
MULTIPLE STRING ALIGNMENT

Matteo Barigozzi

Paolo Pin

Introduction

Every DNA molecule can be described, avoiding its tridimensional structure,
as a string (genome) of elements from a set of cardinality only four, whose
elements (basis) can be listed as A, C, G, T.

Sequences of DNA are repeated many times through the genome without
yet understood biological function. DNA is in every living cells and when-
ever a cell duplicates itself every new offspring get a complete copy of the
original DNA. During these replication events mismatches may happen, due
to insertions, deletions or substitutions (actually also finite replications may
happen, but these can be seen as multiple insertions).

Biological experimental research has actually shown that not every region
of the DNA has the same probability to be object of a change. This is due
to the supposed purpose of every single region and to evolutionary reasons
(a change in a region that does not effect macroscopical properties would be
more likely). We will anyhow avoid all the considerations of this kind.

This simple algebraic representation can also be applied to other com-
mon biological structures such as amminoacids, with different sets of base
elements. In order to highlight the similarities and differences among the
instances of such strings we want to define a good method of comparison. To
do so we start from comparison between two strings, but first of all we need
some definitions.

Note that Σ is any given alphabet and Σ∗ is the set of every finite string
on it.

Definition 1 . Multiple sequence alignment MSA: given a set of
strings S = {s1, . . . , sn} with si ∈ Σ∗, a Multiple Sequence Alignment is a set
of strings A = {a1, . . . , an} with ai ∈ (Σ ∪ {−})∗, and − 6∈ Σ is called ’gap’
character. Moreover ∀ ai ∈ A : |ai| = k and removing all gaps from ai we
obtain si. ♦

1

Definition 2 . A is the set of all possible MSA from a given S. ♦

Definition 3 . Scoring function F is every function from A to R. ♦

Definition 4 . Optimal MSA is the Ā ∈ A such that F (Ā) = maxF (A).
♦

The MSA problem is then to find the optimal MSA. As seen in the definitions
we can use every alphabet.

To practically face this problem we must define a scoring function f be-
tween the characters. Let’s consider the following trivial scoring scheme for
the binary alphabet {0, 1}:

f ′0′ ′1′ ′−′

′0′ 1 0 0
′1′ 0 1 0
′−′ 0 0 0

In principle every scoring function is possible, but for our purpose we’ll accept
only those in which: f(σ, τ) ∈ [0, 1] ∀σ, τ ∈ Σ ∪ {−}, f(−,−) = 0 and
f(σ, σ) = 1 ∀σ ∈ Σ, it’s moreover clear that a symmetric function has to be
preferred.

We have assumed as equally probable the operations of changing of char-
acters (in both the ways), deletion and insertion, if not we can easily modify
the scoring table (as well as could be done using a larger alphabet).
From such a table a very common scoring function, for an MSA of n strings,
is Sum of pairs SP: sum of the values of the

(

n

2

)

couples on every column,
and summatory of them all.

Note that a column of all gaps gives no contribution to the global score.
Note also that the table we used makes the calculation of this scoring function
very easy.

Example 1 Consider the following alignment where Σ = {0, 1}:

1 0 − 0 1 0 −
− 0 − 1 1 0 1
1 − 0 0 1 1 1

This MSA will have a score of 8 for the SP method. ♦

2

The MSA problem for only two strings is polynomial, and the most used
algorithm is given by Needleman and Wunsch (NW) [7], it’s running time is
O(k2), where k is the length of the strings after the alignment (it’s bounded
by the sum of the lengths of the original strings). The inputs for this algo-
rithm are clearly the two given strings, of hypothetical length h and l. Then
it will construct an (h + 1) × (l + 1) matrix on which it will find a path
(as we’ll see in the next chapter). The output will be the optimal MSA, or
eventually only its score s and length k.

The MSA problem for n strings is instead an NP-complete problem as
first shown by Wang and Jiang (1994) [9]. More precisely it can be proved
that, using a generalization of NW dynamic programming, it’s possible to
find an optimal MSA. Anyway the running time is O((2k)n), so it is really a
hard problem when the number of strings considered is big, which is actually
the case for typical problems of molecular biology (usually the length of a
protein is k ≃ 350 and a typical protein family has hundreds of members
(n ≥ 100)). We’ll give independently an idea of the NP-completeness of the
MSA problem reducing it to the Traveling Salesman one (but this reduction
is not complete and does not fully solve it).

To get an approximated solution one common algorithm suggested by
literature [4] is the Center Star Alignment Algorithm CSA: NW is
applied on all the possible couples of strings s and t, being F (s, t) their score.
For each string t we define a number:

∑

s∈S−{t} F (t, s). We can now take
the string that minimize this number. Every other string is compared with
this minimal one with NW. Adding then proper gaps to them all we obtain
the final MSA. This algorithm runs in O((nk)2), where n is the number of
strings and k as before (here k is bounded by the sum of the lengths of all the
strings). It gives a score that is upper bounded by the double of the optimal
one.

We’ll adopt instead another algorithm, for which we need to define a
distance between all the original strings in S = {s1, . . . , sn}.

Definition 5 . Distance d(s, t): given a set of strings S, let’s apply NW
to all the

(

n

2

)

possible couples, for every couple (s, t) we’ll have a score F and
a length k, then the distance d is defined: d(s, t) = k(s, t) − F (s, t). ♦

It’s easy to prove that this is actually a distance (it satisfies also triangular
inequality).

Traveling Salesman Approach TSA: as before NW is applied on
all the couples to construct a complete graph, to whom is applied the TSP,

3

considering the distance defined above. This is justified by the research of the
tree in which all the strings are leaves and the nodes are common unknown
ancestors. As before a proper choose of gaps will lead to MSA.
Here is an example showing this process:

Example 2 Consider the five sequences of amminoacids A, B, C, D, E which
lead to the following MSA:

A: RPCVCP---VLRQAAQ--QVLQRQIIQGPQQLRRLF-AA

B: RPCACP---VLRQVVQ--QALQRQIIQGPQQLRRLF-AA

C: KPCLCPKQAAVKQAAH--QQLYQGQLQGPKQVRRAFRLL

D: KPCVCPRQLVLRQAAHLAQQLYQGQ----RQVRRAF-VA

E: KPCVCPRQLVLRQAAH--QQLYQGQ----RQVRRLF-AA

These sequences can be represented as leaves of one hypothetic common an-
cestor (the root) and their order depends on their mutual distances as repre-
sented in the phylogenetic tree given below.

A B C D E

2

4

2

?

