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Introduction

Factor analysis is one of the earliest proposed multivariate statistical
techniques.

It dates back to the studies of Spearman (1904) in experimental psychology.

Main idea:

a vector of n observed random variables/time series decomposed into the
sum of

1 few, less than n, latent factors
capturing co-movements;

2 many idiosyncratic factors
capturing item specific or local features or measurement errors.

We can retrospectively consider factor analysis as a pioneering technique in
the filed of unsupervised statistical learning.
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Introduction

Examples:

equity returns are driven by few factors representing the “market” plus some
factors specific of a given company or sector;

GDP or inflation are driven by few factors representing the “business cycle”
plus some measurement errors.

5/151



Introduction

Finance example stock returns:
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Blue: IBM;
Green: AIG;

Purple: Goldman Sachs;
Red: S&P500 (weighted average) capturing the co-movements.
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Introduction

Macro example:
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Blue: CPI quarterly inflation;
Green: GDP quarterly growth rate;

Red: Average of GDP and CPI capturing the co-movements.
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Introduction

Main intuition:

CO-MOVEMENTS ARE CAPTURED BY
AGGREGATING THE DATA (DYNAMICALLY)

i.e. BY CROSS-SECTIONAL (WEIGHTED∗) AVERAGES!

(∗ the weights are selected starting from the data, not a priori.)

IN LARGE SYSTEMS BY FOCUSSING ON CO-MOVEMENTS
WE ACHIEVE DIMENSION REDUCTION!
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Introduction

Features of large datasets of time series available today:

number of periods for which we have data is limited and constrained by
passage of time;

more and more time series are collected and made available by statistical
agencies;

we denote by

T the the sample size, points in time;
n the number of series;

we are in a setting where n ' T or even n > T :

hard problem in statistics: high-dimensional setting;

in macro n ' 100, 1000 and T ' 100, 1000 (quarterly or monthly series);

in finance n ' 100, 1000 and T ' 1000, 10000 (daily series).

(moderately) big data!
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Introduction

Two main fields of applications:

1 psychometrics in a low-dimensional setting (Spearman, 1904);

2 econometrics in a low- and high-dimensional setting with applications to

the analysis of financial markets
(Connor, Korajczyk & Linton, 2006; Aït-Sahalia & Xiu, 2017; Barigozzi & Hallin, 2020);

the measurement and prediction of macroeconomic aggregates
(De Mol, Giannone & Reichlin, 2008; Giannone, Reichlin & Small, 2008; Barigozzi & Luciani, 2021);

the study of the dynamic effects of unexpected shocks to the economy
(Bernanke, Boivin & Eliasz, 2005; Forni & Gambetti, 2010; Barigozzi, Lippi & Luciani, 2021);

the analysis of demand systems (Stone, 1945; Barigozzi & Moneta, 2014).

A Google search on “Dynamic Factor Model” brings no less than 435 million
entries–as many “as the stars of the heaven and as the sand which is upon the
seashore!”
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Taxonomy of Factor Models

We model a panel of n time series {xt = (x1t · · ·xnt)′, t ∈ Z} as

xit = χit + ξit,

where

χit common component, i.e. driven by factors common to all xi’s;
ξit idiosyncratic component;
Cov(χit, ξjs) = 0 for any i, j, t, s (orthogonal at all leads and lags).

Throughout, for simplicity we work with centered data so
E[χit] = E[ξit] = 0.

We assume weak stationarity of {xt, t ∈ Z}.
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Taxonomy of Factor Models

There are different kind of factor models:

Exact vs. Approximate, this refers to idiosyncratic components;

Static vs. Dynamic, this refers to common components.
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Taxonomy of Factor Models

Exact vs. Approximate.

Let ξt = (ξ1t · · · ξnt)′.

Exact: the elements of ξt are not correlated:

Γξ = E[ξtξ
′
t] is diagonal;

Approximate: mild cross-sectional correlations are allowed:

Γξ = E[ξtξ
′
t] is not diagonal;

The distinction is about contemporaneous correlations only.
About autocorrelations:

exact model: natural to assume also Γξk = E[ξtξ
′
t−k] = 0n×n for all k 6= 0.

approximate model: we can allow for Γξk = E[ξtξ
′
t−k] 6= 0n×n for some

k 6= 0, or even for all k ∈ Z provided we control for serial dependence.

The term generalized is used only for the dynamic case and only under certain
additional conditions.
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Taxonomy of Factor Models

Classical factor analysis considers an exact model, n is small and fixed;

In an exact model we can estimate the loadings even if n fixed, but the
factors are not estimated consistently, unless n→∞;

In a high-dimensional setting, n→∞, an exact model is not realistic;

Modern factor analysis considers the approximate model ⇒ curse of
dimensionality;

An approximate model can be identified and estimated only if n→∞ ⇒
blessing of dimensionality;

The condition on mild idiosyncratic cross-sectional correlations must depend
on n. The most common are:

supn∈N µ
ξ
1 < M , with µξ1 the max eigenvalue of Γξ;

supn∈N n
−1
∑n
i,j=1 |E[ξitξjt]| < M ;

supn∈N maxi=1,...,n

∑n
j=1 |E[ξitξjt]| < M ;

|E[ξitξjt]| ≤Mij s.t. supn∈N
∑n
i=1Mij < M and

supn∈N
∑n
j=1Mij < M .
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Taxonomy of Factor Models

Ex: static 1-factor model:
xit = Ft + ξit,

Consider an exact homoskedastic static factor model, then as n→∞,

E

( 1

n

n∑
i=1

xit − Ft

)2
 = E

( 1

n

n∑
i=1

ξit

)2
 =

1

n2

n∑
i=1

E[ξ2
it] =

E[ξ2
it]

n
→ 0.

Under heteroskedasticity

E

( 1

n

n∑
i=1

ξit

)2
 =

1

n2

n∑
i=1

E[ξ2
it] ≤

maxi=1,...,n E[ξ2
it]

n
→ 0.

We need n→∞ to consistently estimate the factors. Classically n fixed and
factors are incidental parameters.
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Taxonomy of Factor Models

Ex: static 1-factor model (cont.):

xit = Ft + ξit,

The same argument would hold also for an approximate model as long as

E

( 1

n

n∑
i=1

ξit

)2
 =

1

n2

n∑
i,j=1

E[ξitξjt] =
ι′Γξι

n2
≤ maxv:v′v=1 v

′Γξv

n
=
µξ1
n
→ 0,

where ι = (1 · · · 1)′.
The max eigenvalue of Γχ = ιE[F 2

t ]ι′ is µχ1 = nE[F 2
t ].

As n→∞ eigengap increases: we can identify the common component, and we
can recover the factors. ⇒ blessing of dimensionality!
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Taxonomy of Factor Models

Static vs. Dynamic.

Static:
xit = λ′iFt︸ ︷︷ ︸

χit

+ξit, (1)

the factors Ft and the loadings λi are r-dimensional vectors with r < n.
Ft have only a contemporaneous effect on xit and are called static factors.

Dynamic:

xit =

s∑
k=0

λ∗
′

kift−k︸ ︷︷ ︸
λ∗
′
i (L)ft=χit

+ξit, (2)

the factors ft and the loadings λ∗ki are q-dimensional vectors with q < n.
ft have effect on xit through their lags too and are called dynamic factors.

If s <∞ and ξit is the same in (1) and (2) then q ≤ r.

If s =∞ then (2) is the most general dynamic factor model.
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Taxonomy of Factor Models

Approximate static factor model

xit = λ′iFt + ξit

Estimation:
Principal Components (Chamberlain & Rothschild, 1983; Stock & Watson, 2002; Bai, 2003).

Quasi Maximum Likelihood (Bai & Li, 2016).

Exact static factor model
Estimation:
Principal Components (Hotelling, 1933).

Maximum Likelihood (Thomson, 1936; Bartlett, 1937; Lawley, 1940; Anderson & Rubin, 1956;

Jöreskog, 1969; Lawley & Maxwell, 1971; Amemiya, Fuller & Pantula, 1987; Tipping & Bishop, 1999; Bai &

Li, 2012).
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Taxonomy of Factor Models

Approximate dynamic factor model (DFM)

xit = λ′iFt + ξit,

Ft = N(L)ut.

Estimation:
Principal Components plus VAR (Forni, Giannone, Lippi & Reichlin, 2009).

Principal Components plus Kalman smoother (Doz, Giannone & Reichlin, 2011).

Expectation Maximization algorithm (Watson & Engle, 1983; Quah & Sargent, 1993; Doz,

Giannone & Reichlin, 2012; Barigozzi & Luciani, 20xx).
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Taxonomy of Factor Models

Approximate dynamic factor model (DFM)

xit = λ′iFt + ξit,

Ft = AFt−1 + Hut.

Estimation:
Principal Components plus VAR (Forni, Giannone, Lippi & Reichlin, 2009).

Principal Components plus Kalman smoother (Doz, Giannone & Reichlin, 2011).

Expectation Maximization algorithm (Watson & Engle, 1983; Quah & Sargent, 1993; Doz,

Giannone & Reichlin, 2012; Barigozzi & Luciani, 20xx).
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Taxonomy of Factor Models

Restricted generalized dynamic factor model (GDFM)

xit =

s∑
k=0

λ∗
′

kift−k + ξit,

ft = G(L)ut

Estimation:
Spectral Principal Components plus Principal Components (Forni, Hallin, Lippi &

Reichlin, 2005).

Exact dynamic factor model
Estimation:
Spectral Expectation Maximization algorithm (Sargent & Sims, 1977; Fiorentini, Galesi &

Sentana, 2018).
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Taxonomy of Factor Models

Restricted generalized dynamic factor model (GDFM)

xit = λ∗
′

i (L)ft + ξit,

ft = Φft−1 + ut.

Estimation:
Spectral Principal Components plus Principal Components (Forni, Hallin, Lippi &

Reichlin, 2005).

Exact dynamic factor model
Estimation:
Spectral Expectation Maximization algorithm (Sargent & Sims, 1977; Fiorentini, Galesi &

Sentana, 2018).
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Taxonomy of Factor Models

Unrestricted generalized dynamic factor model (GDFM)

xit =

∞∑
k=0

λ∗
′

kift−k + ξit,

ft = G(L)ut

Estimation:
Spectral Principal Components (Forni, Hallin, Lippi & Reichlin, 2000).

Spectral Principal Components plus VAR (Forni, Hallin, Lippi & Zaffaroni, 2017; Barigozzi,

Hallin, Luciani & Zaffaroni, 2023).

22/151



Taxonomy of Factor Models

Unrestricted generalized dynamic factor model (GDFM)

xit = b
′

i(L)ut + ξit,

Estimation:
Spectral Principal Components (Forni, Hallin, Lippi & Reichlin, 2000).

Spectral Principal Components plus VAR (Forni, Hallin, Lippi & Zaffaroni, 2017; Barigozzi,

Hallin, Luciani & Zaffaroni, 2023).
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Taxonomy of Factor Models

Compare the approximate DFM with the unrestricted GDFM

(A) xit = λ′iFt + ξit, (B) xit = λ∗
′

i (L)ft + ξit,

Ft = AFt−1 + Hut, ft = Φft−1 + ut.

Let Ft = (f ′t · · ·f ′t−s)′ s.t. r = q(s+ 1) ≥ q, then (B) reads (say s = 1)

xit = [λ∗
′

0i λ
∗′
1i] Ft + ξit,

Ft =

(
Φ 0q×q
Iq 0q×q

)
Ft−1 +

(
Iq

0q×q

)
ut

The two representations are equivalent if the idiosyncratic component is the
same in (A) and (B) (Stock & Watson, 2011, 2016)
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Taxonomy of Factor Models

Compare the approximate DFM with the unrestricted GDFM

(A) xit = λ′iFt︸ ︷︷ ︸
Cit

+eit, (B) xit = λ∗
′

i (L)ft︸ ︷︷ ︸
χit

+ξit,

The idiosyncratic component does not need to be the same and so the
common components.

In general, Var(ξit) ≤ Var(eit), since dynamic aggregation captures more
than static aggregation.

The general relation is (Gersing, Rust, Deistler & Barigozzi, 2024)

eit︷ ︸︸ ︷
xit = Cit + eχit + ξit︸ ︷︷ ︸

χit

and eχit is the weak common component, loading Ft−1, . . . ,Ft−s.

In this case Ft ≡ ft.

