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1 Introduction and taxonomy of factor models

Factor models are a dimension reduction technique that exists in the statistical literature since almost one
hundred years and were originally introduced in the filed of psychometrics. The recent availability of large
datasets made them increasingly popular in the last twenty years. They are nowadays commonly used by
public and private institutions as central banks and investment banks for analysing large panels of time
series. Recently a class of models known as approximate (or generalised) dynamic factor models has been
proposed in the literature can be considered as a pioneer dimension reduction technique in Big Data econo-
metrics.

In these notes we cover the following topics:

• large dimensional datasets of time series;

– curse of dimensionality;

• factor models as dimension reduction techniques;

– blessing of dimensionality;

• estimation;

• forecasting;

• macroeconomic and financial applications: policy analysis, risk management.

MOTIVATION. The large datasets available today cover a number of years which is finite thus the number of
data points is limited and constrained by passage of time. However, more and more time series are collected
and made available by statistical agencies. We denote by T the number of points in time and by n the num-
ber of series. Then, typically we are in a setting where n ≥ T . For example, in macroeconomic datasets
we have n ' 100, 1000 and T ' 100 (quarterly or monthly series), while in financial datasets we have
n ' 100, 1000 and T ' 1000 (daily series). The case n ≥ T in statistics is known as high-dimensional
setting and dealing with such datasets by means of standard techniques as linear regressions constitutes a
hard problem to be solved due to the lack of degrees of freedom. Think for example of a VAR(1) model for
n time series which would require estimation of about n2 parameters with only T data points, as we know
linear regression cannot be used in this setting.

In general, a factor model for a high-dimensional vector of time series is characterised by:

1. few latent factors, representing comovements;

2. idiosyncratic terms, representing measurement errors or individual/local features.

Examples are: GDP or inflation which are driven by few factors representing the business cycle plus some
measurement errors; equity returns which are driven by few factors representing the market effect plus some
factors specific of a given company or sector.

Throughout we consider an n dimensional vector of observed time series {xt = (x1t . . . xnt)
′| t = 1, . . . , T}

which we denote for simplicity as xt. Moreover, we always assume that the data are covariance stationary
and purely non-deterministic, with zero mean and unit variance.1

STATIC VS. DYNAMIC. A first distinction is based on the effect of the factors on the data, xt. In the static
factor model we have

xt = ΛFt + ξt, (1)

where the factors Ft are an r-dimensional vector with r < n and have only a contemporaneous effect on
xt. They are called static factors.

1Non-stationarities, as unit roots and breaks, are considered in more recent works which are not considered in these lecture notes.
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In the dynamic factor model we have2

xt = Λ∗(L)ft + ξt, (2)

where the factors ft are a q-dimensional vector with q < n and have effect on xt through their lags too.
They are called dynamic factors.

The matrices Λ or Λ∗(L) are called loadings matrices (or filters in the dynamic case) and are of size
n× r or n× q respectively. We denote χt := ΛFt or χt := Λ∗(L)ft the common component, while ξt is
the idiosyncratic component. In both cases we always assume that common and idiosyncratic component
are uncorrelated, that is

Cov(χit, ξjs) = 0, t, s ∈ Z, i, j = 1, . . . , n.

or equivalently

Cov(fit, ξjs) = 0, t, s ∈ Z, i = 1, . . . , q, j = 1, . . . , n,

Cov(Fit, ξjs) = 0, t, s ∈ Z, i = 1, . . . , r, j = 1, . . . , n.

Now if the common and idiosyncratic component have to be the same both in (1) and in (2), then, typically
(and intuitively), for the same time series xt we need more factors in (1) than in (2). So if r is the dimension
of Ft and q is the dimension of ft, then we often have q ≤ r. Moreover, since we always assume q ≤ r � n
we are saying that few dynamic or static factors capture most of the comovements in xt. The dynamic model
is more realistic but harder to estimate, however its estimation can be accomplished by going through and
equivalent static model, as explained below.

EXACT VS. APPROXIMATE. Another important distinction between classes of factor models is related to
the idiosyncratic component. In the exact factor model, ξt has no cross-sectional dependence, thus it has a
diagonal covariance matrix or even diagonal cross-autocovariances

Cov(ξit, ξjs) = 0, t, s ∈ Z, i, j = 1, . . . , n, i 6= j.

In the approximate factor model, ξt is allowed to have mild cross-sectional dependence, thus a covariance
matrix which is not necessarily diagonal. If we even allow for non diagonal cross-autocovariances of ξt,
then we have a generalised factor model. These latter cases are more realistic but estimation of the model
is possible only if a large cross-section is available, i.e. n→∞. The exact case imposes a more restrictive
assumption but estimation is possible even for few time series, i.e. with a fixed n.

FACTOR REPRESENTATION FOR LARGE PANELS OF TIME SERIES. The approximate dynamic factor
model is the most realistic but it is hard to deal with it and in particular we will require to work in a setting
where n→∞. In particular, it is possible derive a representation for an infinite panel of time series which
is the analogous of the Wold representation for finite dimensional panels, we call this result the generalised
dynamic factor representation (or sometime model).

We know that a scalar causal and stationary purely non-deterministic univariate process can always be
written as

xt = b(L)εt, εt ∼ w.n.(0, σ2
ε ), (3)

where b(L) is an infinite one-sided square-summable polynomial:

b(L) = b0 +

∞∑
k=1

bkL
k,

∞∑
k=0

b2k <∞,

with b0 = 1. Representation (3) is known as the Wold representation.

2L is the lag operator such that Lkyt = yt−k and a one-sided matrix polynomial of degree s ∈ N in L is

B(L) =

s∑
k=0

BkL
k.
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If we now assume to have an n-dimensional purely non-deterministic vector xt, under second order sta-
tionarity, we can generalize the Wold representation (3) as

xt = D(L)εt, εt ∼ w.n.(0,Γε), (4)

where D(L) is a n× n matrix of infinite one-sided square-summable matrix polynomials.

Typically in order to estimate (4) we consider the Vector Autoregressive (VAR) model of finite order

E(L)xt = εt, εt ∼ w.n.(0,Γε), (5)

where E(L) is a n× n matrix of one-sided matrix polynomials of finite order such that det(E(z)) 6= 0 for
any z ∈ C such that |z| ≤ 1 (that is (5) is a causal process and its inverse requires only positive powers of
L, i.e. the past).

There are two areas where we typically use estimates of model (4) given by (5). In forecasting and in
structural analysis where the object of interest are the impulse response functions (IRF) of data to unex-
pected shocks to the economy and which are obtained from an estimate of D(L) by means of economic
restrictions (see later for details). In both cases we need to estimate an n × n matrix of coefficients and
as n increases estimation becomes unfeasible. This is the curse of dimensionality, and factor models are a
possible answer to it.