From the MSA given above we see that the distance between strings A

and B is 4 so they have both a distance of 2 from their hypothetic common
ancestor. The same reasoning can be applied to all other strings and in this
way the phylogenetic tree is built. ♦

This algorithm has the same running time of the previous, and the effi-
ciency of many algorithms on the classical traveling salesman problem, with
a distance satisfying triangular inequality, will lead to good results. The ad-
vantage of this approach is strong in evolutionary studies when considering
phylogenetic trees as it is explained below and in the previous example.
We’ll also try an heuristic approach with Simulated Annealing (SA) to com-
pare the result of our TSA approach, and to try to improve it.

1 Needleman-Wunsch algorithm

The Needleman-Wunsch (NW) is a dynamic programming algorithm which
has as input two strings a, b of length h and l and will try to maximize the

4

score between these two strings giving as output their optimal global align-
ment. NW involves an iterative method of calculation in which all possible
pairs of characters are represented in a (h+1)× (l +1) matrix and all possi-
ble alignments are represented by pathways through this matrix. There are
three main steps in dynamic programming:

1. Initialization.

2. Matrix fill (scoring).

3. Traceback (alignment).

1.1 Initialization step

First of all we create an (h + 1) × (l + 1) matrix, using a given scoring
scheme. One possibility is represented by the scoring scheme f , defined in
the introduction. In general f has the following properties:

• match score f(σ, σ) = 1 ∀σ ∈ Σ;

• mismatch score f(σ, τ) = 0 ∀σ, τ ∈ Σ, with σ 6= τ ;

• gap penalty f(−,−) = 0; f(σ,−) = w(σ) ∀σ ∈ Σ

If there are no gap penalties (w = 0), which will be our case, the first row
and the first column can be initially filled with 0. Then a numerical value
is assigned to every position in the matrix depending on the matching or
mismatching of the two characters as given by f .
This last step can be omitted and included in the next one as we have done
practically writing our program in the function nw.

1.2 Matrix fill

Since all the elements of the first row and of the first column are defined
(they are all 0), we can fill all the other positions of the matrix. For each
position we want the maximum score Mi,j for an alignment ending at that
point. Starting from position (1, 1) we proceed as follows:

Mi,j = max[
Mi−1,j−1 + f(ai, bj), (match/mismatch in diagonal)
Mi,j−1 + w, (gap in string a)
Mi−1,j + w] (gap in string b)

This is the general formula with the possibility of gap penalties given by w

which in our case is always 0. Repeating this procedure for all the positions
we fill the whole matrix and so we are ready for the final step.

5

1.3 Traceback

The traceback steps begins at position h, l in the matrix (the lower right hand
corner), which is the position which leads to the maximal score denoted by
F (a, b). Traceback takes the current cell and looks to the neighbor cells that
could be direct predecessors. It looks to:

• the neighbor to the left (gap in string b);

• the diagonal neighbor (match/mismatch);

• the neighbor above (gap in string a).

The algorithm chooses as next position the one with the maximum score
among all the possible predecessors and, searching for the quickest way, moves
upper left until it reaches position (0, 0) where it stops. It could be noticed
that there are more alternative solutions each resulting in an optimal align-
ment with the same maximal score F (a, b). We wrote the functions nw and
function to run the NW algorithm. As output we get the global optimal
alignment between two strings, each of them now is of length k and their
distance is defined as d(a, b) = k(a, b) − F (a, b). Anyway for the solution of
MSA we need to know just the distance between two strings which is com-
puted by the function nwdist. The codes of these functions are given in the
appendix.
Finally, as already noted in the introduction, the running time of NW is
polynomial, more precisely it runs in time O(k2).

We can consider the following example obtained with the function nw:

Example 3 First of all from an alphabet of 4 characters (like DNA), we get
the two random strings using the function ‘genstr’ (see the appendix):

a) TAGTCCTCA

b) TCCAGCCCCAGGA

Then executing the first two steps (initialization and matrix fill) we get the
following matrix:

b\a - T A G T C C T C A

- 0 0 0 0 0 0 0 0 0 0

T 0 1 1 1 1 1 1 1 1 1

C 0 1 1 1 1 2 2 2 2 2

C 0 1 1 1 1 2 3 3 3 3

A 0 1 2 2 2 2 3 3 3 4

G 0 1 2 3 3 3 3 3 3 4

C 0 1 2 3 3 4 4 4 4 4

C 0 1 2 3 3 4 5 5 5 5

C 0 1 2 3 3 4 5 5 6 6

C 0 1 2 3 3 4 5 5 6 6

A 0 1 2 3 3 4 5 5 6 7

G 0 1 2 3 3 4 5 5 6 7

G 0 1 2 3 3 4 5 5 6 7

A 0 1 2 3 3 4 5 5 6 7

6

The last step (traceback) follows the highlighted path in the previous table
and leads to the following optimal alignment:

a) T--AGTCCTC-A---

b) TCCAG-CC-CCAGGA

From this example we get also that F (a, b) = 7 and k(a, b) = 15 so the
distance between the two strings is d(a, b) = 8, which is exactly the number
of mismatching characters ♦

The Needleman-Wunsch procedure could be applied with the same crite-
ria to any given number n of strings. It would construct an n-dimensional
matrix and search a path on it. Clearly it would lead to a running time
of O((2k)n) (as said in the introduction), that becomes soon useless as n

increases (which unluckily is exactly the situation faced in solving practical
problems).

2 Traveling salesman approach

To solve the MSA problem we used a new approach based on the Traveling
Salesman problem. This way is suggested by G.Gonnet et al. of ETH in
Zurich [3].
We split the problem in two parts:

1. ordering of the strings which is equivalent to the TSP;

2. gap insertion which gives the MSA.

2.1 Circular order of the strings

We can define a tree T (S) with as leafset the strings {s1 . . . sn} to be aligned
and with internal nodes representing the common ancestors of the strings,
these ancestors are usually unknown. The distance between two strings eval-
uates the probability of evolutionary events on the edges that link the strings,
the shorter is the distance the higher is the probability that the strings have
a common ancestor. To build the tree in the correct way we must put the
sequences in the right order, i.e. we must minimize the distance between all
the couples. This is almost equivalent to solving the TSP; as the n cities we
have the strings with the

(

n

2

)

distances between them that can be computed
with NW. Of course also the TSP is NP-complete but there are many good
approximated algorithms given in the literature to solve the problem.
One of these methods is suggested by Rivest et al. in [2] and is the following:

7

• build a minimum spanning tree among the n cities; once the first (root)
is chosen the next are added one by one in such a way to take always
the one nearest to the ones already checked;

• the traveling salesman path is given moving around the minimum span-
ning tree from the leaves to the root and from the left to the right.