This requires new estimation approaches.
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Taxonomy of Factor Models

Spearman (1904)

Hotelling (1933a,b), Bartlett (1937, 1938)

Lawley and Maxwell (1971), Jöreskog (1969)

Anderson and Rubin (1956), Amemiya, Fuller, and Pantula (1987)

Engle and Watson (1981)

Shumway and Stoffer (1982)

Watson and Engle (1983)

Sargent and Sims (1977)

Geweke (1977)

Geweke and Singleton (1981)

Scherrer and Deistler (1998)

Chamberlain (1983)

Chamberlain and Rotschild (1983)

Connor and Korajczyk (1986)

Peña and Box (1987)

Tiao and Tsay (1989)

Forni and Lippi (2001)

Forni, Hallin, Lippi, and Reichlin (2000)

Hallin and Liška (2007, 2011)

Hallin and Lippi (2013)

Anderson and Deistler (2008)

Quah and Sargent (1993)

Heaton and Solo (2004)

Forni, Hallin, Lippi, and Zaffaroni (2015, 2017)

Barigozzi, Hallin, Luciani, and Zaffaroni (2023)

Forni, Hallin, Lippi, and Reichlin (2005)

Barigozzi, Cho, and Owens (2023)

Forni, Giannone, Lippi, and Reichlin (2009)

Barigozzi, Lippi, and Luciani (2021)

Bernanke, Boivin, and Eliasz (2005)Doz, Giannone, and Reichlin (2011, 2012)

[Barigozzi and Luciani (2019)]

Giannone, Reichlin, and Small (2008)

Baǹbura and Modugno (2014)

[Forni, Gambetti, Lippi, and Sala (2023)]

Stock and Watson (2002a,b)

Bai and Ng (2002)

Bai (2003)

Bai and Li (2012, 2016)

Lam, Yao, and Bathia (2011)

Lam and Yao (2012)

Altissimo, Cristadoro, Forni, Lippi, and Veronese (2010)Barigozzi and Hallin (2020)

Hallin and Trucı́os (2021)

[Zaffaroni (2019)]

Chen and Fan (2021)

Yu, He, Kong, and Zhang (2022)

Tavakoli, Nisol, and Hallin (2023a,b)

[Barigozzi, He, Li, and Trapani (2023)]

Wang, Liu, and Chen (2019)

Chen, Yang, and Zhang (2021)

[Guo, Qiao, and Wang (2023)]

Source: Barigozzi and Hallin, 2024.
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Taxonomy of Factor Models

Scalar notation (i = 1, . . . , n and t = 1, . . . , T ):

xit = λ′i︸︷︷︸
1×r

Ft︸︷︷︸
r×1︸ ︷︷ ︸

χit

+ξit.

Vector notation (i = 1, . . . , n or t = 1, . . . , T ):

xt︸︷︷︸
n×1

= Λ︸︷︷︸
n×r

Ft︸︷︷︸
r×1︸ ︷︷ ︸

χt

+ ξt︸︷︷︸
n×1

, xi︸︷︷︸
T×1

= F︸︷︷︸
T×r

λi︸︷︷︸
r×1︸ ︷︷ ︸

χχχi

+ ζi︸︷︷︸
T×1

.

Matrix notation:
X︸︷︷︸
T×n

= F︸︷︷︸
T×r

Λ′︸︷︷︸
r×n︸ ︷︷ ︸
C

+ Ξ︸︷︷︸
T×n

.

Stacked notation:
X︸︷︷︸

nT×1

= L︸︷︷︸
(Λ⊗ IT )︸ ︷︷ ︸
nT×rT

F︸︷︷︸
rT×1

+ E︸︷︷︸
nT×1

.
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Approximate Factor Model

Approximate Factor Model
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Approximate Factor Model

Weighted averages. Large n to recover factors.

Take any n× r weight matrix WF = (wF,1 · · ·wF,n)′ and such that

n−1W ′
FΛ = K � 0, n−1W ′

FWF = Ir

and ‖wF,i‖ ≤ c for some c > 0 independent of i.

For any given t an estimator of a linear combination of the factors is

F̌t =
W ′

Fxt
n

=
W ′

FΛFt
n

+
W ′

F ξt
n

= KFt +
1

n

n∑
i=1

w′F,iξit.

Then we have
√
n-consistency if as n→∞ (assume r = 1 for simplicity):

E

∣∣∣∣∣ 1n
n∑
i=1

wF,iξit

∣∣∣∣∣
2
 ≤


c2

n
ι′Γξι
n ≤ c2

n µ
ξ
1 = O

(
1
n

)
,

or
c2

n

(
1
n

∑n
i=1

∑n
j=1 |E[ξitξjt]|

)
= O

(
1
n

)
,

which are standard assumptions in approximate factor model.

It is enough to have n−1W ′
FΛ→ K and n−1W ′

FWF → Ir as n→∞.
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Approximate Factor Model

Weighted averages. Large n to recover factors. Example.

For known Λ, the OLS estimator of the factors is, for any given t,

FOLS
t = (Λ′Λ)−1Λ′xt = (Λ′Λ)−1Λ′(ΛFt + ξt)

= Ft +

(
1

n

n∑
i=1

λiλ
′
i

)−1(
1

n

n∑
i=1

λiξit

)
.

For consistency it is enough that, as n→∞:
1 1

n

∑n
i=1 λiξit →p 0r;

2 1
n

∑n
i=1 λiλ

′
i = Λ′Λ

n → ΣΛ � 0;

and 1 is ensured by ‖λi‖ ≤Mλ plus weak cross-sectional dependence of
idiosyncratic components:

sup
n∈N

1

n

n∑
i=1

n∑
j=1

|E[ξitξjt]| ≤Mξ,

This is equivalent to choose the optimal unfeasible weights
WF = nΛ(Λ′Λ)−1, then K = n−1W ′

FΛ = Ir.
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Approximate Factor Model

Weighted averages. Large T to recover loadings.

Take any T × r weight matrix WΛ = (wΛ,1 · · ·wΛ,T )′ and such that

T−1W ′
ΛF = K � 0, T−1W ′

ΛWΛ = Ir

and ‖wΛ,t‖ ≤ c for some c > 0 independent of t.

For any given i an estimator of a linear combination of the loadings is

λ̌i =
W ′

Λxi
T

=
W ′

ΛFλi
T

+
W ′

Λζi
T

= Kλi +
1

T

T∑
t=1

w′Λ,tξit.

Then we have
√
T -consistency if as T →∞ (assume r = 1 for simplicity):

E

∣∣∣∣∣ 1

T

T∑
t=1

wΛ,tξit

∣∣∣∣∣
2
 ≤ c2

T

(
1

T

T∑
t=1

T∑
s=1

|E[ξitξis]|

)
= O

(
1

T

)
,

which is a standard assumption for stationary time series.

It is enough to have T−1W ′
ΛF → K and T−1W ′

ΛWΛ → Ir as T →∞.
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Approximate Factor Model

Weighted averages. Large T to recover factors. Example.

For known F , the OLS estimator of the loadings is, for any given i,

λOLS
i = (F ′F )−1F ′xi = (F ′F )−1F ′(Fλi + ζi)

= λi +

(
1

T

T∑
t=1

FtF
′
t

)−1(
1

T

T∑
t=1

Ftξit

)
.

For consistency it is enough that, as T →∞:
1 1

T

∑T
t=1 Ftξit →p 0r;

2 1
T

∑T
t=1 FtF

′
t = F ′F

T →p ΓF � 0;

and 1 and 2 are ensured by standard time series assumptions: finite fourth
order cumulants, strong mixing, ergodicity....plus

sup
T∈N

1

T

T∑
t=1

T∑
s=1

|E[ξitξis]| ≤M ′ξ.

This is equivalent to choose the optimal unfeasible weights
WΛ = TF (F ′F )−1, then K = T−1W ′

ΛF = Ir.
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Approximate Factor Model

Identification problem.

We can always rewrite the model as:

xt = ΛH︸︷︷︸
P

H−1Ft︸ ︷︷ ︸
Gt

+ξt,

for some invertible r × r matrix H.

To pin down H we need r2 constraints.

The common component χt = ΛFt = PGt is always identified.
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Approximate Factor Model

Main assumptions.

0 E[Ft] = 0r, E[ξt] = 0n;

1 F ′F
T →p ΓF � 0 as T →∞;

2 Λ′Λ
n → ΣΛ � 0 as n→∞;

3 Γξ � 0 and supn,T∈N
1
nT

∑n
i=1

∑n
j=1

∑T
t=1

∑T
s=1 |E[ξitξjs]| ≤M ;

4 finite fourth order moments of {ξit} summable over t and i;

5 {Ft} and {ξt} are mutually independent;

6 the r eigenvalues of Γχ

n = ΛΓFΛ′

n are distinct (coincide with those of
ΣΛΓF );

7 CLTs, as n, T →∞,

1√
n

n∑
i=1

λiξit →d N (0r,Γt),
1√
T

T∑
t=1

Ftξit →d N (0r,Φi).
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Approximate Factor Model

Alternatively to A.1 we can make assumptions on the process {Ft} such that

E

∥∥∥∥∥ 1√
T

T∑
t=1

{
FtF

′
t − ΓF

}∥∥∥∥∥
2
 ≤M

e.g. assume finite fourth order moments of {Ft} summable over t.

Alternatively to A.2 and part of A.3 we can assume

2’ largest r eigenvalues of Γχ diverge (linearly) as n→∞

cj ≤ lim inf
n→∞

µχj
n
≤ lim sup

n→∞

µχj
n
≤ cj , j = 1, . . . , r

3’ largest eigenvalue of Γξ is bounded for all n

sup
n∈N

µξ1 ≤M
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Approximate Factor Model

By Weyl’s inequality, since Γx = Γχ + Γξ, then by 2’

lim
n→∞

µxj
n
≥ lim
n→∞

µχj
n

+ lim
n→∞

µξn
n
≥ cj , j = 1, . . . , r,

lim
n→∞

µxj
n
≤ lim
n→∞

µχj
n

+ lim
n→∞

µξ1
n
≤ cj , j = 1, . . . , r,

and by 3’

sup
n∈N

µxj ≤ sup
n∈N

µχr+1 + sup
n∈N

µξ1 ≤M, j = r + 1, . . . , n,

Eigen-gap in eigenvalues µxj of Γx

As n→∞ we identify the number of factors!

The viceversa is also true: if eigenvalues of Γx have an eigen-gap, then 2’
and 3’ hold (Chamberlain & Rothschild, 1983; Barigozzi & Hallin, 2024)
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Approximate Factor Model

Canonical Decomposition (Barigozzi & Hallin, 2024).

Sx
t the Hilbert space of all L2-convergent linear static combinations of xit’s

and limits (as n→∞) of L2-convergent sequences thereof.

Let wn,x,t ∈ SX
t be a static aggregate, i.e.,

wn,x,t =

n∑
i=1

αixit, t ∈ Z,

with limn→∞
∑n
i=1(αi)

2 = 1.

ζt ∈ SX
com,t if Var(ζt) =∞ and

lim
n→∞

E

( wn,x,t√
Var(wn,x,t)

− ζt√
Var(ζt)

)2
 = 0.

a common r.v. is recovered as n→∞ by static aggregation

Let also SX
idio,t = SX

com,⊥,t

This gives the canonical decomposition: SX
t = SX

com,t ⊕ SX
idio,t
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Approximate Factor Model

Static aggregation Hilbert space

Define a static aggregating sequence (SAS) any n-dimensional vector an
such that

lim
n→∞

ana
′
n = 0

The common static aggregation space is SX
com,t and contains elements

wcomt = limn→∞ anxnt with Var(wcomt ) > 0.

However, the static aggregation space SX
com,t depends on t, since anLk is a

SAS for xn,t−k and not for xnt.
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Approximate Factor Model

Plot of µxj when r = 1, simulated data
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Approximate Factor Model

Plot of µxj when r = 1, real data
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Approximate Factor Model

We consider the classical identification conditions used in exploratory factor
analysis:

1 Λ′Λ
n is diagonal for all n;

2 F ′F
T = Ir for all T ;

To achieve global identification we need also to fix the sign, e.g. of one row of Λ
or F .
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Approximate Factor Model

Identification of loadings.

By SVD Λ = V DU .

From Λ′Λ = U ′DV ′V DU ′ = U ′D2U , and to make it diagonal we can
set U = Ir.

Since Γχ = VχMχVχ′ = ΛΛ′ = V D2V ′

1 the columns of V span the same space as the columns of Vχ.
2 D2 = Mχ.

