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A1l Notation

Denote by ||A| = /u@M(ATA), where puM(ATA) is the largest eigenvalue (which is always real)
of ATA, the spectral norm of a given complex p X p matrix A and by ||A||r = /tr(ATA) its
Frobenius norm. Similarly, write ||v|| = \/>_5_; v? for the Euclidean norm of a p-dimensional vec-
tor v = (vy,...,vp)

A2 Proof of Lemma 1

Let v5(7;¢) = E[xit(T)xjt—e(7)] and ’yfj(T;E) = E[&¢(7)&t—¢(7)]. By Assumptions (Al), (B1),
and (B4), for any ¢ € Z,
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Therefore, from (A.1) and (A.2) and noticing that Ky and Ky are independent of i, j, ¢, and 7, we get
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since || =1 for all # € [~n, 7] and all £ € Ny. This proves part (i) of the lemma.
Then, because of Assumptions (A1) and (B1), for any ¢ € Z,
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Similarly, because of Assumptions (A2) and (B5), for any h € Z,
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Therefore, using again (A.3), from (A.5) and (A.6) and noticing that K5 and Ky are independent
of i, 7, £, and 7, we get
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This proves part (i) of the lemma. O

A3 Proof of Lemma 2

Denote as 0 ,(730) the generic (7, j) entry of 3¢ (7;6). For any n € Ng, 7 € (0,1), and 6 € [, 7], we
have
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because of Assumptions (A2) and (B5). Part (%) is proved by defining B := B?/(2m(1 — p¢)?) and
noting that it is independent of n, 7, and 6.

Parts (%) and (%) readily follow from Assumption (C) and part (i), and an application of Weyl’s
inequality. O

A4 Proof of Lemma 3

Denote as )\in(T; 0) the largest eigenvalue of the spectral density of ¢,:(7). Then, for any n € Ny,
€ (0,1), and 6 € [—m, 7] (see also (15))

)\in(T;Q) = max a'A,(r;¢7)28 (1 0)A! (1;¢%)a < )\in(T;Q))\ﬁn(T;Q) (A.8)
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where Af, (7:0) is the largest eigenvalue of A, (7;e7?)A/ (;€'?). Moreover, denoting by )\f‘(k)(T; 0)
the largest eigenvalue of A®)(7;e=*?) A (7;¢?) and recalling that A, (7; L) is block-diagonal with
diagonal blocks AM(7; L), ..., A (7; L), we have
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where D, is a constant independent of n, 7, and 6, because of Assumptions (D3) and (D4). By using
Lemma 2 and (A.9) in (A.8), we have AS, 1 (7;0) < BeDe. Therefore,
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The proof is completed by defining B := 27 B¢ D and noting that it is independent of n, 7, and 6. I

A5 Proof of Lemma 4

The proof requires two intermediate results.

LEMMA Al. Under Assumptions (A) and (B) there exists a constant Ay (independent of i and t) such
that sup. ¢ 1) E[|X::(7)|""] < Ay for alli € Ny and t € Z, with r* as defined in Assumption (A4).

PrOOF OF LEMMA A1l. By Minkowski inequality,
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because of Assumptions (A4) and (B5). Substituting (A.11) and (A.12) into (A.10) and defi-
ning Ay := A1 + A2 completes the proof. O

For all t € Z, let € := {e, = (u} n;)'}, and define F; := (...,&,_1,&;). Moreover, denoting
by e* = {e} = (u}’ n}’)'} an independent copy of e, define F} := (...,e_1,€},€1,...,€t-1,€t), which
is a version of F; where g is replaced with €. Note that F; = F; if ¢t < 0.



Then, from (6) and (7), it is clear that, for any 7 € (0,1), i € Ny, and t € Z, we have
that X;:(7) =: gi(7; F%), where g; : (0,1) xR*> — R is a measurable function. Put X}, (7) := g;(7; F}).
Then, for any r > 0, we define the physical dependence measure (see also Wu, 2005 and Zhang and
Wu, 2019) as
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LEMMA A2. Under Assumptions (A) and (B) there exists a p € [0,1) and a constant Ay (independent
of v, i, and t) such that §;,; < Asp', i € No, and t € Z, for all v < r* where r* is defined in
Assumption (A4).