In particular, when n → ∞ the Wold representation is replaced by the Generalized Dynamic Factor repre-
sentation proved by Forni and Lippi (2001) and Hallin and Lippi (2013). In this case we have

xt = B(L)ut + ξt, ut ∼ w.n.(0, I), (6)

where B(L) is a n × q matrix of infinite one-sided square-summable matrix polynomials and ut is a q-
dimensional vector of latent orthonormal white noise process with typically q � n and ξt is allowed to be
mildly cross-sectionally correlated and also autocorrelated. We will see that (6) can be derived from very
few general assumptions and it is by all means the generalisation of the Wold representation theorem to the
case of infinite dimensional panels of time series. In this sense is more primitive than the dynamic model
in (2). Of course the two are related, in fact by using the Wold representation for the dynamic factors with
orthonormal innovations3

ft = G(L)ut, ut ∼ w.n.(0, I),

we see that (2) is equivalent to (6) just by setting B(L) = Λ∗(L)G(L). In this sense the approximate
dynamic factor model (2), or equivalently (6), is the most general model we can consider when we have
many series (n→∞). Finally, to avoid confusion, when, as in (6) the common factors are white noise, we
call them common shocks.

The fact that we look for results when n → ∞ is not just a mathematical artifact but it is required in
order to deal with the approximate factor model case, indeed we will show that in this case common and
idiosyncratic components can be disentangled only if n → ∞, which in practice means having a large
cross-section. In order words factors can be discovered more and more easily if we keep adding series to
our dataset. If we can estimate (6) or equivalently (2), we have a divide and rule strategy to solve the prob-
lem of overparametrization: an infinite dimensional panel of time series is decomposed into a component
driven by few factors and a component with small dependence. Since we can estimate the model only by
letting n→∞, we can in this case speak of blessing of dimensionality. In Sections 2 and 3 we show the in-
tuition of this concept in the i.i.d. case hence in a static factor model. Then in Sections 4 and 5 we describe
representation theory and how to derive (6) using first a time-domain approach and then a spectral-domain
approach.

3Notice that in general the innovations of the Wold representation are not necessarily orthonormal but for any generic innovation
process ηt ∼ w.n.(0,Γη) we can always build an orthonormal version of it by taking for example ut = Γ

−1/2
η ηt, where Γ

−1/2
η =

D
−1/2
η W′

η , such that Wη is the matrix of normalised eigenvectors of Γη and Dη is the diagonal matrix of its eigenvalues.
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STATE SPACE FORMULATION OF THE DYNAMIC MODEL. In order to estimate (6) or equivalently (2)
the most common way is to consider the state space formulation by Giannone, Reichlin, and Sala (2005),
Stock and Watson (2005), and Forni, Giannone, Lippi, and Reichlin (2009) which is given by

xt = ΛFt + ξt

(7)
Ft = N(L)ut, ut ∼ w.n.(0, I),

where we have r static factors Ft which have a singular Wold representation, thus with N(L) being a r× q
matrix of infinite one-sided square-summable matrix polynomials and ut is q-dimensional orthonormal
white noise. As noticed above, it is likely that q ≤ r. Then, by merging the two equations in (7), we have

xt = ΛN(L)ut + ξt (8)

by setting B(L) = ΛN(L), we have again (6).

Moreover, while usually an inversion of an MA model implies an infinite VAR, in the singular case r > q as
above, it is shown by Anderson and Deistler (2008) that there exists an equivalent finite VAR representation
for the factors, thus we can always write (7) as

xt = ΛFt + ξt

(9)
A(L)Ft = N(0)ut, ut ∼ w.n.(0, I).

As an example, assume that xit is a macroeconomic variable driven by a cyclical indicator ft such that
(1− αL)ft = ut, where |α| < 1 and ut ∼ w.n.(0, 1) and assume the dynamic model with q = 1 (see also
(2))

xit = a0ift + a1ift−1 + ξit, i = 1, . . . , n. (10)

Then if we define F1t = ft and F2t = ft−1, (10) is also a static model with r = 2 (see also (1)). So we
have one common shock and two static factors. Moreover, we have that the second equation in (7) reads as(

F1t

F2t

)
=

(
(1− αL)−1

(1− αL)−1L

)
ut,

while by inverting the MA we can find that the second equation in (9) is a VAR(1) which reads as(
(1− αL) 0
−L 1

)(
F1t

F2t

)
=

(
1
0

)
ut,

or equivalently (
F1t

F2t

)
=

(
α 0
1 0

)(
F1t−1

F2t−1

)
+

(
1
0

)
ut.

From the example is clear that if we just consider the first equation of (7) or (9), then this is equivalent to (6)
if and only if B(L) has finite degree, which implies the existence of Ft with dimension r finite. This is a
crucial issue which implies that when it comes to estimating (6) by means of the state space representation
(9) and more assumptions are needed. In particular there is no representation result leading to (7), which is
therefore called sometime restricted approximate dynamic factor model but we call it simply approximate
dynamic factor model. In the applications, we consider mainly (7), which, once written as (9), is easy to
estimate. This is the subject of Section 6, while estimation is discussed in Section 7.

ONE-SIDED REPRESENTATION. An alternative way of writing (6) using AR instead of MA polynomial
is proposed by Forni, Hallin, Lippi, and Zaffaroni (2015a,b) and is based on the results of Anderson and
Deistler (2008) for singular processes. In particular, we can write (6) as

A(L)xt = Gut + ξt ut ∼ w.n.(0, I), (11)

where ut and ξt are the same as in (6), G is n × q and if we assume without loss of generality that
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n = m(q + 1) for some integer m < n, then

A(L) =


A(1)(L) 0 . . . 0

0 A(2)(L) . . . 0
...

. . . . . .
...

0 0 . . . A(m)(L)


where A(j)(L) are polynomial matrices of finite degree and such that det(A(j)(z)) 6= 0 for any z ∈ C
such that |z| ≤ 1, for j = 1, . . . ,m. The result in (11) can be derived from the representation result (6) just
by requiring the very mild additional assumption that an ARMA representation of the common components
exists. For this reason (11) is called sometime unrestricted generalised dynamic factor model.

IDENTIFICATION. Notice that in general identification of B(L) in (6) is not possible. Indeed, for any
invertible matrix R we can define an equivalent model

xt = E(L)vt + ξt = (B(L)R−1)(Rut) + ξt.

Analogously in (7) identification of Ft in (7) is not possible since for any invertible matrix H we can define
an equivalent models

xt = MGt + ξt = (ΛH−1)(HFt) + ξt.

In terms of forecasting identification of the factors is not necessary and we just need to recover the space
spanned by the factors, i.e. their linear combinations. Moreover, from the example (10) above, we see that
in general we do not have to care about the economic interpretation of Ft and thus we are not interested in
determining H. But we are likely to be interested in interpreting (i.e. identifying) the effect of ut on the
elements of xt, thus we are often interested in determining R which must be such that ut is orthonormal
(see footnote 3 above). This is the subject of impulse response analysis (see below).

EXAMPLES OF APPLICATIONS. Let us consider forecasting and take an exact dynamic factor model. If
we define the sets Xt = span {xs, s ≤ t} and similarly Ut and Ξt, the optimal one-step ahead forecast of
series i is

E[xit+1|Xt, . . .] = E[λ∗i (L)ft+1 + ξit+1|Xt . . .]
= E[λ∗i (L)ft+1|Xt, . . .] + E[ξit+1|Xt, . . .]
= E[λ∗i (L)ft+1|Ut . . .] + E[ξit+1|Ξit . . .],

thus in this case adding one series to the dataset does not increase the dimension of the problem. Forecast-
ing is the subject of Section 8.