Therefore:

Λ = Vχ(Mχ)1/2 and Λ′Λ
n = Mχ

n ;
F = CVχ(Mχ)−1/2 by linear projection of C onto Λ;
ΣΛ = limn→∞

Mχ

n ;
ΓF = Ir.
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Principal Components Analysis

Principal Components Analysis
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Principal Components Analysis

PC for dimension reduction (Pearson, 1902).

Assume r = 1. To reduce the dimension of X we look to minimize the
distances between the observations and their projections onto a one
dimensional subspace (line).

the linear projection of xt = (x1t · · ·xnt)′ onto a = (a1 · · · an)′ with
‖a‖ = a′a = 1 is aa′xt.

We want to minimize the sum of distances between all xt and their
projections

min
a:a′a=1

T∑
t=1

‖xt − aa′xt‖2 = min
ai:
∑n
i=1 a

2
i=1

T∑
t=1

n∑
i=1

(xit − aia′xt)2

This is different from LS where we have a dependent variable, say x1t and
n− 1 independent variables and we solve minbi

∑T
t=1(x1t −

∑n
i=2 bixit)

2.

In PC we minimize Euclidean distance in Rn in LS we minimize a distance in
R in the subspace of the dependent variable.
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Principal Components Analysis

Here
n = 2 and r = 1.

44/151



Principal Components Analysis

PC for dimension reduction (cont.)

Now, by Pythagora theorem (xt − aa′xt)
′aa′xt = 0 (the error is orthogonal

to the projection)

T∑
t=1

‖xt − aa′xt‖2 =

T∑
t=1

(xt − aa′xt)
′(xt − aa′xt) =

T∑
t=1

(xt − aa′xt)
′xt

=

T∑
t=1

x′txt −
T∑
t=1

x′taa′xt =

T∑
t=1

x′txt −
T∑
t=1

a′xtx
′
ta

It follows that

arg min
a:a′a=1

T∑
t=1

‖xt − aa′xt‖2 = arg max
a:a′a=1

T∑
t=1

a′xtx
′
ta
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Principal Components Analysis

PC in high-dimensions.

We can rewrite the maximization problem as

arg max
a:a′a=1

1

nT
a′X ′Xa

The solution is â = V̂x the leading eigenvector of (nT )−1X ′X which is the
same as the leading eigenvector of T−1X ′X and of X ′X.

The value of the objective function at its max is n−1µ̂x1 which is finite since
we rescale by n.

The optimal linear projection V̂x′xt is the 1st PC of X ′X which has
variance µ̂x1 , so the 1st normalized PC is (µ̂x1)−1/2V̂x′xt.

Note that algebraically we could exchange n and T and solve finding PCs for
XX ′, but this is not natural since in time series T is the sample size, not n!

In population the PCs are defined in the same way but now the norm is a
variance, so as a result we have for the weights the eigenvectors of
Γx = E[xtx

′
t].
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Principal Components Analysis

Principal components representation vs. static factor model.

Since the eigenvectors are an orthonormal basis in Rn, for a given r

xit =

n∑
j=1

V xij

(
Vx′

j xt

)
︸ ︷︷ ︸
i th PC

=

r∑
j=1

V xij

(
Vx′

j xt

)
︸ ︷︷ ︸

xit,[r]

+

n∑
j=r+1

V xij

(
Vx′

j xt

)
︸ ︷︷ ︸

eit

xit,[r] is the optimal linear r-dimensional representation of xit, it is such that∑n
i=1 E[e2

it] = tr(Γe) is minimum. It minimizes the sum of covariances since
(nT )−1

∑n
i,j=1 E[eitejt] ≤ µe1 ≤ tr(Γe), but Γe is not necessarily diagonal.

PC is a representation since no assumption is made on eit.

A static r-factor model is xit =

r∑
j=1

ΛijFjt︸ ︷︷ ︸
χit

+ξit

If the model is exact Γξ is diagonal, and χit accounts for all covariances, but
this depends on the assumptions we make. This is a statistical model.

Under an approximate factor model the two approaches are reconciled,
provided n→∞.
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Principal Components Analysis

PC estimation of factors.

PCs are linear combinations of the data with optimal weights. This is what
we are looking for when retrieving the factors.

Considering the weights wF defined above such that w′FwF = n the PC
maximization becomes

arg max
w:w′FwF=n

1

n2T
w′FX

′XwF

so that one solution is ŵF =
√
nV̂x and the value of the objective function

at its max is still n−1µ̂x1 .

Since ŵF are the optimal weights, they are an estimator of the unfeasible
optimal weights n(Λ′Λ)−1Λ′ so we can write ŵF = n(Λ̂′Λ̂)−1Λ̂′.
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Principal Components Analysis

PC estimation of factors (cont.).

An estimator of the factor is the 1st normalized PC

F̂ PC
t =

V̂x′xt√
µ̂x1

=

√
nŵ′Fxt√
n
√
n
√
µ̂x1

=

√
n

µ̂x1

ŵ′FΛFt
n

+

√
n

µ̂x1

ŵ′F ξt
n

=

√
n

µ̂x1
(Λ̂′Λ̂)−1Λ̂′Λ︸ ︷︷ ︸

K̂

Ft +Op

(
1√
n

)
,

since n−1|µ̂x1 − µ
χ
1 | = op(1) and µχ1 = O(n) by assumption.

If we choose Λ̂ = V̂x
√
µ̂x1 then given that Λ = Vχ

√
µχ1 ,

K̂ =
√
n(µ̂x1)−1V̂x′Vχ

√
µχ1 =

n

µ̂x1
V̂x′Vχ

√
µχ1
n

= ±1 + op(1),

since n−1|µ̂x1 − µ
χ
1 | = op(1) and |V̂x′Vχ ± 1| = op(1) (Davis & Kahan, 1970).

The 1st normalized PC is a consistent estimator of Ft (the op(1) are all
Op(n

−1/2) +Op(T
−1/2)).

The common component is estimated as χ̂t = V̂xV̂x′xt.
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Principal Components Analysis

Least squares estimation of a static factor model:(
Λ̂, F̂

)
= arg min

Λ,F

1

nT

n∑
i=1

T∑
t=1

(xit − λ′iFt)2,

which is equivalent to

min
Λ,F

1

nT
tr
{(
X − F Λ′

) (
X − F Λ′

)′}
,

or

min
Λ,F

1

nT
tr
{(
X − F Λ′

)′ (
X − F Λ′

)}
.

We need to impose r2 constraints to identify the minimum. Two choices:

(1) Λ′Λ
n diagonal and F ′F

T = Ir;

(2) Λ′Λ
n = Ir and F ′F

T diagonal.

Then,

(a) solve for Λ̂ with constraints 1 or 2 and then we get F̂ by linear projection;

(b) solve for F̂ with constraints 1 or 2 and then we get Λ̂ by linear projection.
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Principal Components Analysis

Sample covariance matrix. Define:

Γ̂x = X′X
T which is n× n with

M̂x r × r diagonal with r largest evals of Γ̂x;
V̂x n× r with as columns the r corresponding normalized evecs.

Γ̃x = XX′

n which is T × T with

M̃x r × r diagonal with r largest evals of Γ̃x;
Ṽx T × r with as columns the r corresponding normalized evecs.

Notice that, provided r < min(n, T ),

M̂x

n
=

M̃x

T

since the non-zero evals of X
′X
nT and of XX

′

nT coincide.
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Principal Components Analysis

Four solutions. Normalized PCs of X (Forni, Giannone, Lippi & Reichlin, 2009).

(1a) Minimize wrt Λ under the constraint Λ′Λ
n is diagonal which gives

Λ̂ = V̂x(M̂x)1/2.

Then:
Λ̂′Λ̂

n
=

M̂x

n
and

F̂ = XΛ̂(Λ̂′Λ̂)−1 = XV̂x(M̂x)−1/2.

This solution is such that, as required:

F̂ ′F̂

T
= (M̂x)−1/2V̂x′X

′X

T
V̂x(M̂x)−1/2

= (M̂x)−1/2V̂x′
(
V̂xM̂xV̂x′ + V̂x

n−rM̂
x
n−rV̂

x′

n−r

)
V̂x(M̂x)−1/2

= (M̂x)−1/2V̂x′V̂xM̂xV̂x′V̂x(M̂x)−1/2 = Ir.

The common component is estimated as:

Ĉ = F̂ Λ̂′ = XV̂xV̂x′ .

52/151



Principal Components Analysis

Four solutions (Bai, 2003).

(1b) Minimize wrt F under the constraint F
′F
T = Ir

F̃ =
√
T Ṽx.

Then, obviously F̃ ′F̃
T = Ir and

Λ̃ = X ′F̂ (F̂ ′F̂ )−1 =
X ′Ṽx

√
T

.

This solution is such that, as required:

Λ̃′Λ̃

n
= Ṽx′XX

′

nT
Ṽx

= Ṽx′

(
ṼxM̃xṼx′ + Ṽx

n−rM̃
x
n−rṼ

x′

n−r

)
T

Ṽx =
M̃x

T
.

The common component is estimated as:

Ĉ = F̃ Λ̃′ = ṼxṼx′X.
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Principal Components Analysis

Four solutions (Stock and Watson, 2002).

(2a) Minimize wrt Λ under the constraint Λ′Λ
n = Ir

Λ̃ =
√
n V̂x.

Then, obviously Λ̃′Λ̃
n = Ir and

F̃ = XΛ̂(Λ̂′Λ̂)−1 =
XV̂x

√
n
.

This solution is such that, as required:

F̃ ′F̃

T
= V̂x′X

′X

nT
V̂x

= V̂x′

(
V̂xM̂xV̂x′ + V̂x

n−rM̂
x
n−rV̂

x′

n−r

)
n

V̂x =
M̂x

n
.

The common component is estimated as:

Ĉ = F̂ Λ̂′ = XV̂xV̂x′ .
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Principal Components Analysis

Four solutions. Normalized PCs of X ′.

(2b) Minimize wrt F under the constraint F
′F
T diagonal

F̃ = Ṽx(M̃x)1/2.

Then,
F̃ ′F̃

T
=

M̃x

T
.

and
Λ̃ = X ′F̂ (F̂ ′F̂ )−1 = X ′Ṽx(M̃x)−1/2.

This solution is such that, as required:

Λ̂′Λ̂

n
= (M̃x)−1/2Ṽx′XX

′

n
Ṽx(M̃x)−1/2

= (M̃x)−1/2Ṽx′
(
ṼxM̃xṼx′ + Ṽx

n−rM̃
x
n−rṼ

x′

n−r

)
Ṽx(M̃x)−1/2

= (M̃x)−1/2Ṽx′ṼxM̃xṼx′Ṽx(M̃x)−1/2 = Ir.

The common component is estimated as:

Ĉ = F̃ Λ̃′ = ṼxṼx′X.
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Principal Components Analysis

All solutions give some form of PC and equivalent and have the same
asymptotic properties.

So PC is the least squares estimator of a factor model.

We focus on solution (1a):

λ̂PC′

i = v̂x
′

i (M̂x)1/2, F̂PC
t = (M̂x)−1/2V̂x′xt.

This is the classical solution (Pearson, 1902; Hotelling, 1933; Mardia, Kent & Bibby, 1979;

Jolliffe, 2002; Peña, 2002).

Indeed, dynamic factor models are about time series, so we treat Λ as
deterministic while {Ft} are r-dimensional stochastic processes, weighted
averages of the n dimensional stochastic process {xt}.
It is then natural to consider solutions based on the n× n covariance matrix
Γ̂x and not those on the T × T covariance matrix Γ̃x.

Notice that it is not necessary to have a consistent estimator of the whole
sample covariance. So Γ̂x does not have to be consistent, indeed it cannot
be consistent if n > T , we just need n−1‖Γ̂x − Γx‖ = op(1).

Reversing n and T requires less natural assumptions to prove consistency.
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Principal Components Analysis

Asymptotic properties. Loadings.
(Bai, 2003; Barigozzi, 2022).

For any given i = 1, . . . , n

√
T (λ̂PC

i − Ĥ′λi) = Ĥ′

(
1

T

T∑
t=1

FtF
′
t

)−1(
1√
T

T∑
t=1

Ftξit

)
+ op(1)

=

(
1

T

T∑
t=1

Ĥ−1FtF
′
tĤ
−1′

)−1(
1√
T

T∑
t=1

Ĥ−1Ftξit

)
+ op(1).

This is OLS when, for a fixed i, we regress xit onto Ĥ−1Ft.

