ

≤
mT∑

`=−mT

|`|
mT
|γXij (τ ; `)|+

mT∑
`=−mT

(
1− |`|

mT

)(
Mb2

T + L
TbT

)
+

∑
|`|>mT

|γXij (τ ; `)|+ o(mT b
2
T ) + mTH

T

=:S1ijT (τ ; θ) + S2ijT (τ ; θ) + S3ijT (τ ; θ) + o(mT b
2
T ) + o(mTT

−1b−1
T ), say. (A.30)
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Then, from (A.5) and (A.6) in the proof of Lemma 1, because of Assumption (A3), we have

max
1≤i,j≤n

sup
τ∈(0,1)

|γXij (τ ; `)| ≤ K3ρ
|`|
χ +K4ρ

|`|
ξ , (A.31)

hence

max
1≤i,j≤n

sup
τ∈(0,1)

sup
θ∈[−π,π]

S1ijT (τ ; θ) ≤
∞∑

`=−∞

{
K3ρ

|`|
χ +K4ρ

|`|
ξ

} |`|
mT
≤ 2K3ρχ
mT (1− ρχ)2 + 2K4ρξ

mT (1− ρξ)2 .

(A.32)

Similarly, from Lemma A3,

max
1≤i,j≤n

sup
τ∈(0,1)

sup
θ∈[−π,π]

S2ijT (τ ; θ) ≤MmT b
2
T + L

TbT
mT . (A.33)

Finally,

max
1≤i,j≤n

sup
τ∈(0,1)

sup
θ∈[−π,π]

S3ijT (τ ; θ) ≤
∑
|`|>mT

{
K3ρ

|`|
χ +K4ρ

|`|
ξ

} |`|
mT
≤ F

mT
, (A.34)

for some constant F (independent of i, j, `, and τ). Substituting (A.32), (A.33), and (A.34) into (A.30),
squaring the bias, and noticing that all those results are independent of i, j, τ , and θ, we obtain,
from (A.20) (recall that MT = 2bTbT c and mT = b1/hT c),

∆2
T ≤ C ′′X

(
h2
T + b4

T

h2
T

+ 1
T 2b2

Th
2
T

)
+ o

(
b4
T

h2
T

)
+ o

(
1

T 2b2
Th

2
T

)
(A.35)

for some constant C ′′X (independent of T and n).
Substituting (A.23) and (A.35) into (A.18) completes the proof. �

A6 Proof of Proposition 1
We divide the proof into four steps corresponding to the four steps of the estimation procedure.

(i) - Estimation of Spectral Density. Recall that, as discussed in Section 3.1, the estimator of the
spectral density can be computed only for t/T with MT /2 ≤ t ≤ (T −MT /2) and for θj = πjhT
with |j| ≤ mT . For simplicity of notation, we let TT := {MT /2, . . . , (T −MT /2)}. Then, a straightfor-
ward implication of Lemma 4 is that there exists a constant C∗ (independent of T and n) such that,
for any n, T ∈ N0,

max
1≤i,k≤n

E
[
max
t∈TT

max
|j|≤mT

∣∣σ̂Xik;T (t/T ; θj)− σXik(t/T ; θj)
∣∣2] ≤ C∗ζT,r∗ (A.36)

with ζT,r∗ defined in (26). From (A.36), for any n ∈ N0,

E
[

max
t∈TT

max
|j|≤mT

1
n2

∥∥∥Σ̂X
n,T (t/T ; θj)−ΣX

n (t/T ; θj)
∥∥∥2
]

≤ E
[
max
t∈TT

max
|j|≤mT

1
n2

∥∥∥Σ̂X
n,T (t/T ; θj)−ΣX

n (t/T ; θj)
∥∥∥2

F

]
= 1
n2 E

[
max
t∈TT

max
|j|≤mT

n∑
i=1

n∑
k=1

∣∣σ̂Xik;T (t/T ; θj)− σXik(t/T ; θj)
∣∣2]

≤ 1
n2

n∑
i=1

n∑
k=1

E
[
max
t∈TT

max
|j|≤mT

∣∣σ̂Xik;T (t/T ; θj)− σXik(t/T ; θj)
∣∣2]

≤ C∗ζT,r∗ .
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Therefore, by Chebychev’s inequality, for any n ∈ N0, as T →∞,

max
t∈TT

max
|j|≤mT

1
n

∥∥∥Σ̂X
n,T (t/T ; θj)−ΣX

n (t/T ; θj)
∥∥∥ = OP

(
ζ

1/2
T,r∗

)
. (A.37)

Let `i denote the ith vector in the n-dimensional canonical basis, i.e. the vector with 1 in entry i
and 0 elsewhere. Then, again from (A.36), for any n ∈ N0 and 1 ≤ i ≤ n,

E
[
max
t∈TT

max
|j|≤mT

1
n

∥∥∥`′i(Σ̂X
n,T (t/T ; θj)−ΣX

n (t/T ; θj)
)∥∥∥2

]
= E

[
max
t∈TT

max
|j|≤mT

1
n
`′i

(
Σ̂X
n,T (t/T ; θj)−ΣX

n (t/T ; θj)
)(

Σ̂X
n,T (t/T ; θj)−ΣX

n (t/T ; θj)
)′
`i

]
= E

[
max
t∈TT

max
|j|≤mT

1
n
`′i

(
Σ̂X
n,T (t/T ; θj)−ΣX

n (t/T ; θj)
)(

Σ̂X
n,T (t/T ; θj)−ΣX

n (t/T ; θj)
)
`i

]
= 1
n

E
[

max
t∈TT

max
|j|≤mT

n∑
k=1

∣∣σ̂Xik;n,T (t/T ; θj)− σXik(t/T ; θj)
∣∣2]