Another application is in structural economic analysis. Since Sims (1980) in structural VAR literature
(SVAR) we have economic shocks driving observed variables and we are interested in their effect, i.e. in
impulse response functions (IRF). These shocks are a linear combination of the Wold innovations, say
vt = Rεt where R is determined according to some economic restrictions that can be imposed. We know
that a large nmakes estimation of VAR impossible. On the other hand if n is small it is possible to show that
the econometrician using standard estimation of SVAR models might not be able to recover space spanned
the true shocks vt driving the economy due to lack of information: this problem is called nonfundamen-
talness. A dynamic factor model has a common component χt = B(L)ut which is similar to the Wold
representation (4) but has more variables than shocks, n > q. In this way we extend the information set of
the econometrician, i.e. we use large datasets to solve nonfundamentalness and we use the factor model to
solve the curse of dimensionality. As we have seen above ut is not identified also in factor models, therefore
we have to determine R also in this case. This can be done as in SVAR literature and the whole structural
analysis in factor models is the subject of Section 9.

Finally, in portfolio optimisation the optimal weights to assign to each asset are usually determined by
solving a risk minimisation problem which requires inversion of the covariance matrix of the data. How-
ever, in the large dimensional setting inverting the sample covariance is usually not feasible. With a factor
model we are decomposing the second moment structure of the process into a reduced rank component plus

7



a sparse (weakly correlated) component and this approach can be used to obtain more regular estimators of
large covariance matrices which have a well behaved inverse (Fan, Liao, and Mincheva, 2013). Other appli-
cations in finance show how to recover market volatility shocks from large panels of returns thus allowing
to model volatility dynamics starting from observed data in the same spirit as GARCH models. This is the
subject of Section 10.

HISTORY. The father of factor models is Spearman (1863-1945) who proposed an exact static model and its
estimation by means of Maximum Likelihood was developed by Jöreskog (1969) and Lawley and Maxwell
(1971) and by means of Principal Component Analysis by Tipping and Bishop (1999). This model is useful
for i.i.d. data.

For stationary time series an exact dynamic model was proposed by Geweke (1977) and its estimation
by means of the Kalman filter and the Expectation Maximisation algorithm was studied by Sargent and
Sims (1977) and Watson and Engle (1983), in the spectral and time domain respectively. An approximate
static model was proposed by Chamberlain and Rothschild (1983) and Connor and Korajczyk (1986) and
its estimation by means of Principal Component Analysis was considered by Stock and Watson (2002a,b),
Bai (2003), and Fan, Liao, and Mincheva (2013).

Combining the last two models Forni and Lippi (2001, 2011); Hallin and Lippi (2013) proposed the gener-
alised dynamic factor model (aka GDFM) and its unrestricted representation. Estimation of the GDFM has
been developed by Forni, Hallin, Lippi, and Reichlin (2000, 2005) and Forni, Hallin, Lippi, and Zaffaroni
(2015a,b) using Dynamic Principal Component Analysis, that is in the spectral domain, and results on sin-
gular AR representations, respectively.

The restricted approximate dynamic factor model, i.e. in state-space form, has been proposed by Stock
and Watson (2005). Two-step estimation by means of Principal Component Analysis and VAR was studied
by Bai and Ng (2006, 2007) and Forni, Giannone, Lippi, and Reichlin (2009), while Doz, Giannone, and
Reichlin (2011, 2012) proposed estimation by means of the Kalman filter and the Expectation Maximization
algorithm. More details on estimation of this class of factor models follow.

OVERVIEW OF ESTIMATION TECHNIQUES. Depending on the use we want to make of the approximate
dynamic factor model (7)-(9), we need estimators of

• the factors Ft or at least of the space they span;

• the parameters of the model, i.e. of Λ, G(L), and N(0);

• the number of factors r and the number of shocks q.

There are two main classes of estimators of the approximate dynamic factor model in state-space form and
here we list those proposed for the large n case

1. two-step estimators based on Principal Component Analysis (PCA) and a VAR on the estimated fac-
tors;

2. on-line techniques based on Kalman Filter (KF) and Expectation Maximisation (EM) algorithm which
is equivalent to Quasi Maximum Likelihood (QML).

These methods are considered in Sections 6 and 7, respectively. In the same spirit of PCA is Forni, Hallin,
Lippi, and Reichlin (2000) which estimates the space spanned by ut using Dynamic PCA, it is not useful
for forecasting but it is used as the first step of other estimators not considered here (Forni, Hallin, Lippi,
and Reichlin, 2005; Forni, Hallin, Lippi, and Zaffaroni, 2015a,b).

For determining the number of factors and shocks there are many criteria available and most are based
on the behaviour of the eigenvalues of the covariance and spectral density matrix of the data. This is the
subject of Section 11.
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2 Principal component analysis and the exact factor model

In this section we consider n fixed and finite. Moreover, in this and the next section we assume to have
a panel of i.i.d. data, i.e. with no serial correlation, Cov(xit, xjt−k) = 0 for any k > 0 and any i, j =
1, . . . , n. Therefore, the index t ∈ Z represents different observations not necessarily in time. We consider
an n-dimensional vector xt = (x1t . . . xnt)

′ such that E[xt] = 0, and we define Γx = E[xt x
′
t]. The

aim is to explore the reaction between the common dimension reduction technique of principal component
analysis and the simplest factor structure.

PRINCIPAL COMPONENT ANALYSIS. The covariance matrix Γx is a symmetric and positive definite
matrix and can always be factorised as

Γx = PDP′,

where P is an n × n orthogonal matrix of eigenvectors, i.e. PP′ = P′P = In and P = (p1 . . .pn), and
D = diag(λ1 ≥ λ2 ≥ . . . ≥ λn > 0) contains the ordered eigenvalues.

Then,

Γxpj = λjpj and Γx =

n∑
j=1

λjpjp
′
j .

Recall that the eigenvalues solve
det(Γx − λjIn) = 0,

then the once we have the eigenvalues, the eigenvectors can be found by solving

(Γx − λjIn)pj = 0.

Equivalently, eigenvalues and eigenvectors are the solutions of the problem

p1 = arg max
a

a′Γxa s.t. a′a = 1,

pj = arg max
a

a′Γxa s.t. a′a = 1 and a′p1 = . . . = a′pj−1 = 0, j > 1

the eigenvalues being the value of the functions at their maximum. In other words, if we write the first
eigenvector as p1 = (p11 . . . p1n)′ then its components are such that

(p11 . . . p1n) = argmax
(a1...an)

Var

(
n∑
i=1

aixit

)
s.t.

n∑
i=1

a2
i = 1.

The entries of the largest eigenvector are the normalised weights of the weighted average of the data with
maximum variance which is given by the largest eigenvalue

Var(p′1xt) = Var

(
n∑
i=1

p1ixit

)
=

n∑
i,j=1

p1ip1jE[xitxjt] = p′1Γxp1 = λ1.