PROOF OF LEMMA A2. First, notice that
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Then, from (A.14), for any r < r*,
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because of Assumptions (A4) and (B1), and Minkowski inequality. Similarly, still from (A.14), for
any r < r*,
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into (A.15) and defining p := max(p,, pe) and Ay := ZCé/T (C1 + By) completes the proof. O
For any n € Ny, the mean-squared-error satisfies
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First, let us consider (A.19). For any o > 0 and r > 0, define the dependent adjusted norm
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(see Zhang and Wu, 2019). For any r < r*,
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because of Lemma A2. Moreover, because of Lemma Al, we can apply Corollary 4.4 in Zhang and
Wu (2019) in the case o > 1/2 — 2/r*, which, along with (A.21), implies
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for some constants K; and Kg (independent of T') and any r < r*. Recalling that My = |Tbr]
and mr = |[1/hr |, we thus obtain, for any r < r*,
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for some constants Cx and C% (independent of T and n).
The following Lemma which is similar to Theorem 2.1 in Dahlhaus (2012) (see also Dahlhaus,
1996, Theorem 2.1), is needed to bound the bias.

LEMMA A3. Under Assumptions (A), (B), and (F), there exists constants M, L, and H (independent
of i, j, £ and 7), such that
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Proor oF LEMMA A3. Consider (A.20). Let ;% (7;¢) and @U 7(7:€) be the (i,7) entries of the

lag ¢ autocovariance matrix I'X (7;¢) and its estimator I‘X (1;¢) as defined in (16), respectively. By
Assumptions (A1), (B1), and (B3)
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Notice that, in (A.25) and (A.26), H; and Hs, as well as the remainders, are independent of %, j, ¢,
and 7. Therefore, from (A.25) and (A.26), because of Assumption (A3) (on the mutual uncorrelated-
ness of the common and idiosyncratic shocks) we have

Hi | Ho

max sup sup ’lyz] T3 g) [X’L',LTTJX T — ZH + =+ (T 1) =

H
—, say. A.27
Isihjsnre(0,1) Lz T T ( )

T

This is the same result as in, for example, Dahlhaus (2012, equation (73)).
Then, for any 7 € (0,1) and |[¢| < (Mp — 1), using (16) and (A.27),
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Moreover, by a Taylor expansion of order two of o; (s /T;0) in its first argument in a neighborhood
of 7, we have, in view of Assumption (F1), for any Tl( )+ <s<Ty7)
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where £ and the remainders are independent of 4, j, £, and 7 due to Assumptions (B4) and (B7). Notice
also that the first-order term of the Taylor expansion of o; (s /T;80) drops out due to the symmetry of
the kernel J about the origin.

Substituting (A.29) into (A.28), we get, in view of Lemma 1(3) (where K is defined),
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since |e'%| = 1 for all § € [~ 7] and £ € Z. Defining M := /2 flﬁz 2J(u)du (which is finite by
Assumption (F1)) completes the proof. O

Because of Lemma A3, using in (17) the triangular kernel given in (24), for any 6 € [—m, 7]
and 7 € (0,1), the bias of our spectral estimator satisfies
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Then, from (A.5) and (A.6) in the proof of Lemma 1, because of Assumption (A3), we have
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for some constant F' (independent of 4, j, £, and 7). Substituting (A.32), (A.33), and (A.34) into (A.30),
squaring the bias, and noticing that all those results are independent of 4,5, 7, and 6, we obtain,
from (A.20) (recall that My = 2|Tbr| and my = |1/hr]),
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Substituting (A.23) and (A.35) into (A.18) completes the proof. O

A6 Proof of Proposition 1

We divide the proof into four steps corresponding to the four steps of the estimation procedure.