≤ 1
n

n∑
k=1

E
[
max
t∈TT

max
|j|≤mT

∣∣σ̂Xik;n,T (t/T ; θj)− σXik(t/T ; θj)
∣∣2] ≤ C∗ζT,r∗ , (A.38)

where ‖ · ‖ in this case denotes the Euclidean norm of a vector. Therefore, by Chebychev’s inequality,
and since C∗ in (A.38) does not depend on i, for any ε > 0, there exists η(ε) and an integer T ∗ = T (ε),
both independent of i, such that

P
(

max
t∈TT

max
|j|≤mT

1√
nζT,r∗

∥∥∥`′i(Σ̂X
n,T (t/T ; θj)−ΣX

n (t/T ; θj)
)∥∥∥ ≥ η(ε)

)
< ε, (A.39)

for all n ∈ N0, 1 ≤ i ≤ n, and T ≥ T ∗. Equivalently, hereafter, we say that

max
t∈TT

max
|j|≤mT

1√
n

∥∥∥`′i(Σ̂X
n,T (t/T ; θj)−ΣX

n (t/T ; θj)
)∥∥∥ = OP

(
ζ

1/2
T,r∗

)
(A.40)

as T →∞, uniformly in i. This proves the analogue of Lemma 1(i) and 1(ii) in Forni et al. (2017).

(ii) - Dynamic Principal Components. By using (A.37) and Lemma 2(i), for any n ∈ N0, we have

max
t∈TT

max
|j|≤mT

1
n

∥∥∥Σ̂X
n,T (t/T ; θj)−Σχ

n(t/T ; θj)
∥∥∥

≤ max
t∈TT

max
|j|≤mT

1
n

∥∥∥Σ̂X
n,T (t/T ; θj)−ΣX

n (t/T ; θj)
∥∥∥+ max

t∈TT

max
|j|≤mT

1
n

∥∥∥Σξ
n(t/T ; θj)

∥∥∥
= OP(ζ1/2

T,r∗) +O(n−1) = OP

(
max

(
ζ

1/2
T,r∗ , n

−1
))

, (A.41)

as T →∞. Similarly, we can show that

max
t∈TT

max
|j|≤mT

1√
n

∥∥∥`′i(Σ̂X
n,T (t/T ; θj)−Σχ

n(t/T ; θj)
)∥∥∥

≤ max
t∈TT

max
|j|≤mT

1√
n

∥∥∥`′i(Σ̂X
n,T (t/T ; θj)−ΣX

n (t/T ; θj)
)∥∥∥+ max

t∈TT

max
|j|≤mT

1√
n

∥∥∥`′iΣξ
n(t/T ; θj)

∥∥∥
= OP

(
max

(
ζ

1/2
T,r∗ , n

−1/2
))

(A.42)
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as T →∞, uniformly in i, because of (A.40), while for the second term we have (recall that `′i`i = 1)

max
1≤i≤n

max
t∈TT

max
|j|≤mT

1
n

∥∥∥`′iΣξ
n(t/T ; θj)

∥∥∥2
= max

1≤i≤n
max
t∈TT

max
|j|≤mT

1
n
`′iΣξ

n(t/T ; θj)Σξ
n(t/T ; θj)`i

≤ max
w:w′w=1

max
t∈TT

max
|j|≤mT

1
n
w′Σξ

n(t/T ; θj)Σξ
n(t/T ; θj)w

= max
t∈TT

max
|j|≤mT

1
n
‖Σξ

n(t/T ; θj)‖2 = O(n−1) (A.43)

by definition of the largest eigenvalue of a matrix and Lemma 2(i). This proves the analogue of
Lemma 1(iii) and (iv) in Forni et al. (2017).

It follows from (A.41) and Weyl’s inequality that, for all 1 ≤ ` ≤ q, as n, T →∞,

max
t∈TT

max
|j|≤mT

1
n

∣∣∣λ̂X`;n,T (t/T ; θj)− λχ`;n(t/T ; θj)
∣∣∣ ≤ max

t∈TT

max
|j|≤mT

1
n

∥∥∥Σ̂X
n,T (t/T ; θj)−Σχ

n(t/T ; θj)
∥∥∥

= OP

(
max

(
ζ

1/2
T,r∗ , n

−1
))

. (A.44)

Let Λ̂X
n,T (t/T ; θj) and Λχ

n(t/T ; θj) be the q × q diagonal matrices with the q largest eigenvalues
of Σ̂X

n,T (t/T ; θj) and Σχ
n(t/T ; θj), respectively. Then, since q is finite, (A.44) holds uniformly in `

and, as n, T →∞, we have

max
t∈TT

max
|j|≤mT

∥∥∥(n−1Λχ
n(t/T ; θj)− n−1Λ̂X

n,T (t/T ; θj)
)∥∥∥2

≤
q∑
`=1

max
t∈TT

max
|j|≤mT

1
n2

(
λ̂X`;n,T (t/T ; θj)− λχ`;n(t/T ; θj)