Anyway it must be noticed that if, the distance doesn’t satisfy triangular
inequality, good approximation algorithms cannot be found in polynomial
time, unless P = NP (see [2]). So to solve TSP we must use a distance
which satisfies the triangular inequality; in particular the distance d(a, b) =
k(a, b) − F (a, b) satisfies all the properties of a real distance:

1. d(a, a) = 0, ∀a ∈ S;

2. d(a, b) > 0, ∀a, b ∈ S with a 6= b;

3. d(a, b) = d(b, a), ∀a, b ∈ S;

4. d(a, b) ≤ d(a, c) + d(c, b) ∀a, b, c ∈ S;

This definition of distance is very natural, indeed it counts the number of
characters in which two strings differ from each other.

Instead of searching for a minimum spanning tree we used the function
order which creates an ordered list of strings as follows:

• given the matrix of all the distances among the strings it looks for the
two strings whose distance is maximum and put them at the beginning
and at the end of the list;

• recursively, having a list, it searches the nearest string to the list, which
is not already in it;

• the found string is added in just after the most nearest string among
those already in the list;

• once the list is filled it runs Simulated Annealing (see next section for
a general introduction to this algorithm) in such a way to minimize the
distance between adjacent strings.

To use the previous function it is necessary to know all the
(

n

2

)

distances
between all the couples of strings, i.e. to build the matrix of distances. This
is done using nwdist iteratively and it will take O(n2k2) time.

This time is however much small if compared with the last Simulated
Annealing step (as will be clearly seen in next section), especially increasing
the number of the strings. In any case also the Simulated Annealing approach
is almost linear with this number n.

8

2.2 Gap insertion

Now the n strings are ordered in the circular order explained in the previous
section but they still have to be aligned. We assume that the first h strings
are already aligned and an MSA A′ = {a1 . . . ah} is built.
We used an algorithm written in the function insgap which has four steps:

1. take string sh and calculate an optimal pairwise alignment (using NW)
with the next string sh+1. The strings, in this alignment with the gaps,
are called th and th+1.

2. insert all gaps from th that are not already present in ah into all previ-
ously aligned strings (a1 . . . ah).

3. take all gaps that were present in ah before the previous step and insert
them in both th and th+1 except for the gaps that are already present
in th.

4. at this point ah = th and ah+1 = th+1. We add ah+1 to the alignment
and increment h by one.

The running time for this gap insertion step is O(nk2), indeed it just runs
NW n − 1 times. Once the alignment is complete the total score can be
computed easily using the usual SP method as defined in the introduction.

The TSP approach presented above is a polynomial algorithm. It has a
running time of O(n2k2) to compute all pairwise alignment at the beginning
plus a running time of O(nk2) to insert all the gaps (where k is the length
of the longest string). Of course the TSP is an NP-complete problem (expo-
nential in n), but as already said many approximation algorithm which run
in polynomial time are possible, so that the most expensive part remains the
pairwise alignment necessary to build the distance matrix.

As in the previous section we present the following example which is ob-
tained using the function insgap:

Example 4 The following ten strings randomly generated with ‘genstr’ are
given:

9

0) GTACTACG

1) CGAAATGG

2) TCCAGCCCCAGG

3) TCTAGTCCT

4) ACTTGTATCT

5) TCATCGCACG

6) TCGTCTCCTA

7) CTGCCCTGAGCC

8) CTTATAGG

9) GCACAACAAC

Then as explained before using iteratively ‘nwdist’ and then ‘order’ we get
the strings correctly ordered:

0-0)GTACTACG

1-5)TCATCGCACG

2-8)CTTATAGG

3-6)TCGTCTCCTA

4-3)TCTAGTCCT

5-4)ACTTGTATCT

6-1)CGAAATGG

7-9)GCACAACAAC

8-7)CTGCCCTGAGCC

9-2)TCCAGCCCCAGG

Finally using ‘insgap’ we obtain the following MSA:

-----G---T-----------A-C-TACG-

---------T---------C-ATCGCACG-

-----C---T---------T-AT---A-GG

----TC--GT--------CTCCT---A---

----TCTAGT--------C-C-T-------

----ACTTGTA------TC---T-------

-----C--G-A-AA---TG---G-------

----GC----ACAAC--AA---C-------

-C-TGC-----C--CTGAG---CC------

TCCAGC-----C--C-CAG----G------

This MSA has an SP score of 105. ♦

TSA leads to very good results if we change our scoring functions, that is
if, instead of considering all the possible couples of strings when computing
a column score, we consider only subsequent ones (the first with the second,
the second with the third . . . and finally the last one with the first one).

In this case this approach (assuming that the Traveling Salesman problem
was exactly solved) would give a result which is n−1

n
the optimal one (where

n is as usual the number of the strings). It’s not the best possible score
because the last string and the first one are not considered.

10

3 Simulated annealing approach

The method of Simualted Annealing (SA) is an heuristic algorithm, a very
useful one for finding the global extremum of a large scale system. It’s a
random search technique which exploits an analogy between the way in which
a metal cools and freezes into a minimum energy crystalline structure. The
essence of the process is slow cooling (annealing) which allows time for the
redistribution of the atoms as they lose mobility and is essential for ensuring
that a low energy state is reached.

SA is a generalization, for other than thermodynamic systems, of the
Metropolis algorithm [6] which is used to compute the Boltzmann average
of any thermodynamic quantity. SA was proposed in 1983 (see [5]); it starts
with a Metropolis Monte Carlo simulation at a high temperature and after
a sufficient number of Monte Carlo steps, or attempts, the temperature is
decreased. This process is repeated until the final temperature is reached.
To apply SA one must provide the following elements:

1. a description of all possible system configurations;

2. a generator of random changes in the configuration, which we call
moves, each of them is accepted with Boltzmann probability distri-
bution as in Metropolis algorithm [6];

3. an objective function E (analog of energy) whose optimization is the
goal of the procedure. In our case we look for a minimum of distances in
the function order and for a maximum of score in the function simann;

4. a control parameter T (analogous to temperature) or its inverse β and
an annealing schedule which tells how to increase β, i.e. after how
many moves each upward step in β is taken and how large it is.

In the function simann we proceed as illustrated below.

1. Each possible MSA is a configuration of the system. The initial con-
figuration can be either created at random or can be the output of the
function insgap described in the previous section. The initial β de-
pends on the configuration chosen: for random configuration we chose
β = 0.1, whereas for a configuration given by insgap we can start from
higher β given that the initial MSA is already nearly optimized.