(i) - Estimation of Spectral Density. Recall that, as discussed in Section 3.1, the estimator of the
spectral density can be computed only for t/T" with Mr/2 < t < (T — Mr/2) and for 0; = mwjhr
with [j| < myp. For simplicity of notation, we let 77 := {Mr/2,...,(T — Mr/2)}. Then, a straightfor-
ward implication of Lemma 4 is that there exists a constant C* (independent of 7" and n) such that,
for any n,T € Ny,
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Therefore, by Chebychev’s inequality, for any n € Ny, as T — oo,
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Let £; denote the ith vector in the n-dimensional canonical basis, i.e. the vector with 1 in entry i
and 0 elsewhere. Then, again from (A.36), for any n € Ng and 1 <1i < n,
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where || - || in this case denotes the Euclidean norm of a vector. Therefore, by Chebychev’s inequality,

and since C* in (A.38) does not depend on i, for any £ > 0, there exists 7(¢) and an integer T* = T'(¢),
both independent of 4, such that
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forall n € Ng, 1 <4 <mn,and T > T*. Equivalently, hereafter, we say that
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as T — oo, uniformly in ¢. This proves the analogue of Lemma 1(7) and 1(%) in Forni et al. (2017).
(it) - Dynamic Principal Components. By using (A.37) and Lemma 2 (%), for any n € Ny, we have
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as T'— oo. Similarly, we can show that
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as T'— oo, uniformly in 4, because of (A.40), while for the second term we have (recall that £/£; = 1)
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by definition of the largest eigenvalue of a matrix and Lemma 2(%). This proves the analogue of
Lemma 1(iii) and (iv) in Forni et al. (2017).
It follows from (A.41) and Weyl’s inequality that, for all 1 < ¢ < ¢, as n,T — oo,
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Let Kf’T(t/T; 0;) and AX(t/T;0;) be the ¢ x ¢ diagonal matrices with the ¢ largest eigenvalues

of iiT(t/T; ;) and 3X(¢/T;6,), respectively. Then, since ¢ is finite, (A.44) holds uniformly in ¢
and, as n, T — oo, we have
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From Assumption (C), as n — oo
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with D > 0 independent of n. And from (A.45), (A.46), and Lemma 2 (%), as n, T — oo,
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This proves the analogue of Lemma 2 in Forni et al. (2017).

Let f’f’T(t/T; 6;) be the nx ¢ matrix having as columns the normalized eigenvectors of ifT(t/T; 6;)
corresponding to its g largest eigenvalues. Let PX(¢/T; 6;) be the n x ¢ matrix having as columns the
normalized eigenvectors of XX .(¢/T;6;) corresponding to its ¢ largest eigenvalues. By “normalized”
we mean that the ¢ columns p¥,, (¢/T;0;) of PX(t/T;6;) are such that pﬁl(t/T; 0;)P}.,(t/T50;) = 1.

Now, by Assumption (C),
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for some constant C' independent of n. Then, by Theorem 2 and Corollary 2 in Yu et al. (2015), there



exists a ¢ x ¢ complex diagonal matrix J (¢t/T; 6;) with unit modulus entries, such that, as n,T — oo,

max max
teTr |jI<mr

PX(t/T:05) = PX(/T: 0)F (4/T505)|

22 /4| SX 1 (t/T:6;) - SX(/T36)|
<
Ty g me Niin (/T7,6,)
<232, /gCn~  max max iiT(t/T;Oj) — XX(t/T; Hj)H =Op (max ( ;{f*,n*1)> ,

teTr ‘jISmT

(A.49)

because of (A.41) and (A.48). Noting that ||PX(t/T;0;)T (t/T;6,)| = 1 and ||€;2X(t/T;6,)||= O(v/n),
moreover, for all t € Tr and |j| < mp, as n,T — oo,

max max /n
teTr |j|<mrp

€(PXr(t/T565) ~ PXG/T:6)T (1/T36) )|

1
= max max -——
teTr |j|<mr \/>

— BX(t/T;6;)PX(t/T;6;) n(AX(t/T;06;)) }H

SN ()73 0P 1 (/T3 0,) n(AX (4T3 05)) !