)2
= OP

(
max

(
ζT,r∗ , n

−2)) . (A.45)

From Assumption (C), as n→∞

max
t∈TT

max
|j|≤mT

∥∥n(Λχ
n(t/T ; θj))−1∥∥ = max

t∈TT

max
|j|≤mT

n(λχq;n(t/T ; θj))−1 ≤ D, (A.46)

with D > 0 independent of n. And from (A.45), (A.46), and Lemma 2(ii), as n, T →∞,

max
t∈TT

max
|j|≤mT

∥∥n(Λ̂X
n,T (t/T ; θj))−1∥∥

≤ max
t∈TT

max
|j|≤mT

∥∥n((Λ̂X
n,T (t/T ; θj))−1 − (Λχ

n(t/T ; θj))−1)∥∥+ max
t∈TT

max
|j|≤mT

∥∥n(Λχ
n(t/T ; θj))−1∥∥

= OP

(
max

(
ζ

1/2
T,r∗ , n

−1
))

+O(1) = OP(1). (A.47)

This proves the analogue of Lemma 2 in Forni et al. (2017).

Let P̂X
n,T (t/T ; θj) be the n×q matrix having as columns the normalized eigenvectors of Σ̂X

n,T (t/T ; θj)
corresponding to its q largest eigenvalues. Let Pχ

n(t/T ; θj) be the n× q matrix having as columns the
normalized eigenvectors of Σχ

n,T (t/T ; θj) corresponding to its q largest eigenvalues. By “normalized”
we mean that the q columns pχj;n(t/T ; θj) of Pχ

n(t/T ; θj) are such that pχ†j;n(t/T ; θj)pχj;n(t/T ; θj) = 1.
Now, by Assumption (C),

max
1≤`≤q

max
t∈TT

max
|j|≤mT

(
λχ`;n(t/T ; θj)n−1

)
≥ C, (A.48)

for some constant C independent of n. Then, by Theorem 2 and Corollary 2 in Yu et al. (2015), there
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exists a q× q complex diagonal matrix J (t/T ; θj) with unit modulus entries, such that, as n, T →∞,

max
t∈TT

max
|j|≤mT

∥∥∥P̂X
n,T (t/T ; θj)−Pχ

n(t/T ; θj)J (t/T ; θj)
∥∥∥

≤ max
t∈TT

max
|j|≤mT

23/2√q
∥∥∥Σ̂X

n,T (t/T ; θj)−Σχ
n(t/T ; θj)

∥∥∥
λχq;n(t/T ; θj)

(A.49)

≤ 23/2√q Cn−1 max
t∈TT

max
|j|≤mT

∥∥∥Σ̂X
n,T (t/T ; θj)−Σχ

n(t/T ; θj)
∥∥∥ = OP

(
max

(
ζ

1/2
T,r∗ , n

−1
))

,

because of (A.41) and (A.48). Noting that ‖Pχ
n(t/T ; θj)J (t/T ; θj)‖ = 1 and ‖`′iΣχ

n(t/T ; θj)‖= O(
√
n),

moreover, for all t ∈ TT and |j| ≤ mT , as n, T →∞,

max
t∈TT

max
|j|≤mT

√
n
∥∥∥`′i(P̂X

n,T (t/T ; θj)−Pχ
n(t/T ; θj)J (t/T ; θj)

)∥∥∥
= max

t∈TT

max
|j|≤mT

1√
n

∥∥∥`′i{Σ̂X
n,T (t/T ; θj)P̂X

n,T (t/T ; θj)n(Λ̂X
n,T (t/T ; θj))−1

−Σχ
n(t/T ; θj)Pχ

n(t/T ; θj)n(Λχ
n(t/T ; θj))−1

}∥∥∥
≤ max

t∈TT

max
|j|≤mT

1√
n

∥∥∥`′i(Σ̂X
n,T (t/T ; θj)−Σχ

n(t/T ; θj)
)∥∥∥ ∥∥n(Λχ

n(t/T ; θj))−1∥∥
+ max
t∈TT

max
|j|≤mT

1√
n

∥∥∥`′iΣχ
n(t/T ; θj)

∥∥∥ ∥∥∥n((Λχ
n(t/T ; θj))−1 − (Λ̂X

n,T (t/T ; θj))−1
)∥∥∥

+ max
t∈TT

max
|j|≤mT

1√
n

∥∥∥`′iΣχ
n(t/T ; θj)

∥∥∥ ∥∥n(Λχ
n(t/T ; θj))−1∥∥ ∥∥∥P̂X

n,T (t/T ; θj)−Pχ
n(t/T ; θj)J (t/T ; θj)

∥∥∥
+ oP

(
max

(
ζ

1/2
T,r∗ , n

−1/2
))

= OP

(
max

(
ζ

1/2
T,r∗ , n

−1/2
))

, (A.50)

uniformly in i, because of (A.42), (A.45), (A.46), and (A.49).
Furthermore, because of Assumptions (A1) and (B1),

max
1≤i≤n

max
t∈TT

max
|j|≤mT

σχii(t/T ; θj) = max
1≤i≤n

max
t∈TT

max
|j|≤mT

q∑
`=1

ci`(t/T ; e−ιθj )c†`i(t/T ; e−ιθj ) ≤ C2
1

(1− ρχ)2

(A.51)
and, since (B1) holds for all i ∈ N0, (A.51) is independent of n. Therefore, denoting by pχi`(t/T ; θj)
the (i, `) entry of Pχ

n(t/T ; θj), we also have

max
1≤i≤n

max
t∈TT

max
|j|≤mT

σχii(t/T ; θj) = max
1≤i≤n

max
t∈TT

max
|j|≤mT

q∑
`=1

(
λχ`;n(t/T ; θj)

)∣∣pχi`(t/T ; θj)
∣∣2 ≤ C2

1
(1− ρχ)2 .