If we consider all normalised linear combinations of the data a′xt, then p′1xt = x′tp1 is the one with largest
variance λ1, and so on for the other eigenvectors. The linear combination p′jxt is called j-th principal
component of xt and has variance λj . The projection of xt onto the j-th principal component is the vector

yj =
(
p′jxt

)
pj ,

which has length λj and direction pj .

Assume that we want to reduce the dimension of the data at hand from n to q < n, consider the de-
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composition dictated by principal components

xt =

n∑
j=1

(
p′jxt

)
pj =

q∑
j=1

(
p′jxt

)
pj︸ ︷︷ ︸

xt,[q]

+

n∑
j=q+1

(
p′jxt

)
pj︸ ︷︷ ︸

xt−xt,[q]

.

We define the projection of xt orthogonal to xt,[q] as ξt = xt − xt,[q] with covariance Γξ. Then, consider
any other projection say x̃t,[q] with residual ξ̃t = xt − x̃t,[q] with covariance Γξ̃. It can be shown that xt,[q]
is the best linear q-dimensional representation of xt in the sense that

tr
(
Γξ

)
≤ tr

(
Γξ̃

)
.

Thus, this decomposition minimises the sum of the residual variances which is equivalent to minimising the
sum of all eigenvalues of the residual covariance Γξ. Notice that the covariance matrix of xt,[q] has just q
eigenvalues different from zero and therefore has rank q, while the covariance matrix of ξt has rank n− q.
This dimension reduction technique is called Principal Component Analysis (PCA).

FACTOR MODEL. Now assume the static exact factor model for xt

xt = Bft + et,

where ft = (f1t . . . fqt)
′ is a vector of q unobserved factors with q < n, B is a n × q matrix of loadings,

and et is an idiosyncratic error component as opposed to the common component χt = Bft.

We assume orthogonality between the common and idiosyncratic components, E[ft e
′
t] = 0, and an ex-

act factor structure, i.e. we require E[et e
′
t] = Γe to be a positive definite and diagonal matrix. Finally,

without loss of generality, we can impose E[ft f
′
t ] = Iq . Therefore,

Γx = BB′ + Γe = Γχ + Γe,

where BB′ = Γχ has rank q and is accounting for all off-diagonal elements of Γx while Γe has rank n.

COMPARISON. The two models imply that any series can be written as

PC xit = p1i(p
′
1xt) + . . .+ pqi(p

′
qxt) + ξit,

FM xit = Bi1f1t + . . .+Biqfqt + eit.

Although these might seem different they both decompose of the covariance matrix into a rank q matrix
plus another matrix:

PC Γx = Γx[q]
+ Γξ

FM Γx = Γχ + Γe

The difference between the two cases is clear by looking at the second term:

• in PCA the sum of variances of the idiosyncratic components ξt has to be minimised, this implies
minimising the sum of all eigenvalues, hence the sum of the covariances is minimised, but Γξ is not
necessarily diagonal, this is a representation result as it holds for any covariance matrix, it is just an
algebraic result and it does not imply any statistical modelling;

• in an exact static factor model Γe is assumed to be diagonal, therefore the common component χt
accounts for all covariances, now the covariance of the idiosyncratic component et is shrunk to zero
while the idiosyncratic variances may still be large; this is a model as it is based on assumptions on
the data generating process.

Ideally we would like to reconcile the two approaches since PCA is a very simple and intuitive dimension
reduction technique. Can we have a factor model that is compatible with the PCA decomposition? In order
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to do this we first need to allow for cross-sectional dependence among idiosyncratic components, i.e. to
consider an approximate factor model. Such model can then be identified and then estimated only for an
infinite dimensional panel, i.e. when n→∞.
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3 The approximate factor model and the blessing of dimensionality

Now let n → ∞ and for any n ∈ N consider the process x
(n)
t , such that for a fixed q we have the factor

model4

x
(n)
t = B(n)ft + ξ

(n)
t , (12)

and define χ(n)
t = B(n)ft. The covariance matrix is given by:

Γ(n)
x = B(n)B(n)′ + Γ

(n)
ξ = Γ(n)

χ + Γ
(n)
ξ .

CROSS-SECTIONAL AVERAGING - PART 1. The factors have an intuitive meaning in terms of aggregation.
Consider as an aggregate the cross-sectional average of the data x̄t = 1

n

∑n
i=1 xit and assume one factor,

i.e. q = 1. In an exact factor model the variance of this aggregate is

Var(x̄t) =
1

n2

(
n∑
i=1

bi

)2

Var(ft) +
1

n2
Var

(
n∑
i=1

ξit

)
= b̄2 +

1

n2

n∑
i=1

Var(ξit),

where bi are the loadings and b̄ = 1
n

∑n
i=1 bi and Var(ft) = 1. Then, if all bi are non-zero, b̄2 is finite for

any n, the above expression is such that

Var(x̄t)→ b̄2 = Var(χ̄t), n→∞. (13)

This means that all information contained in the factors as measured by second moments can be recovered
by means of aggregation of observed data. We say that as n → ∞ the model is identified, that is we can
separate common and idiosyncratic component and therefore we can work only with the form thus effec-
tively reducing the dimension of the problem. Notice that for (13) to hold we need all (or most) bi to be
non-zero, that is the factor has to be pervasive.

This example shows that factor modelling is about capturing covariances not variances. Consider an even
simpler example of an exact factor model, where bi = 1 for all i,

xit = ft + ξit

and with Var(ft) = 1 and Var(ξit) = C > 1 for all i. Thus, for each series the factor accounts for a small
portion of the total variance, indeed for any i we have

Var(ft)

Var(xit)
=

1

1 + C
<

1

2
.

However, if we consider the cross-sectional average we have that

Var(ft)

Var(x̄t)
=

Var(ft)

Var(ft) + 1
nVar(ξit)

=
1

1 + C
n

→ 1, n→∞.

Asymptotically, the variance of the factor accounts for all the variance of the aggregate.

Now consider the case in which we allow for cross-sectional dependence among idiosyncratic component,
then the variance of the aggregate is

Var(x̄t) =
1

n2

(
n∑
i=1

bi

)2

Var(ft) +
1

n2
Var

(
n∑
i=1

ξit

)
= b̄2 +

1

n2

n∑
i=1

n∑
j=1

Cov(ξit, ξjt). (14)

Even if we assume pervasiveness of the factor we cannot obtain a result as in (13) unless we bound some-
how the second term. Notice that since we are summing n2 covariances and dividing by n2 as n→∞ that
term is in general O(1) as the first one.

4In these sections we use the superscript n to emphasize the role of n.
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Thus, as n → ∞, we need both an assumption on the loadings and on the covariances of the idiosyn-
cratic terms in order to disentangle common from idiosyncratic components.

IDENTIFYING ASSUMPTIONS. We assume that there exist α, β <∞ such that

(a) bounded idiosyncratic variances: 0 < Var(ξit) < α for any i ∈ N;

(b) pervasiveness of the factors, i.e. each of the q factors has an impact on each component of xt that is
bounded away from zero:

min
j=1,...,q

liminf
i→∞

|bij | > β > 0,

and the factors have finite variance: 0 < Var(fjt) < γ, for j = 1, . . . , q.