1
< max max ——
teTr |j]<mr f

C(SX0(t/T505) = S5/T56,) )| Imasee/Ts0,0) 7

+ max max ——
teTr |j|<mr f

x0T | ((Ax/Ti0,)7 - Rpta/mi0,) )|

+ max max ——
teTr |j|<mr f

+op (max (CTW ; n71/2)> =0Op (max (CTW* ; n71/2)> ; (A.50)

uniformly in ¢, because of (A.42), (A.45), (A.46), and (A.49).
Furthermore, because of Assumptions (A1) and (B1),

EEX(H/T0; H [n(AX(t/T;0;)Y| HP (t/T;0;) — PX(t/T;0,) T (t/T @-)H

max max max o,5(t/T;6;) = max max max E cie(t)T 6_“9 '(t/T§e_L9j) <
1<i<n teTr |j|<mr 1<i<n te€Tr ‘J|<mT

and, since (B1) holds for all ¢ € Ny, (A.51) is independent of n. Therefore, denoting by p; Z(t/T 6;)
the (z ?) entry of PX(t/T;0;), we also have

q 2
C
2 < 1

0. — X 0. X 0.
2T i, T 00) = e e e 35 (N 0/ ST O <

Therefore, replacing (A.48) into (A.52), we see that for all 1 < ¢ < ¢ we must have

X(t/T: 0, 2) <A
o max max (n|p}(1/T;05)]") <

where the constant A is also independent of n since the constants in (A.48) and (A.52) are. It follows
that

max max max /n
1<i<n te€Tr |j|<mr

EPX(t/T;0;) H <M (A.53)

for some constant M that does not depend on n.
Finally, since J'(t/T;60,) T (t/T;0;) = 1, and T (t/T;60,)AX (t/T;0,)T (t/T;0;) = AX(t/T;0;),

10



then, for any n € Ny,

maxX max
teTr |j|<mr

€ (PX(/T:0,) (AX(1/T:0,)) 2T (1/T:0,) — B (1/T30,) (RS (1/7:0,))72) |

< max max
teTr |J‘§mT

Em(Py(/T:0,)T (1/T:0;) = PXr(t/T30,)) (0™ AX(/T30,) |

+ max max
teTr |j|<mr

=:I+1I, say. (A.54)

VREPX (/T3 0;) (0™ 2 (A T30) 2 = 0 2 (Rt T50) ) |

It follows from (A.46) and (A.50) that I is Op(max((fp{f*,n_lm)) uniformly in 3. For II, we have

11 < g e {|[VB2La/730,) | | (w2 (e 0) 2 R 130) ) |

teTr |j|<mrp
=:max max ([I, x II), say. A.55
. max (11, % 11h), - say (A55)

It follows from (A.45) that I1, in (A.55) is Op(max(C;«{f*,n_l) uniformly in ¢ and j, while for 11, we
have (recall that || T (¢t/T;6,;)|| = 1)

max max II, < max max
teTr |j|<mr teTr |j|<mr

Vit (PX 1 (t/T50,) = PX(/T:0,) T (¢/T:6))) |

'PX . 0. .0.
Fmax mas || Va€PX(/T:0,)3 (t/T:0;)|
= Op(max (/2 ,n™Y/%) + O(1), (A.56)

uniformly in ¢, because of (A.53) and (A.50). Hence, I = Op(max(@lﬂ{fﬂn*l) uniformly in 4, and
therefore, from (A.54), as n,T — oo,

max max
teTr |j|<mp

€ (PX(/T; 05 (NS (4/T50) T (8T 0,) = BX 1 (1/T30,) (R 1 (1/T30,))2) |

= Op (max( ;{f*,n71/2)> , (A.57)

uniformly in ¢. This proves the analogue of Lemma 4 in Forni et al. (2017).

Hereafter, let ¥, 7« := max (CT,T* , n_l). The spectral density matrix of the common component
has rank ¢ for all § € [—7,n] and 7 € (0,1) because of Assumption (C); for any n € Ny, ot can be
expressed as

ZX(/T50;) = {PX/T;0)[AX(1/T; 0]V 2T (1/T:0,) | { T 0/ T30,) X/ T30,)]/*PXT (¢/T36) |
= PX(t/T;0;)AX(t/T;0,)PX'(t/T;0;), (A.58)

with entries o (¢/T;6;) = £,3X(t/T;0;)€;. The estimator of the spectral density matrix of the
common component is obtained by principal component analysis as