(A.52)
Therefore, replacing (A.48) into (A.52), we see that for all 1 ≤ ` ≤ q we must have

max
1≤i≤n

max
t∈TT

max
|j|≤mT

(
n
∣∣pχi`(t/T ; θj)

∣∣2) ≤ A
where the constant A is also independent of n since the constants in (A.48) and (A.52) are. It follows
that

max
1≤i≤n

max
t∈TT

max
|j|≤mT

√
n
∥∥∥`′iPχ

n(t/T ; θj)
∥∥∥ ≤M (A.53)

for some constant M that does not depend on n.
Finally, since J †(t/T ; θj)J (t/T ; θj) = Iq and J †(t/T ; θj)ΛX

n (t/T ; θj)J (t/T ; θj) = ΛX
n (t/T ; θj),
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then, for any n ∈ N0,

max
t∈TT

max
|j|≤mT

∥∥∥`′i(Pχ
n(t/T ; θj)(Λχ

n(t/T ; θj))1/2J (t/T ; θj)− P̂X
n,T (t/T ; θj)(Λ̂X

n,T (t/T ; θj))1/2
)∥∥∥

≤ max
t∈TT

max
|j|≤mT

∥∥∥`′i√n(Pχ
n(t/T ; θj)J (t/T ; θj)− P̂X

n,T (t/T ; θj)
) (
n−1Λχ

n(t/T ; θj)
)1/2

∥∥∥
+ max
t∈TT

max
|j|≤mT

∥∥∥√n`′iP̂X
n,T (t/T ; θj)

(
n−1/2(Λχ

n(t/T ; θj))1/2 − n−1/2(Λ̂X
n,T (t/T ; θj)

)1/2
)∥∥∥

=: I + II, say. (A.54)

It follows from (A.46) and (A.50) that I is OP(max(ζ1/2
T,r∗ , n

−1/2)) uniformly in i. For II, we have

II ≤ max
t∈TT

max
|j|≤mT

{∥∥∥√n`′iP̂X
n,T (t/T ; θj)

∥∥∥∥∥∥(n−1/2(Λχ
n(t/T ; θj)

)1/2− n−1/2(Λ̂X
n,T (t/T ; θj)

)1/2
)∥∥∥}

=: max
t∈TT

max
|j|≤mT

(IIa × IIb) , say. (A.55)

It follows from (A.45) that IIb in (A.55) is OP(max(ζ1/2
T,r∗ , n

−1) uniformly in t and j, while for IIa we
have (recall that ‖J (t/T ; θj)‖ = 1)

max
t∈TT

max
|j|≤mT

IIb ≤ max
t∈TT

max
|j|≤mT

∥∥∥√n`′i(P̂X
n,T (t/T ; θj)−Pχ

n(t/T ; θj)J (t/T ; θj)
)∥∥∥

+ max
t∈TT

max
|j|≤mT

∥∥∥√n`′iPχ
n(t/T ; θj)J (t/T ; θj)

∥∥∥
=OP(max(ζ1/2

T,r∗ , n
−1/2) +O(1), (A.56)

uniformly in i, because of (A.53) and (A.50). Hence, II = OP(max(ζ1/2
T,r∗ , n

−1) uniformly in i, and
therefore, from (A.54), as n, T →∞,

max
t∈TT

max
|j|≤mT

∥∥∥`′i(Pχ
n(t/T ; θj)(Λχ

n(t/T ; θj))1/2J (t/T ; θj)− P̂X
n,T (t/T ; θj)(Λ̂X

n,T (t/T ; θj))1/2
)∥∥∥

= OP

(
max

(
ζ

1/2
T,r∗ , n

−1/2
))

, (A.57)

uniformly in i. This proves the analogue of Lemma 4 in Forni et al. (2017).

Hereafter, let ϑn,T,r∗ := max
(
ζT,r∗ , n

−1). The spectral density matrix of the common component
has rank q for all θ ∈ [−π, π] and τ ∈ (0, 1) because of Assumption (C); for any n ∈ N0, ot can be
expressed as

Σχ
n(t/T ; θj) =

{
Pχ
n(t/T ; θj)[Λχ

n(t/T ; θj)]1/2J (t/T ; θj)
}{

J †(t/T ; θj)[Λχ
n(t/T ; θj)]1/2Pχ†

n (t/T ; θj)
}

= Pχ
n(t/T ; θj)Λχ

n(t/T ; θj)Pχ†
n (t/T ; θj), (A.58)

with entries σχik(t/T ; θj) = `′iΣχ
n(t/T ; θj)`k. The estimator of the spectral density matrix of the

common component is obtained by principal component analysis as

Σ̂χ
n,T (t/T ; θj) := P̂X

n,T (t/T ; θj)[Λ̂X
n,T (t/T ; θj)]1/2[Λ̂X

n,T (t/T ; θj)]1/2P̂X†
n,T (t/T ; θj)