Assumptions (a) and (b) are very basic and not testable. Alternatively and equivalently, we can assume

(a’) Γ
(n)
ξ has all eigenvalues bounded for any n, that is there exists an M independent of n such that

λ
(n)
1ξ ≤M <∞, n ∈ N;

(b’) Γ
(n)
χ has all q eigenvalues diverging as n→∞, that is

lim
n→∞

λ(n)
qχ =∞.

Notice that if (a) holds then for any n
1

n
Tr(Γ(n)

ξ ) = O(1),

which is also implied by (a’). By assuming directly (a’) we do not have to require Γ
(n)
ξ to be diagonal

and we are indirectly implying that only a limited amount of cross-sectional dependence is allowed for (see
below for the formal implication).

Moreover, (b) implies (b’). For example if q = 1 and Var(ft) = 1, then Γ
(n)
χ = B(n)B(n)′ has just

one non-zero eigenvalue which is equal to B(n)′B(n) (it is a scalar in this case) and such that because of (b)

lim
n→∞

λ
(n)
1χ = lim

n→∞
B(n)′B(n) = lim

n→∞

n∑
i=1

b2i > lim
n→∞

nβ2 =∞.

Under assumptions (a’) and (b’) and using the PCA decomposition of the covariances Γ
(n)
χ and Γ

(n)
ξ , we

have

Γ(n)
x =

q∑
j=1

λ
(n)
jχ p

(n)
jχ p

(n)′

jχ︸ ︷︷ ︸
Γ

(n)
χ

+

n∑
j=1

λ
(n)
jξ p

(n)
jξ p

(n)′

jξ︸ ︷︷ ︸
Γ

(n)
ξ

, (15)

where, as n→∞, λ(n)
jχ →∞, while λ(n)

jξ stay bounded.

Then from (15) and Weyl’s inequality we have

λ
(n)
jχ + λ

(n)
nξ ≤ λ

(n)
jx ≤ λ

(n)
jχ + λ

(n)
1ξ , j = 1, . . . n,

and therefore

1. for j ≤ q, as n→∞, λ(n)
jχ →∞, then λ(n)

jx →∞,

2. for j > q, λ(n)
jχ = 0, then λ(n)

jx ≤ λ
(n)
1ξ ≤M <∞.

13



This result implies that under a factor model with assumptions (a’) and (b’), the q largest eigenvalues of
Γ

(n)
x diverge while the other (n − q) stay bounded. However, the viceversa does not hold, therefore this is

not a representation result, the behavior of the eigenvalues of Γ
(n)
x does not in general imply assumptions

(a’) and (b’), i.e. a factor structure with pervasive shocks and mildly correlated idiosyncratic component.

ALTERNATIVE ASSUMPTIONS. Instead of assumptions (a’) and (b’) Bai and Ng (2002) assume that

(a”) 1
n

∑n
i=1

∑n
j=1 |Cov(ξit, ξjt)| ≤M <∞ for any n and for some positive constant M ;

(b”) B(n)′B(n)

n → H as n→∞ where H is q × q and positive definite and Γf is positive definite.

Notice that since H does not depend on n all its eigenvalues are finite. Moreover, (b”) implies (b’). Consider
the eigenvalues decomposition Γf = PfMfP

′
f , then

1

n
PfM

1/2
f B(n)′B(n)M

1/2
f P′f → Γ

1/2
f HΓ

1/2
f , as n→∞, (16)

which is positive definite because of (b”). Then, consider

1

n
Γ(n)
χ =

1

n
B(n)ΓfB

(n)′ =
1

n
B(n)PfM

1/2
f M

1/2
f P′fB

(n)′ ,

which as n → ∞ has the same non-zero eigenvalues as (16) and these q and are all finite. Therefore, the
eigenvalues of Γ

(n)
χ diverge linearly in n.

As for (a’) and (a”) we do not have a direct implication, but notice that if we assume that there exists
an M independent of n such that

max
i=1,...,n

n∑
j=1

|Cov(ξit, ξjt)| ≤M <∞, (17)

then both (a’) and (a”) are implied, indeed5

(a’) λ1ξ = ‖Γ(n)
ξ ‖ ≤ ‖Γ

(n)
ξ ‖1 = max

i=1,...,n

n∑
j=1

|Cov(ξit, ξjt)| ≤M <∞,

(a”)
1

n

n∑
i=1

n∑
j=1

|Cov(ξit, ξjt)| ≤ max
i=1,...,n

n∑
j=1

|Cov(ξit, ξjt)| ≤M <∞.

In particular, Fan, Liao, and Mincheva (2013) show that assumption (17) is equivalent to asking for sparsity
of the covariance matrix of the idiosyncratic component in the sense that its column norm is o(n) which
means that for large n many of its entries are likely to be vanishing.

Moreover, either by assuming (a’) or (a”) we have

(a’)
1

n

n∑
i=1

n∑
j=1

Cov(ξit, ξjt) =
1

n
ι′Γ

(n)
ξ ι ≤ λ1ξ ≤M <∞,

(18)

(a”)
1

n

n∑
i=1

n∑
j=1

Cov(ξit, ξjt) ≤
1

n

n∑
i=1

n∑
j=1

|Cov(ξit, ξjt)| ≤M <∞.

where ι is an n-dimensional vector of ones. In other words, (18) shows that the total amount of cross-
sectional dependence among idiosyncratic components is limited and we say that they are weakly or mildly

5In the first case we use Hölder inequality and the fact that column norm ‖ · ‖1 and row norm ‖ · ‖∞ are identical for a symmetric
matrix.
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correlated. This is what characterises the approximate factor model.

Summing up, whichever set of assumptions we choose the main message is that we require

1. the factors to be pervasive i.e. to have non-negligible effects on most of the variables (assumptions
(b) or (b’) or (b”));

2. the idioscyncratic components to be weakly cross-correlated (assumptions (a) or (a’) or (a”)).

Under these conditions when n → ∞ we can always disentangle the common from the idiosyncratic
component by means of aggregation.

CROSS-SECTIONAL AVERAGING - PART 2. If we go back to the example above of a cross-sectional
average of the data in an approximate factor model, we have

Var(x̄t) = b̄2 +
1

n2

n∑
i=1

n∑
j=1

Cov(ξit, ξjt). (19)

Now, under assumption (b) we have that b̄2 is a finite constant not depending on n, i.e. the first term in (19)
is O(1). Moreover, by assumption (a’) or (a”), the second term in (19) is

1

n2

n∑
i=1

n∑
j=1

Cov(ξit, ξjt) ≤
M

n
.

Therefore, as n→∞ we can disentangle the information in the common and idiosyncratic component

Var(x̄t) = b̄2 +O

(
1

n

)
→ b̄2 = Var(χ̄t) as n→∞, (20)

and the factors represent the part of the data that under aggregation has a non-negligible contribution in
terms of variance.

GENERALISATION TO WEIGHTED CROSS-SECTIONAL AVERAGES. We have seen that we can recover
the factors’ variance by means of cross-sectional averaging. The weights used in the previous example are
all equal to 1/n and therefore they are not normalised. To keep the analogy with eigenvectors, which will
be useful later, we hereafter consider weighted averages with normalised weights. The main message of
(20) remains unchanged if we change scale of the weights.