SX p(E/T50;) = P (/T3 0,) (AN (t/ T3 00)] P [AY (t/ T3 0,)] * P (¢/T565)
= PY L (t/T;0;)AX 1 (t/T50,) P 1(t/T36;) (A.59)
with entries 7., (t/T50;) = K;f}fL’T(t/T; 6;)£). Then, by comparing (A.58) with (A.59) and because

of (A.57), for any € > 0, there exists n(e), T* = T*(e), and N* = N*(¢), all independent of ¢ and k,
such that

P | max max

teTr |j|<mr :/% .
T,

>nle) | <e

11



forall n > N* and T > T*. Equivalently as n,T — oo,

Gen . (t/T505) — XtT-@-’:
max max |, (t/T50) = o3 (t/T;0;)| = max max

=Op (max ( %{3*,71_1/2)) , (A.60)

uniformly in ¢ and k. This proves the analogue of Proposition 7 in Forni et al. (2017).

€ (S0 (t/T30,) = BX(/T36))) &

The (i, k) entry of the estimated lag ¢ autocovariance matrix f‘Z’T(T; k) defined in (19) is

mr

:y\z?gé;n,T(t/T E) Z 01k n T t/T7 ek)ewej (A61)

2mT—|—1

and, by definition of a lag £ autocovariance, its population counterpart satisfies
VX (/T ) = / "X (4T 0)e 0 o, (A.62)
Therefore, for any given lag ¢ (putting 6_,,,,—1 := —7), we have
max [T, 7 (/T3 £) = 7y (¢/T5 )]

mr

2
< -
—?é%zmT+1jZ

=—m7

5 (H/T50) — DX (4/T36))

27 ~ 00 X " L6
+ max | ——— WigX (t/T50;) — ¢ XtTQ
tea?T 2mp +1 Z c ”‘”'( /T ]) / ( / )dé

—T

J=—mr
2w X
Smax o= N (G (/T105) — o (4/T30,)]
J=—mr
o <X
L@@j X T D 242 X T
P G 4T, 2o, T 1R Ti0) — P/ T0)
=—mT
27 C? <X
< 9 ~x HT-0.) — oX (¢/T- 0. ’ 1 ;o
< max 7T|J‘I|I2§T O, (t/T505) — 0. (/T3 6;5) +2mT+1(1—pX)2 Z ej,rflgaexgej‘e e

j=—mmr
mr

2w 1/2 -
+max o > ), W 0% (t/T30;) — o34 (t/T30)] = Op(0,/7..) + O(mz"), (A.63)
j=—mp TS

as n,T — oo, uniformly in ¢ and k. For proving (A.63) we used (A.60) for the first term on the
right-hand side, Assumption (B1) and the fact that the exponential function has bounded variation
for the second, and Lemma 1) for the third, which implies that the spectral density is Lipschitz
continuous in € uniformly in ¢. Moreover, the last term on the right-hand side of (A.63) is dominated
by the first one because of Assumptions (F2) and (F3). Summing up, for any ¢ € Z,

max (7Y, 7 (t/T56) = 13(t/T: 0| = Op(9,/7.,.). (A.64)

as n,T — oo, uniformly in ¢ and k. This extends Proposition 8 in Forni et al. (2017) to the time-
varying case.

(iti) - VAR filtering. Assuming that n factorizes, for some integer m, into n = m(q + 1), we estimate
via Yule-Walker m distinct (¢+ 1)-dimensional VAR models of order at most S (in view of Assumption

12



(D2)). For the sake of simplicity, let us assume S = 1: the Yule-Walker estimators of the VAR(1)
coefficients (see also (20)) then are