= P̂X
n,T (t/T ; θj)Λ̂X

n,T (t/T ; θj)P̂X†
n,T (t/T ; θj) (A.59)

with entries σ̂χik;n,T (t/T ; θj) = `′iΣ̂
χ
n,T (t/T ; θj)`k. Then, by comparing (A.58) with (A.59) and because

of (A.57), for any ε > 0, there exists η(ε), T ∗ = T ∗(ε), and N∗ = N∗(ε), all independent of i and k,
such that

P

max
t∈TT

max
|j|≤mT

∣∣∣σ̂χik;n,T (t/T ; θj)− σχik(t/T ; θj)
∣∣∣

ϑ
1/2
n,T,r∗

≥ η(ε)

 < ε
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for all n ≥ N∗ and T ≥ T ∗. Equivalently as n, T →∞,

max
t∈TT

max
|j|≤mT

∣∣∣σ̂χik;n,T (t/T ; θj)− σχik(t/T ; θj)
∣∣∣ = max

t∈TT

max
|j|≤mT

∥∥∥`′i (Σ̂χ
n,T (t/T ; θj)−Σχ

n(t/T ; θj)
)
`k

∥∥∥
= OP

(
max

(
ζ

1/2
T,r∗ , n

−1/2
))

, (A.60)

uniformly in i and k. This proves the analogue of Proposition 7 in Forni et al. (2017).

The (i, k) entry of the estimated lag ` autocovariance matrix Γ̂χn,T (τ ; k) defined in (19) is

γ̂χik;n,T (t/T ; `) = 2π
2mT + 1

mT∑
j=−mT

σ̂χik;n,T (t/T ; θk)eι`θj (A.61)

and, by definition of a lag ` autocovariance, its population counterpart satisfies

γχik(t/T ; `) =
∫ π

−π
σχik(t/T ; θ)eι`θdθ. (A.62)

Therefore, for any given lag ` (putting θ−mT−1 := −π), we have

max
t∈TT

|γ̂χik;n,T (t/T ; `)− γχik(t/T ; `)|

≤ max
t∈TT

2π
2mT + 1

mT∑
j=−mT

∣∣∣eι`θj σ̂χik;n,T (t/T ; θj)− eι`θjσχik(t/T ; θj)
∣∣∣

+ max
t∈TT

∣∣∣∣∣∣ 2π
2mT + 1

mT∑
j=−mT

eι`θjσχik(t/T ; θj)−
∫ π

−π
eι`θσχik(t/T ; θ)dθ

∣∣∣∣∣∣
≤ max

t∈TT

2π
2mT + 1

mT∑
j=−mT

∣∣∣σ̂χik;n,T (t/T ; θj)− σχik(t/T ; θj)
∣∣∣

+ max
t∈TT

2π
2mT + 1

mT∑
j=−mT

max
θj−1≤θ≤θj

∣∣eι`θjσχik(t/T ; θj)− eι`θσχik(t/T ; θ)
∣∣

≤ max
t∈TT

2π max
|j|≤mT

∣∣∣σ̂χik;n,T (t/T ; θj)− σχik(t/T ; θj)
∣∣∣+ 2π

2mT + 1
C2

1
(1− ρχ)2

mT∑
j=−mT

max
θj−1≤θ≤θj

∣∣eι`θj − eι`θ
∣∣

+ max
t∈TT

2π
2mT + 1

mT∑
j=−mT

max
θj−1≤θ≤θj

|σχik(t/T ; θj)− σχik(t/T ; θ)| = OP(ϑ1/2
n,T,r∗) +O(m−1

T ), (A.63)

as n, T → ∞, uniformly in i and k. For proving (A.63) we used (A.60) for the first term on the
right-hand side, Assumption (B1) and the fact that the exponential function has bounded variation
for the second, and Lemma 1(ii) for the third, which implies that the spectral density is Lipschitz
continuous in θ uniformly in t. Moreover, the last term on the right-hand side of (A.63) is dominated
by the first one because of Assumptions (F2) and (F3). Summing up, for any ` ∈ Z,

max
t∈TT

∣∣∣γ̂χik;n,T (t/T ; `)− γχik(t/T ; `)
∣∣∣ = OP(ϑ1/2

n,T,r∗), (A.64)

as n, T → ∞, uniformly in i and k. This extends Proposition 8 in Forni et al. (2017) to the time-
varying case.

(iii) - VAR filtering. Assuming that n factorizes, for some integer m, into n = m(q + 1), we estimate
via Yule-Walker m distinct (q+1)-dimensional VAR models of order at most S (in view of Assumption
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(D2)). For the sake of simplicity, let us assume S = 1: the Yule-Walker estimators of the VAR(1)
coefficients (see also (20)) then are

Â(k)
n,T (t/T ) = Γ̂χ

(k)

n,T (t/T ; 1)
[
Γ̂χ

(k)

n,T (t/T ; 0)
]−1

, 1 ≤ k ≤ m,

where Γ̂χ
(k)

n,T (t/T ; `) is the (q + 1) × (q + 1) sub-matrix of Γ̂χn,T (t/T ; `) corresponding to the lag `

autocovariance matrix of the sub-vector χ(k)
n,T ;t/T .