In general, in a q factor model we look for q mutually orthogonal linear combinations

w
(n)
jt = (a1j . . . anj)x

(n)
t = a

(n)′

j x
(n)
t = a

(n)′

j χ
(n)
t + a

(n)′

j ξ
(n)
t , j = 1, . . . , q,

such that a
(n)′

j a
(n)
j = 1 for any j and to avoid trivial combinations we assume |aij | > 0 for any i ∈ N

and j = 1, . . . q. These two conditions in turn imply that we must have aij =
kij√
n

for some finite constants
kij 6= 0.

Then, because of assumption (a’)

Var(a
(n)′

j ξ
(n)
t ) = a

(n)′

j Γ
(n)
ξ a

(n)
j ≤ λ(n)

1ξ ≤M <∞,

On the other hand because of assumption (b”) we must have b′ibk =
∑q
j=1 bijbkj = O(n), and without

loss of generality we can assume Γf = Iq and B(n)′B(n) to be orthogonal, which implies

Var(a
(n)′

j χ
(n)
t ) = a

(n)′

j B(n)B(n)′a
(n)
j =

(
n∑
i=1

aijb
′
i

)(
n∑
i=1

aijbi

)
=

1

n

n∑
i

k2
ijb
′
ibi = O(n).
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If we instead rely only just on (b) or (b’) we simply have that the last expression diverges as n → ∞
but at unknown rate. In any case, as in the previous example, a cross-sectional weighted average of xt is
decomposed into a part with diverging variance corresponding to the common component, and a part with
finite variance corresponding to the idiosyncratic component:

Var(w
(n)
jt ) = Var(a

(n)′

j χ
(n)
t ) + Var(a

(n)′

j ξ
(n)
t ) = Var(a

(n)′

j χ
(n)
t )

(
1 +

Var(a
(n)′

j ξ
(n)
t )

Var(a
(n)′

j χ
(n)
t )

)
, (21)

the last term being negligible when n→∞.

In order to have finite limiting quantities we can standardise the aggregates. There are two possibilities

ẇ
(n)
jt :=

w
(n)
jt√

Var(w
(n)
jt )

=
a

(n)′

j χ
(n)
t√

Var(a
(n)′

j χ
(n)
t )

+ oq.m.(1),

ẅ
(n)
jt :=

w
(n)
jt√
n

=
a

(n)′

j χ
(n)
t√

n
+Oq.m.

(
1√
n

)
,

where q.m. stands for “quadratic mean”.6 Notice that in the first case is more general and holds as long as
(b’) holds, that is without specifying any rate of divergence of eigenvalues. While the second case holds
if we make use of assumption (b”) which implies that the divergence is linear in n. In both cases the first
term has finite variance by construction while the second term tends to zero as n → ∞. Notice that in the
first case we just have convergence, while in the second case we also have information about the rate of
convergence. The linear divergence is a natural choice since it means that we discover factors as the cross-
sectional dimension increases linearly, i.e. each new series carries information about the factors. Hence, we
consider only this case hereafter.7

RECONSTRUCTING THE FACTORS’ SPACE. If we collect q aggregates in a vector w
(n)
t = (w

(n)
1t . . . w

(n)
qt )′,

we can consider an n× q matrix of weights A(n) with columns a
(n)
j of dimension n× 1 for j = 1, . . . , q,

and such that we impose the normalisation

A(n)′A(n) = Iq. (22)

Then, we will work with the standardised weighted average

ẅ
(n)
t =

A(n)′x
(n)
t√

n
.

Notice that a matrix with as columns the eigenvectors of Γ
(n)
χ satisfies the normalisation requirement and

delivers weighted averages ẅ
(n)
t with maximum variance (see below for details).8

In order to recover the space spanned by the factors f , we add one more assumption

A(n)′B(n)

√
n

→ H, as n→∞, (23)

with H positive definite and again since it does not depend on n all its eigenvalues are finite. Notice that
this is reasonable since by (b”) ‖B(n)‖ = O(

√
n) and we are therefore just ruling out trivial combinations

6We have
lim
n→∞

E[oq.m.(1)
2] = 0,

and

lim
n→∞

nE

[
Oq.m.

(
1
√
n

)2
]
<∞.

7Weak factors can be considered where divergence is more slowly than n, results for this case are in Onatski (2012).
8Sometime the weights are defined as A(n)∗ =

√
nA(n).
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in which A(n) has too many zeros.

We now show that when n → ∞, any weights matrix satisfying (22) and (23) generates aggregates that
span the same space as f . Indeed, from the definition and the factor model structure

ẅ
(n)
t =

A(n)′x
(n)
t√

n
=

A(n)′B(n)ft√
n

+
A(n)′ξ

(n)
t√

n
.

The first term converges to Hft by assumption (23). As for the second term notice that from the definition
of eigenvalues, for any column a

(n)
j of A(n)

Var

(
a

(n)′

j ξ
(n)
t√
n

)
=

1

n
a

(n)′

j Γ
(n)
ξ a

(n)
j ≤ λ1ξ

n
→ 0.

This result holds for one column of A(n) and if we consider all columns jointly we have

Var

(∥∥∥∥A(n)′ξ
(n)
t√

n

∥∥∥∥
)

= E

[∥∥∥∥A(n)′ξ
(n)
t√

n

∥∥∥∥2
]
≤ qλ1ξ

n
→ 0. (24)

Hence we have convergence in quadratic mean

‖ẅ(n)
t −Hft‖ = Oq.m.

(
1√
n

)
. (25)

Moreover, by Chebychev’s inequality we have also convergence in probability9

‖w(n)
t −Hft‖ = Op

(
1√
n

)
,

which means that for any ε > 0 there exists an M > 0 such that

P(
√
n‖w(n)

t −Hft‖ > M) < ε.

Summing up, as n → ∞ the q weighted cross-sectional averages ẅ
(n)
t are spanning the same space of

the space generated by the factors with probability one and also their variance converges to the variance
of a linear combination Hft of the factors. In other words, in quadratic mean and in probability only the
common component (driven by the factors) survives aggregation. It is important to notice that this limiting
notion is related to variances of averages thus involving covariances and not to the variance of a single
series. Hence, the factors do not necessarily represent the component with highest variance of a series.

CHOOSING THE OPTIMAL WEIGHTS. The weights A(n) used to build ẅ
(n)
t can be generic, as long as

they satisfy (22) and (23). For example the cross-sectional average with all weights equal to 1/
√
n would

satisfy this condition in the case q = 1. However, it is more desirable a data driven choice of A(n).

The optimal weights must be such that when applied to the common component produce a weighted aver-
age with maximum variance. The right choice is given by PCA that is by choosing the weights matrix as the
matrix of eigenvectors of Γ

(n)
χ . Consider the spectral decomposition

Γ(n)
χ = P(n)D(n)P(n)′

where P(n) is the n × q matrix of normalised eigenvectors and D(n) is the q × q diagonal matrix of
eigenvalues. We choose A(n) = P(n). This is of course not feasible in practice since χ(n) is not observed

9The Chebychev’s inequality states that for any ε > 0

Prob
(
|Y − E[Y ]|2 ≥ ε

)
≤

Var(Y )

ε
.
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but let’s see what are the implications of this choice and we will then look for a feasible way to proceed.
Without loss of generality we assume Γf = Iq .