~ ~ ~ —1
AL /T =T (/T3 [FXy /T0) 0 1<k<m,

where f‘ﬁ(;} (t/T;¢) is the (¢ + 1) x (¢ + 1) sub-matrix of f‘sz(t/T; ¢) corresponding to the lag ¢

autocovarlance matrix of the sub-vector X; )T 4T

Since I‘X (t /T';0) is finite-dimensional, (A.64) implies that it is consistent uniformly in ¢; together
with Assumption (D4), it also implies that det[f‘ﬁ(;} (t/T;0)] > d/2, uniformly in ¢, with probability

arbitrarily close to one for T' large enough. The same arguments as in Appendix C of Forni et al.
(2017) and (A.64) then entail, as n, T — oo,

max max HA() (t/T) — ;k>(t/T)H:0P(q9”2 ). (A.65)

teTr 1<k<m n,Tr

Moreover, denoting by A, 1(t/T) the n x n block-diagonal matrix having diagonal blocks A (t /T)
for 1 < k < m, we have, from (A. 65)

max 7 | A (t/T) = An(t/T)|| = Or(9)3.,.) (A.66)
and
max||€; (A, (t/T) = Au(t/T)) | = Or(9,/7.,.) (A.67)

as n, T — oo, uniformly in 4, since by construction A, (t/7) has only m(q+ 1)? non-zero entries. This
extends Proposition 9 in Forni et al. (2017) to the time-varying setting.

We now establish the following two lemmas.

LEMMA A4. Under Assumptions (A) and (B), for any n € Ny,
(i) maxer, maxi<i<n |Xit| = Op(log"? T) and
(’LZ} maXie 7, MaX]1<i<n |X2t(t/T)‘ = Op(logl/w T)

where @ is defined in Assumption (A5).

PROOF. First notice that, because of Assumption (A5), for any € > 0,

< ; < —e¥ .
P (?6137\_); jpax. luje| > E) < TqP (Juj| > ¢) < K,Tqexp (—e¥K,)

Hence, max;e7, max<j<q [u;:| = Op(log"/# T). Likewise, since we assume n. = O(T*) for some w > 0,
then max;e7, maxi<j<p || = Op (log'/? T). The proof then follows from the absolute summability
of the coefficients in (2), (3), (6), and (7) due to Assumptions (B1) and (B5). O

LEMMA A5. Under Assumptions (A) and (B), for any n € Ny,

_X. — -1 1/¢
max max | Xy — Xiy(t/T)| = Op(T™ log "* T).

PROOF. First let us show that

) — -1 1/¢
max max [yir — Xit(t/T)| = Op(T™" log "* T). (A.68)

Without loss of generality, let us assume ¢ = 1. From (2) and (6), for any 1 <i <n and K >0,

K o'}
it = Xat(/T)| <D 1650 (t) = corn (/T Jwer] + | D (fui(t) — corn(t/T))uei|
k=0 k=K+1

13



Assumption (B1) implies that, for any € > 0 and n > 0, there exists a constant K* = K(e,n)
independent of i, ¢, and T, such that

|

P {[xi — xa(t/T)] > ] lz |ciik(t) = can(t/T)| Jur—r| > 77/21

oo

Z (ci1e(t) — cirr(t/T) )up—y,

k=K*+1

> 77/21 <e/2.

Hence,

o0

Z (ci(t) — car(t/T))ur—

k=K*+1

K
<P [Z |cik(8) = caan(8/T)| Jue—k| > /2
k=0

+P

> 77/2]

+e/2. (A.69)

Now, from Assumption (B3), since p, <1,

K
p lz ik (t) = can(t/T)| lu—k| > n/2
k=0

K*C
<P |l > 1)

where (see the proof of Lemma A4) max;e7, |us| = Op (log'/? T). Tt follows that there exists T* = T'(e, 1)
independent of ¢ and ¢ such that

K
p lz et (t) = cink (/)| [ur—k| > n/2| <e/2 (A.70)
k=0

for all T'> T*; (A.68) follows from putting together (A.69) and (A.70). The proof of

_ _ -1 1/¢
max max |&it — &it(t/T)| = Op(T~ " log /?T)

follows along the same steps, using Assumption (B6). The claim follows. O

(iv) - Principal Component Analysis. Since, for simplicity, we assumed S = 1 in (21),
Zu(t/T) = [Lu — R (t/T)L] X, tE T (A.T1)

Defining _
Z,(t)T) =1, — A, (t/T)L] Xy, teTr, (A.72)

it follows from (A.66) and Lemma A4 that, as n,T — oo (note that the filters in (A.71) and (A.72)
just load (g + 1) series at a time)