Since Γ̂χ
(k)

n,T (t/T ; 0) is finite-dimensional, (A.64) implies that it is consistent uniformly in t; together
with Assumption (D4), it also implies that det[Γ̂χ

(k)

n,T (t/T ; 0)] > d/2, uniformly in t, with probability
arbitrarily close to one for T large enough. The same arguments as in Appendix C of Forni et al.
(2017) and (A.64) then entail, as n, T →∞,

max
t∈TT

max
1≤k≤m

∥∥∥Â(k)
n,T (t/T )−A(k)

n (t/T )
∥∥∥ = OP(ϑ1/2

n,T,r∗). (A.65)

Moreover, denoting by Ân,T (t/T ) the n× n block-diagonal matrix having diagonal blocks Â(k)
n,T (t/T )

for 1 ≤ k ≤ m, we have, from (A.65),

max
t∈TT

1√
n

∥∥∥Ân,T (t/T )−An(t/T )
∥∥∥ = OP(ϑ1/2

n,T,r∗) (A.66)

and
max
t∈TT

∥∥∥`′i (Ân,T (t/T )−An(t/T )
)∥∥∥ = OP(ϑ1/2

n,T,r∗) (A.67)

as n, T →∞, uniformly in i, since by construction An(t/T ) has only m(q+ 1)2 non-zero entries. This
extends Proposition 9 in Forni et al. (2017) to the time-varying setting.

We now establish the following two lemmas.

Lemma A4. Under Assumptions (A) and (B), for any n ∈ N0,
(i) maxt∈TT

max1≤i≤n |Xit| = OP(log1/ϕ T ) and
(ii) maxt∈TT

max1≤i≤n |Xit(t/T )| = OP(log1/ϕ T )
where ϕ is defined in Assumption (A5).

Proof. First notice that, because of Assumption (A5), for any ε > 0,

P
(

max
t∈TT

max
1≤j≤q

|ujt| > ε

)
≤ TqP (|ujt| > ε) ≤ KuTq exp (−εϕKu) .

Hence, maxt∈TT
max1≤j≤q |ujt| = OP(log1/ϕ T ). Likewise, since we assume n = O(Tω) for some ω > 0,

then maxt∈TT
max1≤j≤n |ηjt| = OP(log1/ϕ T ). The proof then follows from the absolute summability

of the coefficients in (2), (3), (6), and (7) due to Assumptions (B1) and (B5). �

Lemma A5. Under Assumptions (A) and (B), for any n ∈ N0,

max
t∈TT

max
1≤i≤n

|Xit −Xit(t/T )| = OP(T−1 log1/ϕ T ).

Proof. First let us show that

max
t∈TT

max
1≤i≤n

|χit − χit(t/T )| = OP(T−1 log1/ϕ T ). (A.68)

Without loss of generality, let us assume q = 1. From (2) and (6), for any 1 ≤ i ≤ n and K ≥ 0,

|χit − χit(t/T )| ≤
K∑
k=0
|c∗i1k(t)− ci1k(t/T )| |ut−k|+

∣∣∣∣∣
∞∑

k=K+1
(c∗i1k(t)− ci1k(t/T ))ut−k

∣∣∣∣∣ .
13



Assumption (B1) implies that, for any ε > 0 and η > 0, there exists a constant K∗ = K(ε, η)
independent of i, t, and T , such that

P
[∣∣∣∣∣

∞∑
k=K∗+1

(c∗i1k(t)− ci1k(t/T ))ut−k

∣∣∣∣∣ > η/2
]
≤ ε/2.

Hence,

P [|χit − χit(t/T )| > η] ≤P
[
K∗∑
k=0
|c∗i1k(t)− ci1k(t/T )| |ut−k| > η/2

]

+ P
[∣∣∣∣∣

∞∑
k=K∗+1

(c∗i1k(t)− ci1k(t/T ))ut−k

∣∣∣∣∣ > η/2
]

≤P
[
K∗∑
k=0
|c∗i1k(t)− ci1k(t/T )| |ut−k| > η/2

]
+ ε/2. (A.69)

Now, from Assumption (B3), since ρχ < 1,

P
[
K∗∑
k=0
|c∗i1k(t)− ci1k(t/T )| |ut−k| > η/2

]
≤ P

[
K∗Cχ
T

max
t∈TT

|ut| > η/2
]

where (see the proof of Lemma A4) maxt∈TT
|ut| = OP(log1/ϕ T ). It follows that there exists T ∗= T (ε, η)

independent of i and t such that

P
[
K∗∑
k=0
|c∗i1k(t)− ci1k(t/T )| |ut−k| > η/2

]
≤ ε/2 (A.70)

for all T ≥ T ∗; (A.68) follows from putting together (A.69) and (A.70). The proof of

max
t∈TT

max
1≤i≤n

|ξit − ξit(t/T )| = OP(T−1 log1/ϕ T )

follows along the same steps, using Assumption (B6). The claim follows. �

(iv) - Principal Component Analysis. Since, for simplicity, we assumed S = 1 in (21),

Ẑnt(t/T ) =
[
In − Ân,T (t/T )L

]
Xnt, t ∈ TT . (A.71)

Defining
Z̃nt(t/T ) := [In −An(t/T )L] Xnt, t ∈ TT , (A.72)

it follows from (A.66) and Lemma A4 that, as n, T → ∞ (note that the filters in (A.71) and (A.72)
just load (q + 1) series at a time)

max
t∈TT

1√
n

∥∥∥Ẑnt(t/T )− Z̃nt(t/T )
∥∥∥ = OP(ϑ1/2

n,T,r∗ log1/ϕ T ). (A.73)