2. The goal is to maximize the total score of the MSA using the SP scoring
method.

11

3. Once the initial configuration and initial β are given, each move consists
on finding a gap at random and changing it with the nearest non gap
character in the same string. Each move gives a change ∆F in the SP
score of the MSA:

• if ∆F > 0, the move is accepted for sure and the score is increased
by ∆F ;

• if ∆F < 0, the move is accepted with the Boltzmann probability,
i.e. we draw a uniform random number r ∈ [0, 1] and

– if e−β(∆F) > r the move is rejected and the score doesn’t
change;

– if e−β(∆F) < r the move is accepted and the score is increased
by ∆F .

4. The annealing schedule is such that the number of moves at each β-step
must be large enough to explore the regions of search space that are
filled with non gap characters; so we increase it with number of strings
and the mean length of them (e.g. for 100 strings of 10 elements 2 · 105

moves are enough). The β-step chosen is linear (βk+1 = βk + 0.1)
according to the fact that the final score is improved with slower cooling
rates, at the expense of greater computational effort. An exponential
scheme (βk+1 = cβk where c > 1) could also be possible.

5. The algorithm stops when it’s seen that no significant improvement
happens increasing β further on.

In our work we choose experimentally the final β and the number of moves
for each β-step so that increasing them the result cannot be appreciably
improved anymore. Here is an example on how simann works:

Example 5 As usual we consider the following random strings (N = 10)
generated by ‘genstr’:

0) TCCAGCCCCAGG

1) TCTAGTCCT---

2) ACTTGTATCT--

3) TCATCGCACG--

4) TCGTCTCCTA--

5) CTGCCCTGAGCC

6) CTTATAGG----

7) GCACAACAAC--

8) GTGCGTTCGGG-

9) ACGCTATGCCCT

12

The initial configuration is generated randomly spreading the elements of
each string and building the following matrix:

TCC--AG-CC-CC-AGG-------

-----TCT-AGTCC--T-------

-A-C--TT-GTA----T-C---T-

-T-CAT-C-G--C-AC-G------

-T--CGT--C-TCCT--A------

-C----TGCCCTGAG----C--C-

----CT-T-A--TAG-G-------

G--C--AC--A-AC--AAC-----

GT-GCG---TTC--G-G---G---

A--C----GCT-AT----G-CCCT

Score: 63

The annealing schedule is set with βinit = 0.1 and each step consisting of
105 random moves after which β is increased of 0.1. It stops at βfin = 0.9 as
it can be seen after this point increasing β will no more increase the score.
Here are the results for some steps of SA:

beta=0.1 beta=0.3 beta=0.5

T-C-----C-A-GC--CC--C-AGG -T-C-----CA-G-C-CCCA-GG- T-CCA-GC-C---C---C-AGG-

T---C---T--A-G-T-C----C-T T--C----T-A--G--T-C-C-T- -T-CTAG---T----C---C--T

--A--C---TTG-T--A-T-C-T-- A--C---T---TG----TA-TCT- --AC-TT---G-T--A-T--C-T

TC-A--T-C---G-C-A--C----G T--C-ATC--G-C-A-C------G T--CA-T--C--GC-A----CG-

TC-G---T--C--T--CC----T-A --T-C--GT---CT-C--C-T-A- T--CGT-C---T--C--CT-A--

-C--T-G-----C-C-C-T-GAGCC -C-T-GCC-C--TG--AG---C-C ---CTG-CCCTG--A---G-C-C

--C-TT----A-T-A---G--G--- -C----T-T-----A--T-A--GG ---CT-T-A--T---A--G--G-

G-C-A-C--A-A----C---A--AC G--C-A-CA--A---C-AA--C-- G--C-A-C-A---A-C--A-A-C

GT-GC----G----T-T--CG-G-G G-T-----G--CGT--T-CG--GG G---TG-C--GT-T-C--G-GG-

-A-C--G---C-TATGC--C--C-T -A-C-GC---TA-TG---C-CCT- A--CGC-T--A--TGCC--C--T

Score: 54 Score: 74 Score: 104

beta=0.7 beta=0.9 beta=1.0

-T-C---C-A-G--CCCC-AG--G -T-C--C-A-GC-C-C-CAG-G -T-C--C--A--G-CC-C-CAGG-

-T-C----TA-GT--C-C--T--- -T-C--T-AGT--C---C--T- -T-C-TAG--T---C----C--T-

--A---CTT-G-T-A-TC----T- A--C--T---T-GTA-TC-T-- A--C---T--T-GT-A-T-C--T-

-T-C-A--T-C--G-CA--C---G -T-C----A-TCGCA--C---G -T-C---A--TCG-CA---C--G-

-T-C--G-T-C-T--C-C--T--A -T-CG-TC--T--C---C--TA -T-C-G-TC-T---C----C--TA

CTGC---C--C-TGA-GC----C- CTGC--CC--T-G-A-GC---C CTGC--C-C-T-G--AG--C---C

---C-T--T-A-T-A-----G--G ---CT-T-A-T---A----G-G ---C-T-T-AT----A--G---G-

G--C-A--C-A---A--CAA--C- G--C-A-CA--A-CAA-C---- G--CA-C--AA---CAA--C----

GTGCG---T---T--C-G--G-G- GTGC-GT---T--CG--G-G-- GTGC-G-T--T---C-G-G---G-

-A-CG--CT-A-TG-C-C-C-T-- A-CGCT-A-T-GC-C-C--T- -A-C-GCT-AT-G-CC---C--T-

Score: 163 Score: 201 Score: 201

13

The last result can be compressed leading to the final MSA:

-T-C-C-A--GCCCCAGG-

-T-CTAG-T--C--C--T-

A--C--T-T-GTATC--T-

-T-C--A-TCGCA-C--G-

-T-CG-TCT--C--C--TA

CTGC-C-CT-G-AGC---C

---CT-TAT---A-G--G-

G--CAC-AA--CAAC----

GTGCG-T-T--C-GG--G-

-A-CGCTAT-GCC-C--T-

Score: 201

In this example the compression doesn’t affect the total score but in general
it can slightly improve it. ♦

We saw how Needleman-Wunsch algorithm is linear with the length of the
strings. Simulated Annealing applied experimentally to 15 random strings of
different length (10, 20, 30, 40 and also 100) proved itself to be almost linear
in time. The parameters used (different β’s and number of trials for each
of them) seemed to be equally good in these four cases. Surely increasing
moreover L (the length of the strings) those parameters would be too low,
so that the running time will grow proportionally.

0

5

10

15

20

25

30

0 20 40 60 80 100

T

L

running time of SA T vs mean lenght of strings L (N=15)

A very different behavior comes out maintaining the length (which is
actually randomly between 8 and 12) and increasing the number of the string.
We tried experimentally with 15, 30, 45 and 60 strings. The running time

14

grew almost exactly linearly with the number of the strings. In this cases
however this is due to the fact that the parameters used had to be changed
linearly in order to obtain reliable results.