Zons (/T — ntTH: 92 logt? T). A.
max = |2us(t/T) = Zua(t/T)]| = Op(0}/7, 108"/ T) (A73)
Lemma A5 moreover implies that, as n,T — oo,
Zot(t)T) — Z, tTH:O T-'log'/# T). A4
e || Zua(t/) = Zoa/T) | = Op(T " tog?# 1) (AT4)
By combining (A.73) and (A.74), as n, T — oo, we get
——intT—ZntTH:O Y2 logt? T). A.T5
max = |20u(t/T) = Zuu(t/T)]| = Op (07, 108"/ T) (A.T5)
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Similarly, from (A.67) and Lemma A5,

max £ (Zua(t/T) = Zua /7)) H — Op(0Y/2, . 10g"/? T), (A.76)
T
uniformly in 1.
Next, consider the rolling estimator
1 To(t/T)
~Z L /
s=T

based on the uniform kernel as in (24) (see also (22)) of the covariance matrix of the unobserv-
able Z,;(t/T) and similarly define the estimator

To(t)T)

PPN 1 . N

BZp/T) = o > Bu(/T)Z, /1), teTh (A78)
T o1 /1)

of the covariance matrix of the estimated znt(t/T). Comparing (A.77) with (A.78), we obtain

N R To(t/T) R
2 - F2 )] = o | Y (22 /T) - ZatD)Z T (AT
s=Ty(t/T)

By (A.75), the right-hand side of (A.79) can be bounded uniformly in ¢ € Tr, so that, as n,T — oo,

1 ~2 ~
max — Hrg (t)T) —TZ .(t)T) H = Op(WY2 . 10g"/* T). (A.80)
teTr n ' ' o
and similarly, by (A.67) and (A.76),
Ly (a2 ~Z _ 1/2 1/
max —= € (FLr(6/T) = T2 (t/T) ) | = 0p(9)/7.,- 1082 D), (A.81)

uniformly in 7. Now, let T'Z(t/T') be the time-varying covariance matrix of the filtered process Z,,(t/T)
obtained from Xn(At/T) as defined in (5) and (6), with (i,5) entry Wg(t/T) and denote as :y\g;T(t/T)
the (4,7) entry of I‘iT(t/T). Starting from Corollary 3.4 in Zhang and Wu (2019), because of Lem-
mas Al and A2, we can follow the same steps as those used by those authors for the spectral density
estimation and leading from Corollary 4.4 to Lemma 4 in that paper. As a result, it is possible to
show that there exists a constant C** (independent of 7" and n) such that, for any n,T € Ny (recalling
that MT = QLTbTJ),

E 37 (1) =A@ < c - A.82
g B s 75 (1) =457 < C e, (A.82)
where i e
o logT T*" (logT) Ty
Y+ 1= max ( Thy TQb% »or | -

Note that 17« is the maximum of three quantities. The first of them also appears in Rodriguez-Poo
and Linton (2001, Proposition 3.2) and Motta et al. (2011, Theorem 1), while the third one is the
square of the first quantity in (A.24).
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Therefore, from (A.82), for any n € Ny,

1 Z zZ 2 1 Z zZ 2
— _ < il _
B max [P 0/7) - vt/ _E[mTX LRZet/m) - vz
_ Z 2
== %%XZ;Z; 770 (t/T) —75(t/T)|
i=1j

< ZZE {maXh”T t/T) —~5(t/T)] }

=1 5=1

S O**¢T,T* .

Thus, by Chebychev’s inequality and since 7« = o({r+) as T — o0,

1
max —
teTr n

T2 (t/T) = DE(/T) | = 0p(Gi12.). (A.83)
Following similar steps as for (A.38)7 we also have
max ——

teTr \f
uniformly in ¢. Therefore, from (A.80), (A.81), (A.83), and (A.84),

e’( +(t/T) —TZ t/T)H—Op 72, (A.84)

max % TZ ,(t/T) — TZ .(t/T) H — Op(0Y/2, . log/* T) (A.85)
and
Al zZ z _ 1/2 1/¢
max f ¢ (PZ2(t/7) = T2 1(t/7)) | = Op(9)3,,. 108/ T), (A.86)

as n, T — oo, uniformly in ¢. This proves the analogue of Lemma 11 in Forni et al. (2017).