Lemma A5 moreover implies that, as n, T →∞,

max
t∈TT

1√
n

∥∥∥Z̃nt(t/T )− Znt(t/T )
∥∥∥ = OP(T−1 log1/ϕ T ). (A.74)

By combining (A.73) and (A.74), as n, T →∞, we get

max
t∈TT

1√
n

∥∥∥Ẑnt(t/T )− Znt(t/T )
∥∥∥ = OP(ϑ1/2

n,T,r∗ log1/ϕ T ). (A.75)
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Similarly, from (A.67) and Lemma A5,

max
t∈TT

∥∥∥`′i (Ẑnt(t/T )− Znt(t/T )
)∥∥∥ = OP(ϑ1/2

n,T,r∗ log1/ϕ T ), (A.76)

uniformly in i.
Next, consider the rolling estimator

Γ̂Zn,T (t/T ) := 1
MT

T2(t/T )∑
s=T1(t/T )

Zns(t/T )Z′ns(t/T ), t ∈ TT , (A.77)

based on the uniform kernel as in (24) (see also (22)) of the covariance matrix of the unobserv-
able Znt(t/T ) and similarly define the estimator

Γ̂Ẑn,T (t/T ) := 1
MT

T2(t/T )∑
s=T1(t/T )

Ẑns(t/T )Ẑ′ns(t/T ), t ∈ TT (A.78)

of the covariance matrix of the estimated Ẑnt(t/T ). Comparing (A.77) with (A.78), we obtain

1
n

∥∥∥Γ̂Ẑn,T (t/T )− Γ̂Zn,T (t/T )
∥∥∥ = 1

nMT

∥∥∥∥∥∥
T2(t/T )∑
s=T1(t/T )

[
Ẑns(t/T )Ẑ′ns(t/T )− Zns(t/T )Z′ns(t/T )

]∥∥∥∥∥∥ . (A.79)

By (A.75), the right-hand side of (A.79) can be bounded uniformly in t ∈ TT , so that, as n, T →∞,

max
t∈TT

1
n

∥∥∥Γ̂Ẑn,T (t/T )− Γ̂Zn,T (t/T )
∥∥∥ = OP(ϑ1/2

n,T,r∗ log1/ϕ T ). (A.80)

and similarly, by (A.67) and (A.76),

max
t∈TT

1√
n

∥∥∥`′i (Γ̂Ẑn,T (t/T )− Γ̂Zn,T (t/T )
)∥∥∥ = OP(ϑ1/2

n,T,r∗ log1/ϕ T ), (A.81)

uniformly in i. Now, let ΓZn (t/T ) be the time-varying covariance matrix of the filtered process Zn(t/T )
obtained from Xn(t/T ) as defined in (5) and (6), with (i, j) entry γZij(t/T ) and denote as γ̂Zij;T (t/T )
the (i, j) entry of Γ̂Zn,T (t/T ). Starting from Corollary 3.4 in Zhang and Wu (2019), because of Lem-
mas A1 and A2, we can follow the same steps as those used by those authors for the spectral density
estimation and leading from Corollary 4.4 to Lemma 4 in that paper. As a result, it is possible to
show that there exists a constant C∗∗ (independent of T and n) such that, for any n, T ∈ N0 (recalling
that MT = 2bTbT c),

max
1≤i,j≤n

E
[

sup
τ∈(0,1)

∣∣γ̂Zij;T (τ)− γZij(τ)
∣∣2] ≤ C∗∗ψT,r∗ , (A.82)

where
ψT,r∗ := max

(
log T
TbT

,
T 4/r∗(log T )4+4/r∗

T 2b2
T

, b4
T

)
.

Note that ψT,r∗ is the maximum of three quantities. The first of them also appears in Rodŕıguez-Poo
and Linton (2001, Proposition 3.2) and Motta et al. (2011, Theorem 1), while the third one is the
square of the first quantity in (A.24).
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Therefore, from (A.82), for any n ∈ N0,

E
[
max
t∈TT

1
n2

∥∥∥Γ̂Zn,T (t/T )− ΓZn (t/T )
∥∥∥2
]
≤ E

[
max
t∈TT

1
n2

∥∥∥Γ̂Zn,T (t/T )− ΓZn (t/T )
∥∥∥2

F

]

= 1
n2 E

max
t∈TT

n∑
i=1

n∑
j=1

∣∣γ̂Zij;T (t/T )− γZij(t/T )
∣∣2

≤ 1
n2

n∑
i=1

n∑
j=1

E
[
max
t∈TT

∣∣γ̂Zij;T (t/T )− γZij(t/T )
∣∣2]

≤ C∗∗ψT,r∗ .