0

50

100

150

200

0 10 20 30 40 50 60

T

N

running time of SA T vs number of strings N (L=10,V=2)

4 Experiments and conclusions

The last step of our research was based on experimental trials with three
different algorithms: the already known Traveling Salesman Approach (TSA)
and Simulated Annealing (SA), and a mixture of both of them (TSA+SA).
To be more accurate we first ran TSA and then refined it with SA, but
starting with a higher β than the one used in simple SA.
As all the parameters in single SA, also this initial β has been chosen, case by
case, in order to obtain the best results in any of them (e.g. for 100 strings
we started with β = .3 and ended with β = 1.2, while in the original SA
starting β was 0.1).

We have then tested these three algorithms on four different numbers of
strings (15, 30, 45 and 60), maintaining fixed their length (between 8 and 12
as in previous section).
In choosing properly the initial β for the combined TSA+SA, our main goal
was to obtain an equal score for simple SA and TSA+SA (with an error that
has always been less than ±1%).
In such conditions we’ve been able to compare the score and the running
time of TSA+SA with those of TSA, and also its execution time with the
one of SA.

15

We have seen experimentally that the proportion of the results (i.e. the
scoring function of the best MSA) of TSA+SA and TSA, increases almost
linearly with the number of strings.

0

1

2

3

4

5

0 10 20 30 40 50 60

S

N

S = score(TSA+SA)/score(TSA) vs number of strings N (L=10,V=2)

In despite of this improvement in score, the proportion of the running
times increases almost exponentially.

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60

T

N

T = time(TSA+SA)/time(TSA) vs number of strings N (L=10,V=2)

Finally the comparison of execution times for TSA+SA and SA (main-
taining fixed and equals their final score) remains more or less around 0.8,
but it seems to approach asymptotically 1 increasing the number of strings.

16

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

T

N

T = time(TSA+SA)/time(SA) vs number of strings N (L=10,V=2)

This final experimental analysis has brought us to three mainly consider-
ations:

1. The length of the strings influences linearly both TSA and SA.

2. What happens increasing their number?
TSA is a very quick algorithm, but its results are very poor. Even for
as few as 15 strings SA (whose running time is in this case 11 times
bigger) gives a result that is twice as good.
This disproportion gets much worse with more strings: with 60 the
result is 1

4
and the running time is 1

100
.

So, increasing number of strings, TSA, compared with SA, becomes
exponentially faster but linearly less accurate.

3. On the other hand this two approaches can be used together and TSA
can be a good tool in improving SA. Nevertheless its utility slowly
decreases (linearly?) with growth of number of strings.

Concerning the actual dimensions of real genetic problems (hundreds of
DNA sequences with millions of basis each). TSA can be used only to slightly
improve a pure heuristic SA approach. Moreover it may be dangerous to trust
too much on the TSA result: it could be near to a local maximum which is
very far from the global one.

TSA is however and so far the best polynomial algorithm for the MSA
problem (due to very good polynomial algorithms on the classical Traveling
Salesman), and it is very powerful when facing phylogenetic problems (i.e.
the research of common ancestors).

17

Appendix

We present here briefly the functions that we wrote to implement the algo-
rithm to solve MSA.

• main

#include<stdio.h>

#include<stdlib.h>

#include<math.h>

#include "nrutil.h"

#define C 4 // number of characters in the alphabet

#define N 15 // number of strings

#define L 10 // average number of characters in a string

#define V 2 // variance on this number

// random processes

#define LOOP 0 // random loops before spreading the strings

#define LOOPG 120 // random loops before generating the strings

#define LOOPS 10 // random loops before Simulated Annealing

// Simulated Annealing

#define BETA .1 // gap between betas in Simulated Annealing

#define INIZ 5 // first beta is INIZ*BETA

#define FINE 11 // last beta is FINE*BETA

#define GIRI 1e5 // number of trials for every beta

// Simulated Annealing on Traveling Salesman

#define BETATS .1 // gap between betas in Simulated Annealin

#define INIZTS 10 // first beta is INIZ*BETA

#define FINETS 25 // last beta is FINE*BETA

#define GIRITS 1e5 // number of trials for every beta

int M[L+V+1][N]; // matrices to use [trasposed!]

int G[L*N/2][N];

int w[N]; // array for original string order

void genstr (int c, int n, int l, int v, int m[][N], int loopg);

void nw (int c, int l, int v, int str1[], int str2[], int gnw[][2]);

void order (int c, int n, int l, int v, int m[][N], int w[], float beta, int iniz, int fine, int giri);

int nwdist (int c, int str1[], int str2[]);

void insgap (int c, int n, int l, int v, int m[][N], int g[][N]);

void simann (int c, int n, int l, int g[][N], float beta, int iniz, int fine, int giri, int loops);

void stampa (int c, int n, int l, int m[][N]);

// MAIN PROGRAM

main () {

float ran2(long *idum);

long h = -1; // parameter for random number generator

int i,j,k,g; // cycle variables

int str1[L+V+1]; // strings on which run nw

int str2[L+V+1];

int gnw[2*L+2*V+1][2];

int lun;

int ch;

int col = L*N/4;

genstr (C, N, L, V, M, LOOPG);

stampa (C, N, L+V, M); // print the matrix

printf ("\nTraveling Salesman Approach (1), Simulated Annealing (2) or both (3).");

scanf ("%d", &ch);

if (ch == 2) {

18

for (j=0; j<LOOP; j++) ran2(&h); // random loops to change results

for (i=0; i<N; i++) { // generates random spread matrix

lun = 0;

while (M[lun][i] != C) lun++;

g = 0;

for (j=0; j < col; j++) {

if (((lun-g)!=(col-j)) && ((M[g][i]==C) || ((ran2(&h)) > (4.8/N)))) G[j][i] = C;

else { G[j][i] = M[g][i]; g++; }

}

}

stampa (C, N, col, G); // print the matrix

simann (C, N, col, G, BETA, 1, FINE, GIRI, LOOPS);

}

if ((ch == 1)||(ch == 3)) {

order (C, N, L, V, M, w, BETATS, INIZTS, FINETS, GIRITS);

for (i=0; i<N; i++) { // print the matrix (with previous positions)

printf ("%d-%d)\t", i, w[i]);

for (j=0; j<L+V+1; j++){

if (M[j][i] == C) printf ("-");

else printf ("%d", M[j][i]);

}

printf ("\n");

}

printf ("\n");

insgap (C, N, L, V, M, G);

stampa (C, N, L*N/2, G); // print the matrix

}

if (ch == 3) {

g=0; i=0; // count g(i)’s length

while (g==0) {

g=1;

for (j=0; j<N; j++) { if (G[i][j] != C) g=0; }

i++;

}

simann (C, N, i, G, BETA, INIZ, FINE, GIRI, LOOPS);

}

}

• genstr

It generates the strings to be aligned. It can be done totally random
or, given one string, all the others are created with just a finite number
of random changes such that the output simulates strings related by
some evolutionary change. It is also possible to vary the mean length
of the strings, the variance of such length, the number of characters
used (i.e. the alphabet) and of course the number of strings.