Now, while we used (A.37) and (A.40) to estimate the dynamic model (8)-(9) via dynamic principal
components, estimating the static model (15) via principal components can be achieved using (A.85)
and (A.86). In particular, following similar steps as those leading to (A.41) and (A.42) and in view of
Assumption (E) and Lemma 3, we can prove that

max —

teTr n n,Tor

.

T2 (/) =T (/T)| = Op (0}, tog"/# T)

and

max ——

teTr \/7

as n, T — oo, uniformly in 7.
Then, let M¥(t/T) be the ¢ x q diagonal matrix with the ¢ largest eigenvalues of I‘w(t/T)

and V¥ (t/T) the n x ¢ matrix of the corresponding normalized eigenvectors. Slmllarly let M 7(t/T)

¢ (P2 1/7) -0/ | = 0p(9)/3,, 1087 T)

be the ¢ x ¢ diagonal matrix with entries the g largest eigenvalues of I‘n}T(t/T) and Vf,T(t/T) the nxgq
matrix of the corresponding normalized eigenvectors. Following similar arguments as those leading
o (A.45) and (A.50), we have

max = HM (t/T) — M¥(t/T) H = Op(9/2 log!/* T) (A.87)
teTr n o
and
max v/ ¢ (Vf ~(t/T) — V¥(t/T)S(t/T) )H = Op(92 . 10g"/* T) (A.88)
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as n,T — oo, uniformly in ¢, where S(¢/T) is a ¢ x ¢ diagonal matrix with entries s;(t) = £1.

Now, by Assumption (Al), we have E[u,u;] = I,. Therefore, for all 7 € (0,1), the common
component of the static factor model (15) has covariance T'¥ (1) = R,,(7)R/,(7) and, by construction,
we have R, (7) := V¥(7)[MY(7)]'/2, where M¥(7) is the ¢ x ¢ diagonal matrix with the ¢ largest
eigenvalues of T'¥ (7) and V¥(7) the n x ¢ matrix of the corresponding normalized eigenvectors. Since,

~

by definition, R, (t/T) := VZ .(t/T) [M{ o(t/T)]*/2, from (A.87) and (A.88), it follows that

max
teTr

¢ (f{n,T(t/T) _R,(t/T)S(t /T)) H = Op(9)/2 . 10g"/* T) (A.89)
as n,T — oo, uniformly in .
Finally, recall the definitions

C,(t/T;L) := [An(t/T; L)) "Ry, (t/T) and C,1(t;L) := [An1(t/T; L) '"Ryr(t/T)

of the impulse response functions and their estimators. Since [AmT(t/T;L)] is block-diagonal, so
is [KH,T(t/T; L)]~!. For any given 1 < i < n, label as k; the block containing the ith component 2
of Xpt, with 1 < k; <mand let Z; :={h €Ny : (k; —1)(¢+1)+1 < h <k;(g+ 1)} denote the set of
indexes corresponding to those components of x,; belonging to block k;. Letting m; stand for the jth
vector in the ¢-dimensional canonical basis (the vector with 1 in entry j and 0 elsewhere), the (4, j)
entry of (AJ,LyT(t;L) is

Gt L) =Y G[Anr(t/T; L))" €6, Ry 1 (t/T)my;
h€eZ,

note that the sum is only over (¢ + 1) elements, which is finite for any n € Ny. Therefore, we can use
(A.67) and (A.89) to show that, for any given lag k > 0,

max [€jiin 7 (£) — 5 (H)cisu(t/T)] = Op(9,/7. . log/* 1), (A.90)
T

as n, T — oo, uniformly in 4 and j. Moreover, from Assumption (B3), for any given k > 0, as T — oo,

(1) — ¢ < kT = -1, .
SUp wmax max |cii(t) = cign(t/T)| < Crpl /T = O(T ™) (A.91)
Combining (A.90) and (A.91) completes the proof. O
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