So if
√
T
n → 0 then

√
T (λ̂PC

i − Ĥ′λi)→d N
(
0r,VPC

i

)
.
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Principal Components Analysis

Asymptotic covariance of loadings.

VPC
i = V −1

0 Q0ΦiQ
′
0V
−1

0 ,

Φi = lim
T→∞

1

T

T∑
t=1

T∑
s=1

E[FtF
′
sξitξis] = lim

T→∞

E[F ′ζiζ
′
iF ]

T
,

Q0 = V0Υ
′
0(ΓF )−1/2

such that Υ0 are evec of (ΓF )1/2ΣΛ(ΓF )1/2 with evals V0.

Cfr. Bai (2003) where

VPC,B
i = (Q−1)′Φi(Q)−1,

Q−1 = (ΣΛ)1/2Υ1(V0)−1/2

such that Υ1 are evec of Σ
1/2
Λ ΓFΣ

1/2
Λ with evals V0.

Notice that,
tr(VPC

i ) = tr(VPC,B
i ).
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Principal Components Analysis

Asymptotic properties. Factors.
(Bai, 2003; Barigozzi, 2022).

For any given t = 1, . . . , T

√
n(F̂PC

t − Ĥ−1Ft) = Ĥ−1

(
1

n

n∑
i=1

λiλ
′
i

)−1(
1√
n

n∑
i=1

λiξit

)
+ op(1)

=

(
1

n

n∑
i=1

Ĥ′λiλ
′
iĤ

)−1(
1√
n

n∑
i=1

Ĥ′λiξit

)
+ op(1).

This is OLS when, for a fixed t, we regress xit onto Ĥ′λi.

So if
√
n
T → 0 then

√
n(F̂PC

t − Ĥ−1Ft)→d N
(
0r,WPC

t

)
.
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Principal Components Analysis

Asymptotic covariance of factors.

WPC
t = (Q′0)−1Γt(Q0)−1,

Γt = lim
n→∞

1

n

n∑
i=1

n∑
j=1

λiλ
′
jE[ξitξjt] = lim

n→∞

Λ′E[ξtξ
′
t]Λ

n
,

(Q0)−1 = (ΓF )1/2Υ0(V0)−1

such that Υ0 are evec of (ΓF )1/2ΣΛ(ΓF )1/2 with evals V0.

Cfr. Bai (2003) where

WPC,B
t = (V0)−1QΓtQ′(V0)−1

Q = (V0)1/2Υ′1(ΣΛ)−1/2

such that Υ1 are evec of Σ
1/2
Λ ΓFΣ

1/2
Λ with evals V0.

Notice that,
tr(WPC

t ) = tr(WPC,B
t ).
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Principal Components Analysis

Asymptotic properties. Common component.
(Bai, 2003; Barigozzi, 2022).

For any given i = 1, . . . , n and t = 1, . . . , T

|χ̂PC
it − χit| = Op

(
1√
T

)
+Op

(
1√
n

)
with χ̂PC

it = λ̂PC′
i F̂PC

t = v̂x
′

i V̂x′xt.

And, as n, T →∞,

(χ̂PC
it − χit)(

λ′iWPC
t λi
n +

F′tVPC
i Ft
T

)1/2
→d N (0, 1) .

It does not depend on the chosen identification.
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Principal Components Analysis

The above results depend on Ĥ =
(
F ′F
T

)(
Λ′Λ̂
n

)(
M̂x

n

)−1

which is unknown.

Under the classical identification conditions used in exploratory factor analysis
(Bai & Ng, 2013; Barigozzi, 2022).

Ĥ = J + op

(
max

(
1√
n
,

1√
T

))
,

where J is an r × r diagonal matrix with entries ±1.
Under global identification J = Ir.
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Principal Components Analysis

Asymptotic properties of PC under global identification - Loadings
(Bai & Ng, 2013; Barigozzi, 2022).

for any given i = 1, . . . , n as n, T →∞

‖λ̂PC
i − λOLS

i ‖ = Op

(
1

n

)
+Op

(
1√
nT

)
;

if
√
T
n → 0 then √

T (λ̂PC
i − λi)→d N

(
0r,VOLS

i

)
with

VOLS
i = (ΓF )−1

{
lim
T→∞

E[F ′E[ζiζ
′
i]F ]

T

}
(ΓF )−1 = lim

T→∞

E[F ′E[ζiζ
′
i]F ]

T
,

PC is asymptotically equivalent to OLS.

VOLS
i has sandwich form due to the fact that we do not take into account

idiosyncratic serial correlations since PC is non parametric.
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Principal Components Analysis

Asymptotic properties of PC under global identification - Factors
(Bai & Ng, 2013; Barigozzi, 2022).

for any given t = 1, . . . , T as n, T →∞

‖F̂PC
t − FOLS

t ‖ = Op

(
1

T

)
+Op

(
1√
nT

)
;

if
√
n
T → 0 then √

n(F̂PC
t − Ft)→d N

(
0r,WOLS

t

)
with

WOLS
t = (ΣΛ)−1

{
lim
n→∞

Λ′E[ξtξ
′
t]Λ

n

}
(ΣΛ)−1.

PC is asymptotically equivalent to OLS.

WOLS
t has sandwich form due to the fact that we do not take into account

idiosyncratic cross-sectional correlations and heteroskedasticity since PC is
non parametric.
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Principal Components Analysis

Is PC the best we can do? We could use ML and GLS.

PC is nonparametric (no assumption on idiosyncratic distribution), ML is
fully parametric.

GLS is better than OLS for factors when idiosyncratic is heteroskedastic
across i.

GLS is better than OLS for loadings when idiosyncratic is heteroskedastic
across t (but we assume stationarity).

ML/GLS coincides with PC in the case of i.i.d. idiosyncratic components.
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The Likelihood

The Likelihood
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The Likelihood

Consider the stacked version of the model

X = (Λ⊗ IT )︸ ︷︷ ︸
L

F + E.

Let:
Ωx = E[XX ′], ΩF = E[FF ′], Ωξ = E[EE ′].

Gaussian quasi log-likelihood:

`(X ,ϕ) = −nT
2
− 1

2
log det Ωx − 1

2
tr
(
XX ′(Ωx)−1

)
' −1

2
log det

(
LΩFL′ + Ωξ

)
− 1

2

(
X ′(LΩFL′ + Ωξ)−1X

)
.

The parameters to be estimated are ϕ = (Λ,ΩF ,Ωξ).
ML is in general unfeasible:

too many parameters not enough degrees of freedom:

the ML estimator of Ωξ cannot be positive definite;
for time series ΩF is a full matrix.
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The Likelihood

We introduce some mis-specifications:

1. we treat the idiosyncratic components as if they were uncorrelated

⇒ Ωξ is replaced by IT ⊗Σξ where Σξ is diagonal with entries σ2
i = E[ξ2

it].

We always work with the log-likelihood:

`0(X ,ϕ) ' − 1

2
log det

(
LΩFL′ + IT ⊗Σξ

)
− 1

2

(
X ′(LΩFL′ + IT ⊗Σξ)−1X

)
.

We are doing QML rather than ML!
Moreover,

2a. for static model we consider the factors as if they are serially uncorrelated
and ΩF is replaced by IT ⊗ ΓF = IrT ;

2b. for dynamic model we assume a parametric model for factor dynamics and
parametrize ΩF accordingly.
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Approximate Static Factor Model - Quasi Maximum Likelihood

Approximate Static Factor Model - Quasi Maximum Likelihood
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Approximate Static Factor Model - Quasi Maximum Likelihood

The log-likelihood is

`0,S(X ,ϕ) ' −T
2

log det
(
Λ Λ′ + Σξ

)
− 1

2

T∑
t=1

(
x′t(Λ Λ′ + Σξ)−1xt

)
,

The parameters to be estimated are ϕ = (Λ,Σξ).

We work under the global identification assumptions.

Issues

1 No closed form solution for QML estimator exists, we need numerical
approaches, e.g., EM algorithm
(Rubin & Thayer, 1982; Bai & Li, 2012, 2016; Ng, Yau & Chan, 2015; Sundberg & Feldmann, 2016).

2 How to estimate the factors which are not appearing in the log-likelihood?
Least-squares or regression estimators
(Thomson, 1951; Bartlett, 1937).
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Asymptotic properties QML estimator - Loadings
(Bai & Li, 2016; Barigozzi, 2023).

for any given i = 1, . . . , n as n, T →∞

‖λ̂QML,S
i − λ̂PC

i ‖ = Op

(
1

n

)
, ‖λ̂PC

i − λOLS
i ‖ = Op

(
1

n

)
+Op

(
1√
nT

)
;

if
√
T
n → 0 then

√
T (λ̂QML,S

i − λi)→d N
(
0r,VOLS

i

)
VOLS
i = (ΓF )−1

{
limT→∞

E[F ′E[ζiζ
′
i]F ]

T

}
(ΓF )−1 = limT→∞

E[F ′E[ζiζ
′
i]F ]

T .

QML is asymptotically equivalent to PC and OLS.

VOLS
i has sandwich form due to neglected serial idiosyncratic correlation

since likelihood is misspecified.

Neglecting cross-sectional idiosyncratic correlation has no impact but, in
practice, QML estimation of Γξ is unfeasible.

Treating factors as serially uncorrelated does not affect the result since
autocorrelation of regressors does not affect OLS.
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Consistency of loadings requires n→∞, otherwise we cannot identify the
model.

The mis-specification error, which we introduce by using a mis-specified
log-likelihood, vanishes asymptotically only if n→∞.

The QML estimator does not suffer of the curse of dimensionality, but, in
fact, it produces consistent estimates only in a high-dimensional setting, i.e.,
it enjoys a blessing of dimensionality.
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Special cases.

Exact not autocorrelated heteroskedastic case, Ωξ = IT ⊗Σξ. The
estimated loadings are the same as before, so have no closed form but now
are
√
T -consistent and asymptotically normal (Anderson & Rubin, 1956).

Exact not autocorrelated homoskedastic case, Ωξ = σ2InT . The estimated

loadings are given by λ̂QML,0
i =

(
M̂x − σ̂2QML,0Ir

)1/2

v̂xi they are
√
T -consistent and asymptotically normal (Tipping & Bishop, 1999).

In both cases (Bai & Li, 2012)

‖λ̂QML
i − λOLS

i ‖ = Op

(
1√
nT

)
. (∗)

if n fixed the asymptotic covariance is very complicated because (∗) is not
negligible, this is the classical case (Amemyia, Fuller & Pantula, 1987).

if n→∞ then (∗) is negligible so the asymptotic covariance is
VOLS,*
i = σ2

i (ΓF )−1 = σ2
i Ir or VOLS,0

i = σ2(ΓF )−1 = σ2Ir, since now the
likelihood is correctly specified (Bai & Li, 2012).
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idiosyncratic PC QML

1. Ωξ full min(n,
√
T ) VOLS

i min(n,
√
T ) VOLS

i

2. Ωξ = IT ⊗ Γξ min(n,
√
T ) VOLS,*

i min(n,
√
T ) VOLS,*

i

3. Ωξ = IT ⊗Σξ min(n,
√
T ) VOLS,*

i

√
T VOLS,*

i (if n→∞)
too complex (if n fixed)

4. Ωξ = σ2InT min(n,
√
T ) VOLS,0

i

√
T VOLS,0

i (if n→∞)
too complex (if n fixed)

Asymptotic covariances

VOLS
i = (ΓF )−1

{
limT→∞

E[F ′E[ζiζ
′
i]F ]

T

}
(ΓF )−1, VOLS,*

i = σ2
i (Γ

F )−1, VOLS,0
i = σ2(ΓF )−1

ΓF = limT→∞
F ′F
T

, here ΓF = Ir by assumption

Estimators

PC λ̂PC
i = (Mx)1/2v̂xi cases 1, 2, 3, 4;

QML λ̂QML,S
i no closed form, case 1, 2, 3; λ̂QML,0

i = (Mx − σ̂2QML,0)1/2v̂xi , case 4
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How to estimate factors given ML estimator of the parameters?

If factors are treated as parameters, the log-likelihood can be written as
(Anderson & Rubin, 1956; Anderson, 2003)

`0,S(X ,ϕ,F) ' −T
2

log det(Σξ)− 1

2

T∑
t=1

(
(xt −Λ Ft)

′(Σξ)−1(xt −Λ Ft)
)
.

For given ϕ = (Λ,Σξ) and any given t the ML estimator of the factors is

FWLS
t =

(
Λ′(Σξ)−1Λ

)−1
Λ′(Σξ)−1xt,

When we compute the WLS using the QML estimator of the parameters we
have the classical “least-squares estimator” F̂WLS

t (Bartlett, 1937).