#include<stdio.h>

#include<stdlib.h>

#include<math.h>

// Subroutine to generate N strings of L characters

void genstr (int C, int N, int L, int V, int M[][N], int LOOP) {

float ran2(long *idum);

long h = -1; // parameter for random number generator

int i,j,m; // variables for loops

int l; // variable for the length of the strings

int r; // random choice

int p;

int ch;

int or[L]; // original string

int k[L+V+1]; // string with the modifications

19

printf ("How to generate strings?\n Similar (1), Random (2).");

scanf ("%d", &ch);

if (ch == 1){

for (i=0; i<LOOP; i++) ran2(&h);

for (i=0; i<L; i++) or[i] = floorl ((ran2(&h)) * C);

printf ("\nOriginal string:\n\t");

for (i=0; i<L; i++) printf("%d", or[i]);

printf ("\n");

for (i=0; i<N; i++) {

for (j=0; j<L; j++) k[j] = or[j];

while (j <= L+V) { k[j] = C; j++; }

l = L;

p = floorl (L/2);

for (j=0; j<p; j++) { // make L/2 changes

r = floorl ((ran2(&h)) * 3) ; // 0 insert, 1 cancel, 2 change

if ((r==0) && (l<L+V)) {

p = floorl ((ran2(&h)) * l) ;

for (m=0; m<=L+V-p-1; m++) k[L+V-m] = k[L+V-m-1]; // insert one element in position p of k

k[p] = floorl ((ran2(&h)) * C);

l++;

}

if ((r==1) && (l>L-V)) {

p = floorl ((ran2(&h)) * l) ;

for (m=0; m<=L+V-p-1; m++) k[p+m] = k[p+m+1]; // cancel one element in position p of k

k[L+V] = C;

l--;

}

if (r==2) {

p = floorl ((ran2(&h)) * l) ;

k[p] = floorl ((ran2(&h)) * C); // change one element in position p of k

}

}

for (j=0; j<l; j++) M[j][i] = k[j]; // insert the characters

while (l <= L+V) { M[l][i] = C; l++; } // put all gaps in the end

}

}

else{

for (i=0; i<LOOP; i++) ran2(&h);

for (i=0; i<N; i++) {

l = L - V + floorl ((ran2(&h)) * (2*V +1)) ;

for (j=0; j<l; j++) M[j][i] = floorl ((ran2(&h)) * C); // insert the characters

while (l <= L+V) { M[l][i] = C; l++; } // put all gaps in the end

}

}

return;

}

• function

Calculates the scoring between two characters.

#include<stdio.h>

#include<stdlib.h>

#include<math.h>

#include "nrutil.h"

//Subroutine to calculate the Needleman-Wunsch function to build the matrix

20

int function (int C, int n1, int n2) {

if ((n1 == n2) && (n1 != C)) return 1;

//if ((n1 == n2) && (n1 == c)) return 0;

else return 0;

}

• nw

Align two strings using NW algorithm.

#include<stdio.h>

#include<stdlib.h>

#include<math.h>

#include "nrutil.h"

int function (int C, int n1, int n2);

// Subroutine of Needleman-Wunsch to find the optimal pairwise alignment

void nw (int C, int L, int V, int str1[], int str2[], int gnw[][2]) {

int i,j; // variables for loops

int mem[2]; // memory of the path

int k; // final length of the two strings

int g1; // gap in the first row

int l1, l2; // length of the two strings

int *v1; // vectors to represent the two strings

int *v2;

int **mnw; // NW matrix (dimensions unknown yet)

l1 = 0; l2 = 0; // compute the length of the two strings

while (str1[l1] != C) l1++;

while (str2[l2] != C) l2++;

i = 0;

v1 = ivector(1, l1+l2); // define vectors (both of length l1+l2) and write them

while (str1[i] != C) { v1[i+1] = str1[i]; i++; }

i++;

while (i <= l1+l2) { v1[i] = C; i++; } // put all gaps in the end

i = 0;

v2 = ivector(1, l1+l2);

while (str2[i] != C) { v2[i+1] = str2[i]; i++; }

i++;

while (i <= l1+l2) { v2[i] = C; i++; } // put all gaps in the end

mnw = imatrix(0,(l1+1),0,(l2+1)); // define dimensions of the NW matrix

// Define the matrix

for (i=0; i<=l1; i++) mnw[i][0]=0; // first column equal 0

for (i=1; i<=l2; i++) mnw[0][i]=0; // first row equal 0

for (i=1; i<=l1; i++) { // loop on the rows

for (j=1; j<=l2; j++) { // loop on the columns

mnw[i][j] = mnw [i-1][j-1] + function (C, v1[i], v2[j]); // give the value of the cell in direction\

// to which add the value of f in that position

if (mnw[i-1][j] > mnw [i][j]) mnw[i][j] = mnw [i-1][j]; // check the neighbors | and -

if (mnw[i][j-1] > mnw [i][j]) mnw[i][j] = mnw [i][j-1];

}

}

// Look for the path

i=l1; j=l2; k=1; g1=0; // start from the lower right hand side corner k at first step

while ((i != 1) || (j != 1)) { // stop in upper left hand side corner

if ((mnw[i-1][j-1] >= mnw [i-1][j])&&(mnw[i-1][j-1] >= mnw [i][j-1])&&(i!=1)&&(j!=1)) { // try to go \

v1[l1+l2+1-k] = v1[i]; // write both the values in the string with gaps

v2[l1+l2+1-k] = v2[j];

mem[0]=i; mem[1]=j; i=i-1; j=j-1; k++; }

21

else {

if (((mnw[i][j-1] > mnw[i-1][j]) || ((mnw[i][j-1] == mnw [i-1][j])&&(j>i)) || ((i==1))&&(j!=1))) { // try to go -

if (mnw[i][j-1] < mnw[i][j]) { v1[l1+l2+1-k] = v1[i]; mem[0]=1; } // choose if to put a gap in first row

else v1[l1+l2+1-k] = C;

v2[l1+l2+1-k] = v2[j]; mem[1]=j; // write second row

j=j-1; k++; g1++; }

else { // in this case go |

v1[l1+l2+1-k] = v1[i]; // write the first row

if (mnw[i-1][j] < mnw[i][j]) { v2[l1+l2+1-k] = v2[j]; mem[1]=j; } // choose if to put a gap in second row

else v2[l1+l2+1-k] = C;

i=i-1; k++; }

}

}

if (mem[0] > 1) v1[l1+l2+1-k] = v1[1]; // write the last characters

else v1[l1+l2+1-k] = C;

if (mem[1] > 1) v2[l1+l2+1-k] = v2[1];

else v2[l1+l2+1-k] = C;

for (i=0; i<l1+g1; i++) gnw[i][0] = v1[i+l2-g1+1];

while (i <= L*2+V*2) { gnw[i][0] = C; i++; } // end with all gaps

for (i=0; i<l1+g1; i++) gnw[i][1] = v2[i+l2-g1+1];

while (i <= L*2+V*2) { gnw[i][1] = C; i++; } // end with all gaps

}

• nwdist

Completely analogous to nw, but returns only the distance and doesn’t
insert gaps.