Thus, by Chebychev’s inequality and since ψT,r∗ = o(ζT,r∗) as T →∞,

max
t∈TT

1
n

∥∥∥Γ̂Zn,T (t/T )− ΓZn (t/T )
∥∥∥ = OP(ζ1/2

T,r∗). (A.83)

Following similar steps as for (A.38), we also have

max
t∈TT

1√
n

∥∥∥`′i (Γ̂Zn,T (t/T )− ΓZn (t/T )
)∥∥∥ = OP(ζ1/2

T,r∗), (A.84)

uniformly in i. Therefore, from (A.80), (A.81), (A.83), and (A.84),

max
t∈TT

1
n

∥∥∥Γ̂Ẑn,T (t/T )− ΓZn,T (t/T )
∥∥∥ = OP(ϑ1/2

n,T,r∗ log1/ϕ T ) (A.85)

and
max
t∈TT

1√
n

∥∥∥`′i (Γ̂Ẑn,T (t/T )− ΓZn,T (t/T )
)∥∥∥ = OP(ϑ1/2

n,T,r∗ log1/ϕ T ), (A.86)

as n, T →∞, uniformly in i. This proves the analogue of Lemma 11 in Forni et al. (2017).

Now, while we used (A.37) and (A.40) to estimate the dynamic model (8)-(9) via dynamic principal
components, estimating the static model (15) via principal components can be achieved using (A.85)
and (A.86). In particular, following similar steps as those leading to (A.41) and (A.42) and in view of
Assumption (E) and Lemma 3, we can prove that

max
t∈TT

1
n

∥∥∥Γ̂Ẑn,T (t/T )− Γψ(t/T )
∥∥∥ = OP(ϑ1/2

n,T,r∗ log1/ϕ T )

and
max
t∈TT

1√
n

∥∥∥`′i (Γ̂Ẑn,T (t/T )− Γψ(t/T )
)∥∥∥ = OP(ϑ1/2

n,T,r∗ log1/ϕ T )

as n, T →∞, uniformly in i.
Then, let Mψ(t/T ) be the q × q diagonal matrix with the q largest eigenvalues of Γψn(t/T )

and Vψ
n(t/T ) the n× q matrix of the corresponding normalized eigenvectors. Similarly let M̂Ẑ

n,T (t/T )
be the q×q diagonal matrix with entries the q largest eigenvalues of Γ̂Zn,T (t/T ) and V̂Ẑ

n,T (t/T ) the n×q
matrix of the corresponding normalized eigenvectors. Following similar arguments as those leading
to (A.45) and (A.50), we have

max
t∈TT

1
n

∥∥∥M̂Ẑ
n,T (t/T )−Mψ(t/T )

∥∥∥ = OP(ϑ1/2
n,T,r∗ log1/ϕ T ) (A.87)

and

max
t∈TT

√
n
∥∥∥`′i (V̂Ẑ

n,T (t/T )−Vψ(t/T )S(t/T )
)∥∥∥ = OP(ϑ1/2

n,T,r∗ log1/ϕ T ) (A.88)
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as n, T →∞, uniformly in i, where S(t/T ) is a q × q diagonal matrix with entries sj(t) = ±1.
Now, by Assumption (A1), we have E[utu′t] = Iq. Therefore, for all τ ∈ (0, 1), the common

component of the static factor model (15) has covariance Γψn(τ) = Rn(τ)R′n(τ) and, by construction,
we have Rn(τ) := Vψ

n(τ)[Mψ(τ)]1/2, where Mψ(τ) is the q × q diagonal matrix with the q largest
eigenvalues of Γψn(τ) and Vψ

n(τ) the n× q matrix of the corresponding normalized eigenvectors. Since,
by definition, R̂n(t/T ) := V̂Ẑ

n,T (t/T )[M̂Ẑ
n,T (t/T )]1/2, from (A.87) and (A.88), it follows that

max
t∈TT

∥∥∥`′i (R̂n,T (t/T )−Rn(t/T )S(t/T )
)∥∥∥ = OP(ϑ1/2

n,T,r∗ log1/ϕ T ) (A.89)

as n, T →∞, uniformly in i.
Finally, recall the definitions

Cn(t/T ;L) := [An(t/T ;L)]−1Rn(t/T ) and Ĉn,T (t;L) := [Ân,T (t/T ;L)]−1R̂n,T (t/T )

of the impulse response functions and their estimators. Since [Ân,T (t/T ;L)] is block-diagonal, so
is [Ân,T (t/T ;L)]−1. For any given 1 ≤ i ≤ n, label as ki the block containing the ith component xit
of xnt, with 1 ≤ ki ≤ m and let Ii := {h ∈ N0 : (ki − 1)(q + 1) + 1 ≤ h ≤ ki(q + 1)} denote the set of
indexes corresponding to those components of xnt belonging to block ki. Letting mj stand for the jth
vector in the q-dimensional canonical basis (the vector with 1 in entry j and 0 elsewhere), the (i, j)
entry of Ĉn,T (t;L) is

ĉij;n,T (t;L) =
∑
h∈Ii

`′i[Ân,T (t/T ;L)]−1`h`
′
hR̂n,T (t/T )mj ;

note that the sum is only over (q + 1) elements, which is finite for any n ∈ N0. Therefore, we can use
(A.67) and (A.89) to show that, for any given lag k ≥ 0,

max
t∈TT

|ĉijk;n,T (t)− sj(t)cijk(t/T )| = OP(ϑ1/2
n,T,r∗ log1/ϕ T ), (A.90)

as n, T →∞, uniformly in i and j. Moreover, from Assumption (B3), for any given k ≥ 0, as T →∞,

sup
i∈N0

max
1≤j≤q

max
t∈TT

∣∣c∗ijk(t)− cijk(t/T )
∣∣ ≤ Cχρkχ/T = O(T−1). (A.91)

Combining (A.90) and (A.91) completes the proof. �
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