F = (F′1 · · ·F′T )′ are additional rT parameters to be estimated, and this is
possible only if n→∞ ⇒ blessing of dimensionality!

Both the log-likelihood and its maximum WLS need Σξ positive definite.
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How to estimate factors given ML estimator of the parameters?

If we treat the factors as random variables, but we do not model their
dynamics, then their optimal (in mean-squared sense) linear estimator is the
linear projection of the true factors onto the observed data:

FLP
t = ΓFΛ′

(
ΛΓFΛ′ + Σξ

)−1
xt =

(
Λ′(Σξ)−1Λ + Ir

)−1
Λ′(Σξ)−1xt

When we compute the LP using the QML estimator of the parameters we
have the classical “regression estimator” F̂LP

t (Thomson, 1951).

The LP in its first formulation does not need Σξ positive definite.

For finite n the LP has always a smaller MSE than the WLS.

For any given t = 1, . . . , T as n→∞,

‖FWLS
t − FLP

t ‖ = Op

(
1

n

)
.

since (Λ′(Σξ)−1Λ + Ir)
−1 = (Λ′(Σξ)−1Λ)−1 +O(n−1) (Taylor expansion).
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Asymptotic properties WLS and LP estimators - Factors
(Bai & Li, 2016).

for any given t = 1, . . . , T as n, T →∞

‖F̂WLS
t −FWLS

t ‖ = Op

(
1

T

)
+Op

(
1√
nT

)
, ‖FWLS

t −Ft‖ = Op

(
1√
n

)
.

if
√
n
T → 0 then

√
T (F̂WLS

t − Ft)→d N
(
0r,WWLS

t

)
WWLS

t = (ΣΛξΛ)−1
{

limn→∞
Λ′(Σξ)−1E[ξtξ

′
t](Σ

ξ)−1Λ
n

}
(ΣΛξΛ)−1,

ΣΛξΛ = limn→∞ n−1Λ′(Σξ)−1Λ.

The same properties hold for the LP estimator.

WWLS
t has sandwich form due to neglected cross-sectional idiosyncratic

correlation when implementing WLS or LP, as GLS which requires
estimating (Γξ)−1 is unfeasible.

Serial correlation has no impact for F̂WLS
t and serial heteroskedasticity is

ruled out by assumption.
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Efficiency of WLS/LP (Barigozzi & Luciani, 20xx)

If
∑n
i=1,i6=j |[Γξ]ij | = o(n), then

WOLS
t �WWLS

t

WLS is more efficient than PC.

The assumption on Γξ implies some form of sparsity (Bai & Liao, 2016).
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Special cases.

Exact heteroskedastic case Γξ = Σξ. WLS/LP and PC are
min(

√
n, T )-consistent and the asymptotic covariances are

for WLS/LP: WWLS,*
t = (ΣΛξΛ)−1.

for PC: WOLS,*
t = (ΣΛ)−1

{
limn→∞

Λ′ΣξΛ
n

}
(ΣΛ)−1.

So WOLS,*
t �WWLS,*

t , WLS is more efficient than OLS.

Exact homoskedastic case, Γξ = σ2In.

OLS and WLS coincide

FWLS
t =

(
Λ′(σ2In)−1Λ

)−1
Λ′(σ2In)−1xt = (Λ′Λ)

−1
Λ′xt = FOLS

t .

OLS and LP are asymptotically equivalent as n→∞.
WLS/LP and PC are min(

√
n, T )-consistent and the asymptotic

covariance is WOLS,0
t = σ2(ΣΛ)−1.
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idiosyncratic PC WLS/LP

1. Ωξ full min(
√
n, T ) WOLS

t min(
√
n, T ) WWLS

t

2. Ωξ = IT ⊗ Γξ min(
√
n, T ) WOLS

t min(
√
n, T ) WWLS

t

3. Ωξ = IT ⊗Σξ min(
√
n, T ) WOLS,*

t min(
√
n, T ) WWLS,*

t

4. Ωξ = σ2InT min(
√
n, T ) WOLS,0

t min(
√
n, T ) WOLS,0

t

Asymptotic covariances

PC WOLS
t = (ΣΛ)−1

{
limn→∞

E[Λ′E[ξtξ
′
t]Λ]

n

}
(ΣΛ)−1,

WOLS,*
t = (ΣΛ)−1

{
limn→∞

E[Λ′ΣξΛ]
n

}
(ΣΛ)−1, WOLS,0

t = σ2(ΣΛ)−1

WLS/LP WWLS
t = (ΣΛξΛ)−1

{
limn→∞

Λ′(Σξ)−1E[ξtξ
′
t](Σ

ξ)−1Λ

n

}
(ΣΛξΛ)−1, WWLS,*

t = (ΣΛξΛ)−1

ΣΛ = limn→∞ Λ′Λ
n

, ΣΛξΛ = limn→∞
Λ′(Σξ)−1Λ

n
, here either ΣΛ or ΣΛξΛ are diagonal.

Estimators

PC F̂PC
t = (Λ̂PC′ Λ̂PC)−1Λ̂PC′xt, case 1, 2, 3, 4;

WLS F̂WLS
t = (Λ̂QML,S′ (Σ̂ξ,QML,S)−1Λ̂QML,S)−1Λ̂QML,S′ (Σ̂ξ,QML,S)−1xt, case 1, 2, 3;

F̂WLS
t = F̂PC

t , case 4;

LP F̂LP
t = (Λ̂QML,S′ (Σ̂ξ,QML,S)−1Λ̂QML,S + Ir)

−1Λ̂QML,S′ (Σ̂ξ,QML,S)−1xt, case 1, 2, 3;

F̂LP
t = (Λ̂QML,0′ Λ̂QML,0 + σ̂2,QML,0Ir)

−1Λ̂QML,0′xt
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Can we do better than ML plus WLS/LP?

In time series we could and should exploit the autocorrelation of the data.

Factors are autocorrelated.

Factors can have a lagged effect on the data.

PC does not account for dynamics.

ML is hard as it requires numerical maximization.
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Approximate Dynamic Factor Model - Expectation Maximization
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Approximate Dynamic Factor Model - Expectation Maximization

For simplicity assume a VAR(1) dynamics:

xit = λ′iFt + ξit,

Ft = AFt−1 + vt,

vt = Hut.

Same assumptions plus:

8 stable VAR, eigenvalues of A inside the unit circle;

9 rk(H) = q ≤ r;

10 {ut} is i.i.d. with E[ut] = 0r, Γu = Iq, finite 4th order moments.

For simplicity hereafter we consider r = q so Γv = HH′ � 0.
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Since we are explicitly modeling the dynamics in the factors ΩF ≡ ΩF (A,Γv),
e.g, if r = 1,

ΩF =


Γv

1−A2
AΓv

1−A2 . . . ΓvAT−1

1−A2

AΓv

1−A2
Γv

1−A2 . . . ΓvAT−2

1−A2

...
...

. . .
...

AT−1Γv

1−A2
AT−2Γv

1−A2 . . . Γv

1−A2

 ,

and we cannot assume it to be diagonal.
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Gaussian quasi log-likelihood with mis-specified idiosyncratic correlations:

`0,D(X ,ϕ) ' − 1

2
log det

(
LΩF(A,Γv)L′ + IT ⊗Σξ

)
− 1

2

(
X ′(LΩF(A,Γv)L′ + IT ⊗Σξ)−1X

)
.

The parameters to be estimated are ϕ = (Λ,A,Γv,Σξ).

We work under the global identification assumptions.
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Issues

1 How to estimate the factors? Kalman filter or Kalman smoother.

2 The likelihood is intractable, we need the factors as input and alternative
maximization approaches.

Newton-Raphson maximization of the prediction error log-likelihood
based on the Kalman filter. No closed form solution. Unfeasible in
high-dimensions. (Harvey, 1990; Stock & Watson, 1989, 1991; Hannan & Deistler, 2012).

Multi-step approaches, but they do not exploit the feedback from
factors to loadings.

PC+VAR (Forni, Giannone, Lippi & Reichlin, 2009);

PC+VAR+Kalman smoother (Doz, Giannone & Reichlin, 2011);

QML+WLS+VAR+Kalman smoother (Bai & Li, 2016).

Kalman smoother plus EM algorithm: fast, easy, and has closed form
solution (Quah & Sargent, 1993; Doz, Giannone & Reichlin, 2012; Barigozzi & Luciani, 20xx).
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Estimation of the factors.

They are autocorrelated so cannot be treated as parameters.

The optimal predictor is Eϕ[F |X ] which under Gaussianity is the linear
projection

FWK
t = (ι′t ⊗ Ir)Ω

FL′(LΩFL′ + IT ⊗Σξ)−1X

= (ι′t ⊗ Ir)
(
IT ⊗

(
Λ′(Σξ)−1Λ

)
+ (ΩF )−1

)−1 (
IT ⊗Λ′(Σξ)−1

)
X

This is the unfeasible estimator obtained by taking the inverse Fourier
transform of the Wiener-Kolmogorov smoother.

At a given t we compute a weighted average of the elements of X which are
all T present, past, and future values of all n time series
⇒ cross-sectional and dynamic weighted average!
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Estimation of the factors.

FWK
t can be computed recursively by means of the Kalman smoother.

The Kalman smoother is computed with a backward recursion from T to 1
after the Kalman filter which is a forward recursion from 1 to T .

After these recursions we get the estimates:

one-step ahead Ft|t−1 and its associated MSE Pt|t−1;
Kalman filter Ft|t and its associated MSE Pt|t;
Kalman smoother Ft|T and its associated MSE Pt|T .
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Estimation of the factors.

The Kalman filter is

Ft|t = Ft|t−1 + Pt|t−1Λ
′(ΛPt|t−1Λ + Σξ)−1︸ ︷︷ ︸

Kalman gain

(xt −ΛFt|t−1)︸ ︷︷ ︸
prediction error

= Ft|t−1 + (Λ′(Σξ)−1Λ + P−1
t|t−1)−1Λ′(Σξ)−1(xt −ΛFt|t−1)

with

Ft|t−1 = AFt−1|t−1;
Pt|t−1 = APt−1|t−1A

′ + Γv;
Pt|t = Pt|t−1 −Pt|t−1Λ

′(ΛPt|t−1Λ + Σξ)−1ΛPt|t−1.

The Kalman smoother is

Ft|T = Ft|t + Pt|tA
′P−1

t+1|t(Ft+1|T − Ft+1|t)

Notice that we must use Σξ since inverting Γξ might not be feasible in
high-dimensions. Mis-specified Kalman filter and smoother.
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Prediction error log-likelihood
(Harvey, 1990; Stock & Watson, 1989, 1991; Hannan & Deistler, 2012).

`0,D(X ,ϕ) = − 1

2

T∑
t=1

log det Pt|t−1(ϕ)

− 1

2

T∑
t=1

(xt −ΛFt|t−1(ϕ))′(Pt|t−1(ϕ))−1(xt −ΛFt|t−1(ϕ))

Unfeasible to maximize in high-dimensions. No closed form solution.
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By Bayes’ law the log-likelihood is decomposed as

`0,D(X ,ϕ) = `0,D(X |F ,ϕ) + `0,D(F ,ϕ)− `0,D(F |X ,ϕ).

where

`0,D(X |F ,ϕ) ' −T
2

log det(Σξ)− 1

2

T∑
t=1

(
(xt −ΛFt)

′(Σξ)−1(xt −ΛFt)
)
,

`0,D(F ,ϕ) ' −T
2

log det(Γv)− 1

2

T∑
t=1

(
(Ft −AFt−1)′(Γv)−1(Ft −AFt−1)

)
.

Easy to maximize if Ft is known.
The hard part would be to maximize `0,D(F |X ,ϕ) but it is not needed.
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EM algorithm.

`0,D(X ,ϕ) = Eϕ
[
`0,D(X |F ,ϕ) + `0,D(F ,ϕ)|X

]︸ ︷︷ ︸
Q(ϕ,ϕ)

−Eϕ
[
`0,D(F |X ,ϕ)|X

]︸ ︷︷ ︸
H(ϕ,ϕ)

.

For any k ≥ 0, given an estimator of the parameters ϕ̂(k).

E Compute Q(ϕ, ϕ̂(k)).

M Solve ϕ̂(k+1) = arg maxϕQ(ϕ, ϕ̂(k)).

Start with PCA, e.g. Λ̂(0) = Λ̂PC.