• order

Orders the input strings using the circular order method, then it im-
proves it with Simulated Annealing.

#include<stdio.h>

#include<stdlib.h>

#include<math.h>

#include "nrutil.h"

int nwdist (int C, int str1[], int str2[]);

// Subroutine to order the strings using the Traveling Salesman Approach

void order (int C, int N, int L, int V, int M[][N], int w[], float BETA, int INIZ, int FINE, int GIRI) {

float ran2(long *idum);

long h = -1; // parameter for random number generator

int app [L+V+1][N]; // vector for the strings to be ordered

int str1[L+V+1]; // strings on which calculate the distance

int str2[L+V+1];

int md[N][N]; // matrix of distances

int md2[N][N]; // same matrix on which changes are made

int i,j,m,n,p; // variables for loops

int min; // variable to find minima

int col; // variable for the searched column

int row; // variable for the searched row

int q[N]; // vector to sign the position of strings

int score; // score of the alignment

22

float beta[50]; // vector for simulated annealing data

int delta; // variation of the score

for (i=0; i<N; i++) { // calculate the matrix

md[i][i] = 0;

for (j=0; j<i; j++) {

for (h=0; h <= L+V; h++) { str1[h] = M[h][i]; str2[h] = M[h][j]; }

md[i][j] = nwdist (C, str1, str2) ;

md[j][i] = md[i][j];

}

}

for (i=0; i<N; i++) { // md2 = md

for (j=0; j<N; j++) md2[i][j] = md[i][j];

}

min = -1; // looks for the maximum in md to choose the extremals

for (i=0; i<N; i++) {

for (j=0; j<i; j++) if (min<md[i][j]) {

min=md[i][j]; row=i; col=j;

}

}

for (i=0; i<N; i++) md[i][row] = -1; // exclude the corresponding columns

for (i=0; i<N; i++) md[i][col] = -1;

for (i=0; i<N; i++) q[i] = -1; // at the beginning there are only row at first place and col at the last

q[row] = 0; q[col] = N-1;

w[0] = row; w[N-1] = col;

for (h=1; h<N-1; h++) { // align the strings

min = 1e5;

for (i=0; i<N; i++) { // find the minimum among the remaining strings

if ((q[i]>-1) && (q[i]!=N-1)) {

for (j=0; j<N; j++) {

if ((md[i][j] < min) && (md[i][j]>0)) { min = md[i][j]; col=j; row=i;}

}

}

}

for (i=0; i<N; i++) { if ((q[i]>row)&&(q[i]<N-2)) q[i]++; } // put in w the position of the found string

q[col] = q[row] + 1;

for (i=0; i<h-q[row]-1; i++) w[h-i] = w[h-i-1];

w[q[row] + 1] = col;

for (i=0; i<N; i++) md[i][col] = -1; // exclude the corresponding column

}

score = 0;

for (i=0; i<N-1; i++) score = score + md2[w[i]][w[i+1]];

for (m=INIZ; m<=FINE; m++) { // ---> start of Simulated Annealing <---

for (n=0; n<50; n++) { beta[n] = exp (BETA*m*n*(-1)) ; } // Calculate beta[], with the values of e^(-bD)

for (n=0; n<=GIRI; n++) {

i = 1 + (floorl ((ran2(&h)) * (N-2))); // looks randomly for two different strings (not the first neither the last)

j = 1 + (floorl ((ran2(&h)) * (N-2)));

while (j==i) j = 1 + (floorl ((ran2(&h)) * (N-2)));

if (j<i) {p=i; i=j; j=p;} // always j>i

delta = md2[w[j]][w[i-1]] - md2[w[i]][w[i-1]] ; // evaluate the move

delta = delta + md2[w[i]][w[j+1]] - md2[w[j]][w[j+1]] ;

if (j != i+1) delta = delta + md2[w[j]][w[i+1]] + md2[w[i]][w[j-1]] - md2[w[i]][w[i+1]] - md2[w[j]][w[j-1]] ;

if (delta<0) { p=w[i]; w[i]=w[j]; w[j]=p; score = score+delta; } // do the move if improving

else { // Monte Carlo step

if (delta > 49) delta = 49; // calculate delta (49 as maximum value)

if ((ran2(&h)) < beta[delta]) { p=w[i]; w[i]=w[j]; w[j]=p; score = score+delta; } // do it

}

}

}

for (i=0; i<N; i++) { // returns the strings aligned and the vector w of the changes done

23

for (j=0; j<= L+V; j++) app[j][i] = M[j][w[i]];

}

for (i=0; i<N; i++) {

for (j=0; j<= L+V; j++) M[j][i] = app[j][i];

}

}

• insgap

Inserts the gaps as explained in section (2.2).

#include<stdio.h>

#include<stdlib.h>

#include<math.h>

#include "nrutil.h"

// Subroutine to insert the gaps in the N strings once ordered

void insgap (int C, int N, int L, int V, int M[][N], int G[][N]) {

int gnw[2*L+2*V+1][2]; // 2 vectors with strings with gaps

int str1[L+V+1]; // 2 strings on which execute NW

int str2[L+V+1];

int gap[N*L/2][2]; // 2 vectors with strings with gaps to make comparisons and insert in G

int i,j,h; // variables for loops

int p; // counters on the strings

int col = (N*L)/2; // columns of G

int l; // length of the considered string

int c, c1, c2; // counters of the element of the strings

for (i=0; i<=L+V; i++) G[i][0] = M[i][0]; // move first string from M to G

while (i<=col) { G[i][0] = C; i++; }

for (i=1; i<N; i++) { // loop to insert strings in gap[] using NW and extending gaps

for (j=0; j <= L+V; j++) { str1[j] = M[j][i-1]; str2[j] = M[j][i]; } // NW between the last inserted and the next

nw (C, L, V, str1, str2, gnw);

for (j=0; j<2; j++) {

for (h=0; h<=2*L+2*V; h++) gap[h][j] = gnw[h][j]; // move gnw[2] into gap[2]

while (h<=col) { gap[h][j] = C; h++; }

}

l = 0; // count number of characters of line M[i-1]

while (M[l][i-1] != C) l++;

c=0; c1=0; c2=0; // initialize counters (c counts non gap elements)

while ((G[c1][i-1] != gap[c2][0]) || (c != l)) { // check the 2 vectors until the end of both

if (G[c1][i-1] == gap[c2][0]) { // case 1: they are equal -> proceed

if (G[c1][i-1] != C) c++; // if they are not gap increase c

c1++; c2++;