1. We trivially have the normalisation condition (22) and for (23) we have

A(n)′B(n)

√
n

=
P(n)′B(n)

√
n

=: Kn (26)

Now the matrix Kn is positive definite and has all eigenvalues which are finite. Indeed, since assump-
tion (b”) implies that the eigenvalues of Γ

(n)
χ diverge linearly in n, there exists a positive definite

matrix L such that

KnK′n =
P(n)′Γ

(n)
χ P(n)

n
=

D(n)

n
→ L, as n→∞, (27)

and by setting H = L1/2 we have shown that (23) holds for this choice of weights. Without loss of
generality we can say that Kn → H, as n→∞.

2. By definition of eigenvectors we have weighted averages of the common component with maximum
variance given by the eigenvalues

Var

(
P(n)′χ

(n)
t√

n

)
=

1

n
P(n)′Γ(n)

χ P(n)′ =
D(n)

n
. (28)

By assumption (b”) and linear divergence of eigenvalues, the last expression is always finite.

3. By construction we have
P(n)′χ

(n)
t√

n
=

P(n)′B(n)ft√
n

= Knft, (29)

the principal components of χ(n)
t span the same space as the factors. Notice that Kn is finite and this

result holds for any n.

4. If we let n → ∞ we have seen above that under (22) and (23) the variance of a weighted average of
x

(n)
t converges to the variance of a weighted average of χ(n)

t . By (24) and (28), we have

Var

(
P(n)′x

(n)
t√

n

)
= Var

(
P(n)′χ

(n)
t√

n

)
+ Var

(
P(n)′ξ

(n)
t√
n

)
=

D(n)

n
+O

(
1

n

)
.

As n → ∞, the first term is always finite and positive definite while the second vanishes. Equiva-
lently, we can write

P(n)′x
(n)
t√

n
=

P(n)′χ
(n)
t√

n
+Oq.m.

(
1√
n

)
. (30)

By combining (25) with (29) and (30) we have∥∥∥∥P(n)′x
(n)
t√

n
−Hft

∥∥∥∥ = Oq.m.

(
1√
n

)
. (31)

The last result shows that if we knew P(n) we could recover the space spanned by the factors, but this is
clearly impossible. We consider instead the n×q matrix of eigenvectors P

(n)
x corresponding to the q largest

eigenvalues of Γ
(n)
x . This matrix can be computed from data. The Davis-Kahan theorem and assumptions

(a’) and (b’) imply

‖P(n)
x −P(n)O‖ ≤

c‖Γ(n)
ξ ‖

λqχ
=
cλ1ξ

λqχ
≤ cM

λqχ
→ 0, as n→∞, (32)
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for some orthogonal matrix O and finite constant c > 0. Moreover under (b”) convergence is with rate
n−1. Therefore, because of (32), as n → ∞ all previous conclusions still hold when we use the weights
A(n) = P

(n)
x . In particular, (31) becomes∥∥∥∥P

(n)′

x x
(n)
t√

n
−O′Hft

∥∥∥∥ = Oq.m.

(
1√
n

)
. (33)

Thus, (29) and (33) show that PCA of χ(n)
t and of x

(n)
t are asymptotically equivalent. As n → ∞ the two

approaches of PCA and factor analysis are reconciled: this is the blessing of dimensionality.

RECONSTRUCTING THE LOADINGS’ SPACE. Since principal components are orthogonal they are also a
linear basis of the space of the factors. Moreover, projecting on any linear basis of factors’ space allows us
to recover the loadings or a linear transformation of them. Since projecting on any basis of the same space
is equivalent up to a linear transformation, this means that up to terms oq.m.(1) we can recover the loadings
by any of the following equivalent projections:

1. of x
(n)
t onto the space spanned by its q first normalised principal components, P(n)′

x x
(n)
t√

n
;

2. of x
(n)
t onto the space spanned by χ(n)’s non-zero principal components, P(n)′χ

(n)
t√

n
;

3. of x
(n)
t onto the space spanned by the q-factors, ft.

In particular, consider projection 1, which is the only feasible one, we can show that(
E

[
P

(n)′

x x
(n)
t x

(n)′

t P
(n)
x

n

])−1(
E

[
P

(n)′

x x
(n)
t x

(n)′

t√
n

])

=

(
D

(n)
x

n

)−1
P

(n)′

x Γ
(n)
χ√

n
+

P
(n)′

x Γ
(n)
ξ√

n


=

(
D(n)

n

)−1
(

P(n)′Γ
(n)
χ√

n
+

P(n)′Γ
(n)
ξ√

n

)
+O

(
1

n

)

=

(
D(n)

n

)−1
(

P(n)′Γ
(n)
χ√

n

)
+O

(
1√
n

)

=

(
D(n)

n

)−1(
D(n)P(n)

√
n

)
+O

(
1√
n

)
=
√
nP(n) +O

(
1√
n

)
, (34)

where D
(n)
x is the q × q diagonal matrix of eigenvalues of Γ

(n)
x and we used assumption (b”), (24), (32),

and
1

n
‖D(n)

x −D(n)‖ ≤ 1

n
‖Γ(n)

x − Γχ‖ =
1

n
‖Γ(n)
ξ ‖ =

λ
(n)
1ξ

n
≤ M

n
(35)

which follows from Weyl’s inequality and assumption (a’). Therefore, from (34) we see that we can take
the loadings to be proportional to the eigenvectors.

ESTIMATION. Now consider a time series setting and we write the approximate static factor model as

x
(n)
t = B(n)ft + ξ

(n)
t , t ∈ Z.

We can use PCA to estimate the factors, the loadings and the common component. Let us first assume that the
number of factors q is given. When we observe only T realisations of x(n), i.e. we observe (x

(n)
1 , . . . ,x

(n)
T ),
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the covariance matrix has to be estimated. We use a suffix T to indicate estimated quantities. We start with
the sample covariance

Γ(nT )
x =

1

T

T∑
t=1

x
(n)
t x

(n)′

t .

When T →∞, it is known that

1

n
‖Γ(nT )

x − Γ(n)
x ‖ = Oq.m.

(
1√
T

)
(36)

as long as fourth order cumulants of x
(n)
t exist. Then, following (34), we collect the normalised eigenvectors

corresponding to the q largest eigenvalues of Γ
(nT )
x in the n × q matrix P(nT ) and we define the loadings

estimator as
B(nT ) =

√
nP(nT ),

then by definition B(nT )′B(nT )

n = Iq , for any n, which satisfies assumption (b”). Clearly, an estimator of
the factors is estimated by projecting the data onto the space spanned by the estimated loadings, which,
given the chosen loadings, in this case is equivalent to projecting onto the space of the q largest principal
components of x

(n)
t ,

f
(nT )
t =

(
B(nT )′B(nT )

)−1

B(nT )′x
(n)
t =

B(nT )′x
(n)
t

n
=

P(nT )′x
(n)
t√

n
. (37)

Notice that the last expression is the sample analogue of (29) and (30).