Stop at k∗ s.t. |`0,D(X , ϕ̂(k∗+1))− `0,D(X , ϕ̂(k∗))| is small.

The EM estimator is ϕ̂EM = ϕ̂(k∗+1).

Main intuition
By construction H(ϕ̂(k), ϕ̂(k)) ≤ H(ϕ, ϕ̂(k)) for any ϕ, so

`0,D(X , ϕ̂(k+1)) ≥ `0,D(X , ϕ̂(k)).
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EM estimators.

The EM estimator of the loadings is:

λ̂EM
i =

(
T∑
t=1

F
(k∗)
t|T F

(k∗)′

t|T + P
(k∗)
t|T

)−1( T∑
t=1

F
(k)∗

t|T xit

)
,

where F
(k∗)
t|T and P

(k∗)
t|T are obtained from Kalman smoother when using

ϕ̂(k∗).

The EM estimator of the factors is F̂EM
t = F

(k∗+1)
t|T .

Both have a closed form expression!
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Asymptotic properties EM estimator - Loadings
(Barigozzi & Luciani, 20xx).

for any given i = 1, . . . , n as n, T →∞

‖λ̂EM
i − λ̂QML,D

i ‖ = Op

(
1

n

)
+Op

(
1

T

)
+Op

(
1√
nT

)
‖λ̂QML,D

i − λ̂QML,S
i ‖ = Op

(
1

n

)
+Op

(
1

T

)
+Op

(
1√
nT

)

if
√
T
n → 0, then

√
T (λ̂EM

i − λi)→d N
(
0r,VOLS

i

)
,

VOLS
i = (ΓF )−1

{
limT→∞

E[F ′ζiζ
′
iF ]

T

}
(ΓF )−1 = limT→∞

E[F ′ζiζ
′
iF ]

T .

EM is asymptotically equivalent to QML of a dynamic as well as of a static
model and to PC and OLS.

Since the EM is initialized with PC then the loadings estimator is similar to
a one step estimator (Lehmann & Casella, 2006).
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Asymptotic properties EM estimator - Factors
(Barigozzi & Luciani, 20xx).

for any given t = 1, . . . , T as n, T →∞

‖F̂EM
t − F̂t|t‖ = Op

(
1

n

)
, ‖F̂t|t − F̂WLS

t ‖ = Op

(
1

n

)

if
√
n
T → 0, then

√
n(F̂EM

t − Ft)→d N
(
0r,WWLS) ,

WWLS = Σ−1
ΛξΛ

(
limn→∞

Λ′(Σξ)−1E[ξtξ
′
t](Σ

ξ)−1Λ
n

)
Σ−1

ΛξΛ.

EM, which is the Kalman smoother, is asymptotically equivalent to the
Kalman filter and to the WLS and LP.

It can be more efficient than PC if Γξ is sparse.
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Asymptotic properties. Common component.
(Barigozzi & Luciani, 20xx).

For any given i = 1, . . . , n and t = 1, . . . , T

|χ̂EM
it − χit| = Op

(
1√
T

)
+Op

(
1√
n

)
with χ̂EM

it = λ̂EM′
i F̂EM

t .

And, as n, T →∞,

(χ̂EM
it − χit)(

λ′iWWLS
t λi
n +

F′tVOLS
i Ft
T

)1/2
→d N (0, 1) .

96/151



Approximate Dynamic Factor Model - Expectation Maximization

Asymptotic distribution of common component
Serially and cross-correlated idiosyncratic components - Robust covariances
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Kalman smoother and WLS.

In the case r = 1 (Ruiz & Poncela, 2022).

Ft|T =
2A

2 +B

(
Ft−1|t−1 + Ft+1|T − Ft+1|t

)
+

B

2 +B
FWLS
t ,

with B = 2(Λ′(Γξ)−1Λ)P and P ' Pt|t−1 for all t ≥ t̄ finite.

By assumption B � n and |P − Γv| = o(1), so as n→∞,
|Ft|T − FWLS

t | → 0.

But if factors are persistent A . 1 and do not fluctuate much Γv & 0, then,
at least in finite samples there might be considerable differences between the
Kalman smoother and the WLS.
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Approximate Dynamic Factor Model - Expectation Maximization

EM for loadings is as good as PC.

Kalman smoother for factors is equivalent to WLS which might be more
efficient than PC.

Why not PC or just QML+WLS?

EM+Kalman smoother is the most used method in institutions because it
allows for:

missing data and mixed frequency, e.g., for now-casting;
imposing constraints, e.g., for identification.

Kalman smoother might have better finite sample performance than WLS in
presence of small deviations for stationarity.
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Generalized Dynamic Factor Model
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Generalized Dynamic Factor Model

Define the spectral density matrix of {xt} (Discrete Fourier Transform, DFT):

Σx(θ) =
1

2π

∞∑
k=−∞

Γxke
−ιθk, θ ∈ [−π, π],

where ι =
√
−1 and Γxk = E[xtxt−k] (recall Γx−k = Γx

′

k ), such that
(Inverse Fourier Transform, IFT):

Γxk =

∫ π

−π
Σx(θ)eιθkdθ, k ∈ Z.

The eigenvalues of Σx(θ) denoted as µxj (θ) are called dynamic eigenvalues.
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Generalized Dynamic Factor Model

The GDFM is:
xit = λ∗

′

i (L)ft︸ ︷︷ ︸
χit

+ξit, ft = G(L)ut

xit = λ∗
′

i (L)G(L)ut + ξit = b′i(L)ut︸ ︷︷ ︸
χit

+ξit

Then, the vector of factors is an orthonormal white noise ut.
Same assumptions as the approximate factor model plus:

A bi(L) has square-summable coefficients;

B Σχ(θ) is rational;

C cj(θ) ≤ lim infn→∞
µχj (θ)

n ≤ lim supn→∞
µχj (θ)

n ≤ cj(θ), j = 1, . . . , q, θ-a.e.;

D supn∈N supθ∈[−π,π] µ
ξ
1(θ) ≤M .

Recall that

if order of λ∗
′

i (L) is s <∞ restricted GDFM;

if order of λ∗
′

i (L) is s =∞ unrestricted GDFM or GDFM.
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Generalized Dynamic Factor Model

Representation Theorem (Forni & Lippi, 2001).

xt admits a Generalized Dynamic Factor representation with

1 lim
n→∞

µχq (θ) =∞, θ-a.e. in [−π, π],

2 sup
n∈N

sup
θ∈[−π,π]

µξ1(θ) ≤M.

m if and only if

C lim
n→∞

µxq (θ) =∞, θ-a.e. in [−π, π],

D sup
n∈N

sup
θ∈[−π,π]

µxq+1(θ) ≤M.

The necessary condition ⇓ is easy to prove.

To prove the sufficient condition ⇑ is much more difficult.

As n→∞ we identify the number of factors!
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Generalized Dynamic Factor Model

Necessary condition - proof

1 By Weyl’s inequality

µχq (θ)︸ ︷︷ ︸
→∞
by C

+µξn(θ)︸ ︷︷ ︸
≤M
by D

≤ µxq (θ), θ-a.e. in [−π, π].

2 By Weyl’s inequality

sup
n∈N

sup
θ∈[−π,π]

µxq+1(θ) ≤ sup
n∈N

sup
θ∈[−π,π]

{
µχq+1(θ)︸ ︷︷ ︸

=0

+µξ1(θ)︸ ︷︷ ︸
≤M
by D

}
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Generalized Dynamic Factor Model

Sufficient condition - Sketch of proof

(I) construct a q-dimensional orthonormal white noise rf, z = {(z1t · · · zqt)>, t ∈ Z}
as a dynamic aggregate of x`t’s:

zjt = lim
n→∞

wnj(L)xnt, j = 1, . . . , q, t ∈ Z,

for some wnj(L) such that limn→∞
1
2π

∫ π
−πwnj(θ)w

†
nj(θ)dθ = 0;

(II) consider the unique canonical decomposition

x`t = proj{x`t|span(z)}+ δ`t = γ`t + δ`t, ` ∈ N, t ∈ Z,

let δn = {(δ1t · · · δnt)>, t ∈ Z} and γn = {(γ1t · · · γnt)>, t ∈ Z}, then

lim
n→∞

Var(an(L)δnt) = lim
n→∞

1

2π

∫ π

−π
an(θ)Σ

δ
n(θ)a

†
n(θ)dθ = 0,

lim
n→∞

Var(an(L)γnt) = lim
n→∞

1

2π

∫ π

−π
an(θ)Σ

γ
n(θ)a

†
n(θ)dθ > 0,

for any t ∈ Z and all an(L) such that limn→∞
1
2π

∫ π
−π an(θ)a

†
n(θ)dθ = 0;

(III) it follows that µδ1(θ) ≤M , i.e., δ` is idiosyncratic, and
limn→∞ µ

χ
q (θ) =∞, i.e., γ` is common.
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Generalized Dynamic Factor Model

Canonical Decomposition (Hallin & Lippi, 2013).

Dx the Hilbert space of all L2-convergent linear dynamic combinations
of xit’s and limits (as n→∞) of L2-convergent sequences thereof.

Let wn,x,t ∈ HX be a dynamic aggregate, i.e.,

wn,x,t =

n∑
i=1

∞∑
k=−∞

αikxi,t−k, t ∈ Z,

with limn→∞
∑n
i=1

∑∞
k=−∞(αik)2 = 1.

ζt ∈ DX
com if Var(ζt) =∞ and

lim
n→∞

E

( wn,x,t√
Var(wn,x,t)

− ζt√
Var(ζt)

)2
 = 0.

a common r.v. is recovered as n→∞ by dynamic aggregation

Let also DX
idio = DX

com,⊥

This gives the canonical decomposition: DX = DX
com ⊕DX

idio

107/151



Generalized Dynamic Factor Model

Dynamic aggregation Hilbert space

Define a dynamic aggregating sequence (DAS) any linear filter an(L) such
that

lim
n→∞

1

2π

∫ π

−π
an(θ)a†n(θ)dθ = 0

The common dynamic aggregation space is DX
com and contains elements

wcomt = limn→∞ an(L)xnt with Var(wcomt ) > 0.

However, also an(L)Lk is a DAS for any k ∈ Z, so wcomt ∈ DX
com for all

t ∈ Z, thus the dynamic aggregation space DX
com is independent of t.

Compare this with the static aggregation space SX
com,t which instead

depends on t.
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Generalized Dynamic Factor Model

Dynamic weighted averages. Large n to recover factors.

Take any n× r filter matrix Wu(L) = (wu,1(L) · · ·wu,n(L))′ and such that

n−1Wu(L)′B(L) = K(L) � 0, n−1
n∑
i=1

∞∑
k=−∞

wu,ikw
′
u,ik = Ir

and with coefficients ‖wu,ik‖ ≤ c for some c > 0 independent of i.

For any given t an estimator of a linear dynamic combination of the factors is

ǔt =
Wu(L)′xt

n
=
Wu(L)′B(L)ut

n
+
Wu(L)′ξt

n

= K(L)ut +
1

n

n∑
i=1

∞∑
k=−∞

wu,ikξi,t−k.

By dynamic averaging we do not recover white noise factors, but in general
we obtain autocorrelated factors.
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Generalized Dynamic Factor Model

Then we have
√
n-consistency if as n→∞ (assume q = 1 for simplicity):

E

∣∣∣∣∣ 1n
n∑
i=1

∞∑
k=−∞

wu,ikξi,t−k

∣∣∣∣∣
2
 ≤ c2

n

ι′Σξ(0)ι

n
≤ c2

n
µξ1(0) = O

(
1

n

)
,

or

E

∣∣∣∣∣ 1n
n∑
i=1

∞∑
k=−∞

wu,ikξi,t−k

∣∣∣∣∣
2
 ≤ c2

n2

n∑
i,j=1

∞∑
k,h=−∞

|E[ξi,t−kξj,t−h]| = O

(
1

n

)
.

if we assume summability of cross-covariances and standard summability of
cross-autocovariances.
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Generalized Dynamic Factor Model

Dynamic PC - Population

Consider the case of one factor, q = 1.

In the static case we know that the optimal weights are given by the solution
of PCs, which in population are such that we solve maxa:a′a=1

a′Γxa
n .

In the dynamic case to find the optimal weights we have to maximize the
variance of a′(L)xt =

∑∞
k=−∞ akxt−k such that the coefficients ak are the

solution of

max
ak:a′(eιθ)a(e−ιθ)=1

a′(eιθ)Σx(θ)a(e−ιθ)

n

where a(e−ιθ) =
∑∞
k=−∞ ake

−kιθ.