}

else {

if (G[c1][i-1] == C) { // case 2: gap above

for (j=0; j<2; j++) { // insert one gap into position c2 of gap[0] and gap[1]

for (h=0; h<col-c2-1; h++) gap[col-h-1][j] = gap[col-h-2][j];

gap[c2][j] = C;

}

c1++; c2++;

}

if (gap[c2][0] == C) { // case 3: gap below

for (j=0; j<i; j++) { // insert one gap into position c1 of G[0]...G[i-1]

for (h=0; h<col-c1-1; h++) G[col-h-1][j] = G[col-h-2][j];

G[c1][j] = C;

}

c1++; c2++;

}

}

24

}

for (j=0; j<col; j++) G[j][i] = gap[j][1]; // move gap[1] into G[i]

}

}

• simann

Finds the MSA using Simulated Annealing.

#include<stdio.h>

#include<stdlib.h>

#include<math.h>

#include "nrutil.h"

int function (int C, int n1, int n2);

void stampa (int C, int N, int L, int M[][N]);

// Subroutine which executes Simulated Annealing on the strings

void simann (int C, int N, int col, int G[][N], float BETA, int INIZ, int FINE, int GIRI, int LOOP) {

float ran2(long *idum);

long h = -1; // parameter for random number generator

int p [col]; // vector for the scores

int gg[col]; // vector for columns with all gaps

int i,j,k,g,d,y,u,s; // variables for loops

int lun; // counter for the length of the single string

int t[2]; // variable to evaluate the single move

float beta[40]; // vector for the data of Simulated Annealing

int delta; // variation of score

for (j=0; j<LOOP; j++) ran2(&h);

for (i=0; i<col; i++) { // calculate the score vector

p[i] = 0;

for (j=0; j<N-1; j++) {

for (k=j+1; k<N; k++) p[i] = p[i] + function (C , G[i][j], G[i][k]);

}

}

for (u=INIZ; u<=FINE; u++) { // ---> Start Simulated Annealing <---

for (d=0; d<40; d++) { beta[d] = exp (BETA*u*d*(-1)) ; } // calculate vector beta[], with the values of e^(-bD)

for (d=0; d<=GIRI; d++) {

i = floorl ((ran2(&h)) * N); // look randomly for a gap

j = floorl ((ran2(&h)) * col);

while (G[j][i] != C) {

i = floorl ((ran2(&h)) * N);

j = floorl ((ran2(&h)) * col);

}

k = j; g = 1; // look for the nearest non gap element

y = (floorl ((ran2(&h)) * 2)) *2 - 1; // y is 1 or -1

while (G[k][i] == C) {

k = k + (y * g * (((g%2)*2)-1)); g++;

if ((k<0) || (k>=col)) { k = k + (y * g * (((g%2)*2)-1)); g++; }

}

g = G[k][i]; G[k][i] = G[j][i]; G[j][i] = g; // do the move

t[0] = 0; // evaluate the move

for (y=0; y<N-1; y++) {

for (g=y+1; g<N; g++) t[0] = t[0] + function (C , G[j][y], G[j][g]);

}

t[1] = 0;

for (y=0; y<N-1; y++) {

for (g=y+1; g<N; g++) t[1] = t[1] + function (C , G[k][y], G[k][g]);

}

if (t[0]+t[1] >= p[j] + p[k]) { p[j]=t[0]; p[k]=t[1]; } // do the move because it’s better

25

else { // Monte Carlo step

delta = - (t[0]+t[1]-p[j]-p[k]); // computes delta (19 is the maximum)

if (delta > 19) delta = 19;

if ((ran2(&h)) < beta[delta]) { p[j]=t[0]; p[k]=t[1]; } // do the move

else { g = G[k][i]; G[k][i] = G[j][i]; G[j][i] = g; } // reject the move

}

}

printf ("\nbeta = %.3f", BETA*u);

stampa (C, N, col, G); // prints the matrix after each SA step

}

// Compression of the result

for (i=0; i<col; i++) {

y=0; g=1;

while ((y==0) && (i+g < col)) {

y=0;

for (j=0; j<N; j++) {

if ((G[i][j] != C) && (G[i+g][j] != C)) y = 1;

}

if (y == 0) {

for (j=0; j<N; j++) {

if (G[i+g][j] < C) { G[i][j] = G[i+g][j]; G[i+g][j] = C; }

}

}

g++;

}

}

stampa (C, N, col, G); // prints the final matrix

}

• stampa

Prints the list of strings and the matrix given by MSA.

• ran2, nrutil just see [8]

26

References

[1] H. Carillo and D. Lipman,
“The multiple sequence alignment problem in biology”,
SIAM J. Appl. Math., 48(5):1073-1082 (1988).

[2] T.H. Cormen, C.E. Leiserson and R.L. Rivest,
Introduction to algorithms
(MIT Press, 1990)

[3] G. Gonnet and C. Korostensky,
http://www.wr.inf.ethz.ch/personal/gonnet/papers/spirefinal.ps
SPIRE (String Processing and Information Retrieval) proceedings
(1999)

[4] D. Gusfield,
“Efficient methods for multiple sequence alignment with guaranteed er-
ror bounds”,
Bull. Math. Biol., 55, 141-154 (1993).

[5] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi,
Science, 220, 671-680 (1983).

[6] N. Metropolis, A.W. Rosenbluth, M.N.Rosenbluth, A.H. Teller and E.
Teller,
“Equation of state calculations by fast computing machines”,
J. Chem. Phys., 21, 1087-1092 (1953).

[7] S.B.Needleman and C.D. Wunsch,
“A general method applicable to the search for similarities in the amino
acid sequence of two proteins”,
J. Mol. Biol., 48, 443-453 (1970).

[8] W. Press, S. Teukolsky, B. Flannery and W. Vetterling,
Numerical recipes in C
(Cambridge University Press, 1992)

[9] L. Wang and T. Jiang,
“On the complexity of multiple sequence alignment”,
Journal of Computational Biology, 1, 337-348 (1994).

27