The solution is given by Px(θ) the leading eigenvector of Σx(θ) and the
value of the objective function is n−1µx1(θ).

The common component is the IFT of the linear projection onto the 1st PC:

χ̃t =

{ ∞∑
k=−∞

[∫ π

−π
Px(θ)Px†(θ)eιθkdθ

]
Lk

}
xt = K′(L)xt

By dynamic averaging we do not recover one-sided filters (dynamic
loadings), but in general we obtain two-sided filters.
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Generalized Dynamic Factor Model

Estimation of unrestricted GDFM - Dynamic PC
(Forni, Hallin, Lippi & Recihlin, 2000).

Consider the smoothed periodogram estimator of the spectral density matrix:

Σ̂(θh) =
1

2π

BT∑
k=−BT

(
1− |k|

BT

)
Γ̂xke

−ιθhk, θh =
πh

BT
, |h| ≤ BT ,

where ι =
√
−1 and (recall Γ̂x−k = Γ̂x

′

k ) Γ̂xk = 1
T−k

∑T
t=k+1 xtxt−k. Let,

L̂(θh) be the q × q diagonal matrix of q largest eigenvalues of Σ̂(θh);
P̂(θh) be the n× q matrix of normalized eigenvectors of Σ̂(θh).

The common component is estimated as

χ̂DPC
t =

MT∑
k=−MT

[
BT∑

h=−BT

P̂x(θh)P̂x†(θh)eιθhk

]
xt−k = K̂(L)xt,

for some truncation integer MT .
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Generalized Dynamic Factor Model

Asymptotic properties of dynamic PC estimator - Common component.
(Barigozzi, La Vecchia & Liu, 2023).

For any given i = 1, . . . , n and t = 1, . . . , T

|χ̂DPC
it − χit| = Op

(
MT√
n

)
+Op

(√
M2
TBT logBT

T

)
+Op

(
MT

BT

)

The optimal bandwidth is BT ' T 1/3.

If we use smoother kernel we can get better rates. E.g., with quadratic
kernel BT ' T 2/5.

It depends on the truncation MT .

No asymptotic distribution is available.
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Estimation of restricted GDFM - Dynamic + static PC
(Forni, Hallin, Lippi & Recihlin, 2005).

From dynamic PC we also get

Σ̂χ(θh) = P̂(θh)L̂(θh)P̂†(θh), θh =
πh

BT
, |h| ≤ BT

and Σ̂ξ(θh) = Σ̂x(θh)− Σ̂χ(θh).

By IFT

Γ̂χk =

BT∑
h=−BT

Σ̂χ(θh)eιθhk, Γ̂ξk =

BT∑
h=−BT

Σ̂ξ(θh)eιθhk, |k| ≤ BT .

In restricted GDFM: χt = ΛFt with Ft = (ut · · ·ut−s)′ and q(s+ 1) = r.

Use r PCs on Γ̂χ0 having as r leading eigenvectors V̂χ

χ̂FHLR
t = V̂χV̂χ′xt

It accounts for dynamic loadings since in the first step we use dynamic PC.

To account for heteroskedasticity use the eigenvectors of Γ̂χ0 (Σ̂ξ)−1, with
Σ̂ξ the diagonal of Γ̂ξ0.
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Generalized Dynamic Factor Model

Asymptotic properties of dynamic + static PC estimator - Common component.
(Barigozzi, Cho & Owens, 2023).

For any given i = 1, . . . , n and t = 1, . . . , T

|χ̂FHLR
it − χit| = Op

(
1√
n

)
+Op

(√
BT logBT

T

)
+Op

(
1

BT

)

The optimal bandwidth is BT ' T 1/3.

If we use smoother kernel we can get better rates. E.g., with quadratic
kernel BT ' T 2/5.

No asymptotic distribution is available.
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Generalized Dynamic Factor Model

Unrestricted GDFM - one-sided representation
(Anderson & Deistler, 2008; Forni, Hallin, Lippi & Zaffaroni, 2015).

The unrestricted GDFM has an equivalent representation

A(L)xt = Rut + A(L)ξt

where

A(L) has finite lag, is block diagonal, with blocks of size at least q+ 1;
R is n× q full rank;
A(L)ξt is still idiosyncratic.

We can assume that the q largest eigenvalues of RR′ diverging with n.
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Estimation of unrestricted GDFM - Dynamic PC + VAR + static PC
(Forni, Hallin, Lippi & Zaffaroni, 2017).

From dynamic PC and IFT we get Γ̂χk , for |k| ≤ BT .

Estimate VAR(p) on each block by Yule-Walker, e.g., for p = 1,
Â = (Γ̂χ0 )−1Γ̂χ1 .

Compute the q-largest PCs for the filtered process v̂t = Â(L)xt which is
now a white noise with covariance Γ̂v having the q leading eigenvectors V̂v

and eigenvalues M̂v

R̂ = V̂v(M̂v)1/2, ût = (M̂v)−1/2V̂v′ v̂t.

The common component is estimated as (say p = 1 for simplicity)

χ̂FHLZ
t =

MT∑
k=0

ÂkR̂ût−k

for some truncation integer MT .
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Asymptotic properties of dynamic PC + VAR + static PC estimator - Common
component - Consistency.
(Barigozzi, Cho & Owens, 2023).

For any given i = 1, . . . , n and t = 1, . . . , T

|χ̂FHLZ
it − χit| = Op

(
MT√
n

)
+Op

(√
M2
TBT logBT

T

)
+Op

(
MT

BT

)
.

The optimal bandwidth is BT ' T 1/3.

If we use smoother kernel we can get better rates. E.g., with quadratic
kernel BT ' T 2/5.

It depends on the truncation MT .
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Estimation of unrestricted GDFM - Dynamic PC + VAR + static PC
(Barigozzi, Hallin, Luciani & Zaffaroni, 2023).

Let: ζnT = min
( √

n
MT

,
√

T
M2
TBT logBT

, BTMT

)
, such that ζnT →∞, as

n, T →∞.

Let n̄ =
ζ2
nT

L1(ζnT ) and T̄ =
ζ2
nT

L2(ζnT ) for some functions L1(·) and L2(·) slowly
varing at infinity.

In the last step consider the PC estimators Ř and ǔt−k obtained from

Γ̌v =
1

T̄

T∑
t=T−T̄+1

(v̂s(1),t · · · v̂s(n̄),t)
′(v̂s(1),t · · · v̂s(n̄),t),

for some {s(1), . . . , s(n̄)} ⊂ {1, . . . , n}.
Consider the resulting estimated common component (say p = 1 for
simplicity)

χ̌FHLZ
t =

MT∑
k=0

ǍkŘǔt−k

where Ǎ is n̄× n̄ using only the rows and columns {s(1), . . . , s(n̄)}.
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Asymptotic properties of dynamic PC + VAR + static PC estimator - Common
component - Asymptotic distribution.
(Barigozzi, Hallin, Luciani & Zaffaroni, 2023).

For any given i ∈ {s(1), . . . , s(n̄)} and t = T − T̄ + 1, . . . , T , as n, T →∞ we
can neglect the error of the first two steps

(χ̌FLHZ
it − χit)(

r′iWPC
t ri
n̄ +

u′tVPC
i ut
T̄

)1/2
→d N (0, 1) ,

with obvious definitions of WPC
t and VPC

i .
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Generalized Dynamic Factor Model

Common component (red) of EA GDP growth rate (blue)
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Applications and Extensions
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Applications and Extensions

Forecasting

Coincident indicators

IRFs

The case of unit roots

Counterfactuals
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Applications and Extensions

Direct forecasts

Let yt be a target variable and let the predictors be zt = µz + ΛzFt + ξzt.

Instead of regressing yt+h onto zt we can use the factors Ft as proxies of
the predictors.

In fact we can also have yt = µy + λ′yFt + ξyt so yt is also driven by the
same factors.

Let xt = (yt z′t)
′, then

xt = µ+ ΛFt + ξt

We can regress xt+h onto the factors

xt+h = αh +BhFt + et+h

and compute direct forecasts.
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Applications and Extensions

Direct forecasts

Direct forecast from a static factor model
(Stock & Watson, 2002; Bai & Ng, 2006; De Mol, Giannone & Reichlin, 2008).

x̂PC
T+h|T = α̂OLS

h + B̂OLS
h F̂PC

T = x̄ + Γ̂x−hV̂
x(V̂x′Γ̂x0V̂x)−1V̂x′(x̂T − x̄)

using OLS and F̂PC
t = (M̂x)−1/2V̂x′(x̂T − x̄).

Direct forecast from a restricted GDFM (Forni, Hallin, Lippi & Reichlin, 2005).

x̂FHLR
T+h|T = α̂OLS

h + B̂OLS
h F̂FHLR

T = x̄ + Γ̂χ−hV̂
χ(V̂χ′Γ̂χ0 V̂χ)−1V̂χ′(x̂T − x̄)

using OLS and F̂FHLR
t = (M̂χ)−1/2V̂χ′(x̂T − x̄).

Comparison:

x̂PC
T+h|T does not require factors, it is the standard PC regression.

x̂FHLR
T+h|T exploits the dynamic factor structure.
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Applications and Extensions

Recursive forecasts

Recursive forecast from a dynamic factor model with VAR(1) for the factors

Use the EM algorithm

x̂EM
T+h|T = x̄ + Λ̂EM(ÂEM)hF̂EM

T

with F̂EM
T from the Kalman filter which at t = T is also the smoother.

Since the Kalman filter can deal with missing data (just predicting and
not updating), this is the method to be used for nowcasting.
Alternatively use PC and fit VAR on estimated factors

x̂PC
T+h|T = x̄ + Λ̂PC(ÂPC)hF̂PC

T

with ÂPC = (
∑T
t=2 F̂PC

t−1F̂
PC′
t−1)−1(

∑T
t=2 F̂PC

t−1F̂
PC′
t ).

Recursive forecast from an unrestricted GDFM

x̂FHLZ
T+h|T = x̄ +

MT∑
k=0

Âk+hR̂ûT−k.
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The role of idiosyncratic components.

The optimal one-step ahead forecast of series i is

E[xit+1|Xt] = E[λ∗
′

i (L)ft+1 + ξit+1|Xt]

= E[λ∗
′

i (L)ft+1|Xt] + E[ξit+1|Xt]

= E[λ∗
′

i (L)ft+1|Ft]︸ ︷︷ ︸
χi,T+1|T

+E[ξit+1|Ξt]︸ ︷︷ ︸
ξi,T+1|T

Previous forecasting methods are for computing linear estimates of χi,T+1|T .

Adding one series to the dataset does not increase complexity for χi,T+1|T ,
term which is driven by ' q parameters only.

Adding forecast for the idiosyncratic components might help.

exact factor model: add univariate forecasts, e.g., AR;
approximate factor model: add multivariate sparse forecasts, e.g., lasso.

For macroeconomic variables this is seldom the case
(Boivin & Ng, 2005; Bai & Ng, 2008; Luciani, 2014).
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Factor plus sparse.

FarmPredict - AR + PC + VAR lasso (Fan, Masini & Medeiros, 2023).

(1− aiL)xit = ci + λ′iFt︸ ︷︷ ︸
χit

+

n∑
j=1

ρijξj,t−1︸ ︷︷ ︸
ξit

+uit.

Forecast:

xi,T+1|T = x̄i + âOLSi xiT + χ̂PC
i,T+1|T +

n∑
j=1

ρ̂LASSOij ξ̂j,T

with P̂ LASSO = {ρ̂LASSOij , i, j = 1, . . . , n} such that

P̂ LASSO = arg min
∑T
t=1

(
ξ̂t − P ξ̂t−1

)2

+ γ‖P ‖1;

ξ̂it = êit − χ̂PC
it , êit = (1− âOLSi )xit, and χ̂PC

it obtained by PC from
(ê1t · · · ênt)′.

128/151



Applications and Extensions

Factor plus sparse.

fnets - GDFM + VAR lasso (Barigozzi, Cho & Owens, 2023).

xit = ci + b′i(L)ut︸ ︷︷ ︸
χit

+

n∑
j=1

aijξj,t−1︸ ︷︷ ︸
ξit

+νit.

Forecast:

xi,T+1|T = x̄i + χ̂FHLR
i,T+1|T +

n∑
j=1

âLASSOij ξ̂j,T

with ÂLASSO = {âLASSOij , i, j = 1, . . . , n} such that

ÂLASSO = arg min tr
{

AΓ̂ξ0A
′ − 2AΓ̂ξ1

}
+ γ‖A‖1;

Γ̂ξk from dynamic PC and IFT;
ξ̂it = xit − χ̂FHLR

it , and χ̂FHLR
it obtained by dynamic + static PC.
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Applications and Extensions

Comparison FarmPredict vs. fnets

High-low range measures of US financial companies - n = 46.

Rolling window out-of-sample 2012 using as sample the T = 252 previous days.

fnets AR FarmPredict
FEavg Mean 0.7258 0.7572 0.7616

Median 0.6029 0.6511 0.6243
FEmax Mean 0.8433 0.879 0.8745

Median 0.7925 0.8437 0.8259

FEavgT+1 =
∑
i(xi,T+1−x̂i,T+1|T )2∑

i x
2
i,T+1

and FEmax
T+1 =

maxi |xi,T+1−x̂i,T+1|T |
maxi |xi,T+1|

.
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Applications and Extensions

Coincident indicators
Eurocoin (Altissimo, Cristadoro, Forni, Lippi & Veronese, 2010)

Core inflation (Cristadoro, Forni, Reichlin & Veronese, 2005)

xt are monthly stationary predictors such that

xt = µ+ ΛFMt + ξt.

Yt is log of monthly GDP or Inflation in month t such that

yQt = Yt − Yt−3 = µy + λ′yF
Q
t + ξy,t

Notice that Yt is observed only at lower frequency (quarterly).

If we assume the approximation for levels Y Qt =
∑2
k=0 Yt−k then

yQt = Y Qt − Y
Q
t−3 = (Yt + Yt−1 + Yt−2)− (Yt−3 + Yt−4 + Yt−5)

= yMt + 2yMt−1 + 3yMt−2 + 2yMt−3 + yMt−4

= (1 + L+ L2)2yMt

The monthly and quarterly factors are such that (Mariano & Murasawa, 2003)

FQt = FMt + 2FMt−1 + 3FMt−2 + 2FMt−3 + FMt−4 = (1 + L+ L2)2FMt
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Coincident indicators
Eurocoin (Altissimo, Cristadoro, Forni, Lippi & Veronese, 2010)

Core inflation (Cristadoro, Forni, Reichlin & Veronese, 2005)

Consider a smoothed version of yQt at yearly frequency

ct = (1 + 2L+ 3L2 + 4L3 + 3L4 + 2L5 + L6)2yQt

A long-run indicator is given by the projection of ct onto estimated FQt

êFHLRt = µy + (ct − c̄)F̂Q,FHLR
′

t

(
T∑
t=1

F̂Q,FHLRt F̂Q,FHLR
′

t

)−1

F̂Q,FHLRt

or

êPCt = µy + (ct − c̄)F̂Q,PC
′

t

(
T∑
t=1

F̂Q,PCt F̂Q,PC
′

t

)−1

F̂Q,PCt
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êFHLRt (red), êPCt (yellow)
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Impulse response functions (Forni, Giannone, Lippi & Reichlin, 2010)

From the dynamic factor model

xit = λ′iFt + ξit, Ft = AFt−1 + Hut

Once estimated via PC + VAR the reduced form IRFs and shocks are

ĉPC
′

i (L)ûPC
t = λ̂PC′

i

K∑
k=0

(ÂPC)kĤPCûPC
t−k

However, we can just prove |ûPC
t −Rut| = op(1), with R invertible unless

further restrictions are imposed:

statistical: T−1
∑T
t=1 utu

′
t = Iq ⇒ R is orthogonal;

statistical: T−1
∑T
t=1 utu

′
t = Iq plus H′H diagonal ⇒ R diagonal ±1;

economic: T−1
∑T
t=1 utu

′
t = Iq plus structure on some ci(L)

(sign, recursive, long-run) ;
economic: identify ut via external proxies (IV).
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Effects of EA monetary policy - PC + sign restrictions (Barigozzi, Conti & Luciani, 2014).
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Effects of EA monetary policy - PC + sign restrictions (Barigozzi, Conti & Luciani, 2014).

GDP
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Effects of EA monetary policy - PC + sign restrictions (Barigozzi, Conti & Luciani, 2014).

CPI
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Effects of EA monetary policy - PC + sign restrictions (Barigozzi, Conti & Luciani, 2014).

Unemployment rate
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Effects of EA monetary policy - PC + IV identification (Barigozzi, Lissona & Tonni, 2024).
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Effects of EA monetary policy - PC + IV identification (Barigozzi, Lissona & Tonni, 2024).
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Effects of EA monetary policy - PC + IV identification (Barigozzi, Lissona & Tonni, 2024).
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Lon-run impulse response functions (Barigozzi, Lippi & Luciani, 2021)

To estimate the long-run effects we must account for unit roots and
cointegration.

We need a dynamic factor model for I(1) data.

The factors are I(1) but cointegrated, so their dynamics is either a VECM or
a VAR in levels.

The idiosyncratic components are I(1).

There are deterministic trends.
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Lon-run impulse response functions (Barigozzi, Lippi & Luciani, 2021)

The model is

yit = ai + bit+ λ′iFt + ξit

Ft = AFt−1 + Hut, ξit = ρiξi,t−1 + eit.

where bi 6= 0 for nb = o(n) series and ρit = 1 for nI = o(n) series or ρit = 0
otherwise.

Estimation:
1 De-trend via OLS x̂it = yit − âOLSi − b̂OLSi t;
2 Loadings by PC on ∆x̂it ⇒ Λ̂PC;
3 Factors F̂PC

t = (Λ̂PC′Λ̂PC)−1Λ̂PC′ x̂t;
4 VAR (or VECM) by OLS on F̂PC

t ⇒ ÂPC and ĤPC.

The reduced form IRFs and shocks are

ĉPC
′

i (L)ûPC
t = λ̂PC′

i

K∑
k=0

k∑
h=0

(ÂPC)hĤPCûPC
t−h.

This estimator is consistent as n, T →∞. The rate depends on nb and nI .

If nb = nI = 0 the consistency rate is min(
√
n,
√
T ).
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Effects of news shocks - Stationary vs I(1) factor model
(Forni, Gambetti & Sala, 2014; Barigozzi, Lippi & Luciani, 2021).

VAR in levels
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Effects of news shocks - Stationary vs I(1) factor model
(Forni, Gambetti & Sala, 2014; Barigozzi, Lippi & Luciani, 2021).

VECM

139/151



Applications and Extensions

Coincident indicators - Output gap (Barigozzi & Luciani, 2023; Barigozzi, Lissona & Luciani, 2024).

Identification can be made on the factors instead of the impulse responses.

Given an I(1) dynamic factor model, we can identify a common trend is
identified from

Ft = Ψτt + ωt, τt = τt−1 + νt.

For GDP we have

yit = ai + bit+ λ′iFt + ξit = ai + bit+ λ′iΨτt︸ ︷︷ ︸
Potential output

+ λ′iωt︸ ︷︷ ︸
Output gap

+ξit

We can estimate the model using the EM algorithm twice.
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Output gap
(Barigozzi & Luciani, 2023.) (Barigozzi, Lissona & Luciani, 2024).

US EA
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Generalized Impulse Response Functions (GIRF) (Barigozzi, Lissona & Luciani, 2024)

Given a T × n dataset X = (y Z) where y = (y1 · · · yT )′ is a variable of
interest, and such that

xt = ΛFt + ξt = χt + ξt, t = 1, . . . , T,

Ft = AFt−1 + ut, t = 1, . . . , T,

Define the GIRF for y as:

GIRFy(h− 1) = ycT+h − yuT+h, h ≥ 1,

where
the unconditional linear prediction is

yuT+h = Proj{χyT+h |x1,x2, . . . ,xT }

the conditional linear prediction is

ycT+h = Proj{χyT+h | x1,x2, . . . ,xT ; εyT+1}

with εyT+1 being a shock to y at time T + 1, that is to say when yT+1

is replaced by yT+1 + εyT+1.
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Generalized Impulse Response Functions (GIRF) (Barigozzi, Lissona & Luciani, 2024)

The GIRF is GIRFy(k) = ycT+k+1 − yuT+k+1, k ≥ 0

For given estimated parameters (via QML, EM, or PCA) at k = 0 we have
the unconditional linear prediction

ŷuT+1 = λ̂′yF̂T+1|T

where F̂T+1|T is computed via the Kalman filter. Notice that, in this case,
given no information available from time T + 1, there is no update step in
the filter.
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Generalized Impulse Response Functions (GIRF) (Barigozzi, Lissona & Luciani, 2024)

The GIRF is GIRFy(k) = ycT+k+1 − yuT+k+1, k ≥ 0

the conditional linear prediction is

ŷcT+1 = λ̂′yF̂T+1|T+1

F̂T+1|T+1 = F̂T+1|T + K̂T+1|T (xT+1 − Λ̂F̂T+1|T )

= F̂T+1|T + K̂T+1|T (xT+1 − χ̂T+1|T )

where now we can update the Kalman filter, due to the shock at T + 1 to y

Here K̂T+1|T = P̂T+1|T Λ̂′(Λ̂P̂T+1|T Λ̂′ + Σ̂ξ)−1 is the Kalman gain.

Since we do not know xT+1, we can substitute it with:

x̂T+1|T =

(
ŷcT+1|T
ZT+1|T

)
=

(
χ̂yT+1|T + εyT+1

χ̂ZT+1|T

)
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Generalized Impulse Response Functions (GIRF) (Barigozzi, Lissona & Luciani, 2024)

The GIRF for y is GIRFy(k) = ycT+k+1 − yuT+k+1, k ≥ 0

At k = 0 we have

GIRFy(0) = ŷcT+1 − ŷuT+1

= λ̂′y(F̂T+1|T+1 − F̂T+1|T )

= λ̂′y

(
F̂T+1|T + K̂T+1|T

(
εyT+1

0n−1

)
− F̂T+1|T

)
= λ̂′yK̂T+1|T

(
εyT+1

0n−1

)
The GIRFs for xt are obtained as

GIRFx(0) = Λ̂K̂T+1|T

(
εyT+1

0n−1

)
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Generalized Impulse Response Functions (GIRF) (Barigozzi, Lissona & Luciani, 2024)

At k = 1 we have

GIRFx(1) = = ŷcT+2 − ŷuT+2

= Λ̂(F̂T+2|T+1 − F̂T+2|T )

= Λ̂(ÂF̂T+1|T+1 − ÂF̂T+1|T )

...

= Λ̂ÂK̂T+1|T

(
εyT+1

0n−1

)
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Generalized Impulse Response Functions (GIRF) (Barigozzi, Lissona & Luciani, 2024)

For a generic horizon k, we can write:

GIRFx(k) = = Λ̂ÂkK̂T+1|T

(
εyT+1

0n−1

)
= Λ̂Âk

[
P̂T+1|T Λ̂′(Λ̂P̂T+1|T Λ̂′ + Σ̂ξ)−1

]( εyT+1

0n−1

)
If we wish to attribute the entire effect of the shock to comovements, i.e. to
the common component, we can set Σ̂ξ to a very small value.

Generalizations to

1 a single shock to multiple variables and/or horizons
2 multiple shocks to multiple variables
3 multiple shocks at multiple horizons to a single variable

(counterfactual)
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A shock to Unemployment rate - EA

Common component: UR Common component: GDP
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A shock to Inflation rate - EA

Common component: core HICP Common component: GDP
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Other applications and extensions

Breaks (Breitung & Eickmeier, 2011; Cheng, Liao & Schorfeide, 2016; Corradi & Swanson, 2014;

Barigozzi, Cho & Fryzlewicz, 2018; Barigozzi & Trapani, 2021; Bai, Duan & Han, 2021, 2022; Barigozzi,

Cho & Trapani, 20xx).

Volatility (Barigozzi & Hallin, 2016, 2017, 2020).

Networks (Barigozzi & Hallin, 2017; Barigozzi, Cho & Owens, 2023).

Local stationarity (Motta, Hafner & von Sachs, 2011; Barigozzi, Hallin, Soccorsi & von Sachs, 2021).

Random fields (Barigozzi, La Vecchia & Liu, 2023).

Matrix time series (Yu, He, Kong & Zhang, 2022; He, Kong, Trapani & Yu, 2023; Barigozzi &

Trapin, 20xx).

Tensor time series (Barigozzi, He, Li & Trapani, 2023).

Tail robust estimators (Barigozzi, He, Li & Trapani, 2023; Barigozzi, Cho & Maeng, 20xx).
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Thank you!
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