The estimator depends on n and T and if we assume that the common component has asymptotically
distinct eigenvalues then we can show that it is consistent. In particular, there are two possible equivalent
identifying constraints that we can choose:

1. Approach by Stock and Watson (2002a), common in econometrics:

(a) Γf is positive definite with distinct diagonal entries;

(b) B(n)B(n)′

n → Iq as n→∞;

(c) ft =
P(n)′χ

(n)
t√

n
(non-normalised principal components of χ(n)

t ).

Then Γf = D(n)

n which must be positive definite for any n as requested by (a), moreover this matrix
is diagonal and (a) implies that Γf has distinct eigenvalues. Moreover, we have

ft =
P(n)′χ

(n)
t√

n
=

P(n)′P(n)P(n)′χ
(n)
t√

n
=

P(n)′P(n)P(n)′B(n)ft√
n

,

which implies B(n) =
√
nP(n) and thus (b) holds for any n (this is because the definition of ft

depends on n so as n changes the factors change). This is the approach followed here.

2. Approach by Fan, Liao, and Mincheva (2013), common in statistics:

(a) Γf = Iq;

(b) B(n)B(n)′

n → H as n→∞, with H positive definite with distinct eigenvalues;

(c) ft = (D(n))−1/2P(n)′χ
(n)
t (normalised principal components of χ(n)

t ).

Then Γf = Iq as requested by (a). Moreover, we have

ft = (D(n))−1/2P(n)′χ
(n)
t = (D(n))−1/2P(n)′P(n)P(n)′χ

(n)
t = (D(n))−1/2P(n)′P(n)P(n)′B(n)ft,

which implies B(n) = P(n)(D(n))1/2 and thus (b) holds only asymptotically as n→∞.
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Note that both 1(a)-1(b) or 2(a)-2(b) imply that the eigenvalues of Γχ diverge linearly in n (this is already
shown above since these are special versions of (b”)) and moreover the eigenvalues are asymptotically
distinct. Regardless of which set of identification constraints is chosen, for large n, T , using (36) and a
result similar to (32) for estimated quantities, we can show that the eigenvectors P

(n)
x estimate P(n) up to a

sign. This is true regardless of the rate of divergence of n and T as long as we consider just the eigenvectors
corresponding to the largest (diverging) eigenvalues. Then, for large n, the result in (33) applies. Therefore,
as n, T →∞, there exists a diagonal matrix J with entries ±1 such that

‖f (nT )
t − Jft‖ = Oq.m.

(
max

(
1√
n
,

1√
T

))
, t = 1, . . . , T,

and it is also possible to prove

‖b(nT )′

i − b
(n)′

i J‖ = Oq.m.

(
max

(
1√
n
,

1√
T

))
, i = 1, . . . , n,

where b
(n)′

i is the i-th row of B(n) thus of dimension 1× q. These results are proved for example in Forni,
Giannone, Lippi, and Reichlin (2009).

Some care has to be taken when n > T as in this case consistency of eigenvectors in general does not
hold. However, it can be proved that when the largest eigenvalues are ultra-spiked, in the sense that they
diverge as n→∞, as in this case, then the corresponding eigenvectors are still consistently estimated using
the eigenvectors of the sample covariance (Fan, Liao, and Mincheva, 2013). Therefore, PCA delivers always
consistent estimates of the loadings, thus the previous results still hold. Alternatively one can consider the
T × T covariance as in Bai and Ng (2002) but this requires more restrictions on the serial dependence of
the idiosyncratic components.

The estimated common component is defined as

χ
(nT )
it = b

(nT )
i f

(nT )
t =

√
np

(nT )′

i

P(nT )′x
(n)
t√

n
= p

(nT )′

i P(nT )′x
(n)
t , (38)

where p
(nT )′

i is a 1 × r row vector corresponding to the i-th row of P(nT ). It follows that the common
component is identified and estimated consistently, as n, T →∞:

|χ(nT )
it − χit| = Oq.m.

(
max

(
1√
n
,

1√
T

))
.

Convergence in probability follows straightforwardly.

FACTORS AS LINEAR PROJECTIONS. To conclude, notice that PCA estimators of loadings and factors can
be obtained as a solution of the problem

min
1

nT

n∑
i=1

T∑
t=1

(xit − b′ift)
2 = min

1

nT
‖x(n)

t −B(n)ft‖2F = min
1

nT
‖ξ(n)
t ‖2F , (39)

subject to one of the sets of identifying constraints 1 or 2 stated above. Indeed, given the true loadings B(n),
we obtain the factors estimator by linear projection onto the loadings (see also (37))

f
(n)∗
t =

(
B(n)′B(n)

n

)−1
B(n)′x

(n)
t

n
, (40)

while, given the true factors ft, we obtain the loadings estimator by linear projection onto the factors (recall
that E[ξ

(n)
t f ′t ] = 0 by assumption)

B(n)∗ =
(
E[x

(n)
t f ′t ]

)
(E[ftf

′
t ])
−1

=
(
E[χ

(n)
t f ′t ]

)
(E[ftf

′
t ])
−1
. (41)
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Now the minimisation in (39) means finding both loadings and factors such that the trace of the covariance
of the idiosyncratic component is minimum, i.e. the one of the common component is maximum, which
is solved by PCA, which implies that the optimal factors can be built by taking a weighted average of
x(n). We see from (40) that a factors estimator is a weighted average of the data, then under the set of
identification constraints 1, the optimal estimated weights are given by the normalised eigenvectors of the
sample covariance, i.e. we have to choose estimated weights B(nT ) such that B(nT ) =

√
nP(nT ) (see

above). If we replace this choice in (40) we get the factors estimator f
(nT )
t =

P(nT )′x
(n)
t√

n
. Now by replacing

in (41) expectations with sums (data is stationary and assuming is also ergodic), we obtain the estimated
common component as above:

χ
(nT )
it = b

(nT )′

i f
(nT )
t =

(
T∑
t=1

x
(n)
it f

(nT )′

t

)(
T∑
t=1

f
(nT )
t f

(nT )′

t

)−1

P(nT )′x
(n)
t√

n

= b
(nT )′

i

(
T∑
t=1

f
(nT )
t f

(nT )′

t

)(
T∑
t=1

f
(nT )
t f

(nT )′

t

)−1

P(nT )′x
(n)
t√

n

+

(
1

T

T∑
t=1

ξ
(nT )
it f

(nT )′

t

)(
1

T

T∑
t=1

f
(nT )
t f

(nT )′

t

)−1

P(nT )′x
(n)
t√

n

=
√
np

(nT )
i

P(nT )′x
(n)
t√

n
+Op

(
1√
T

)
which is coincident with the expression found before up to an estimation error, which however could be
removed by using the second expression in (41) which depends only on the common component. This is
similar to the approach adopted by Bai (2003).
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4 The generalised dynamic factor model - Time domain

For the reasons above it is then natural to turn to infinite dimensional panels of times series and to study their
aggregation not only cross-sectionally but, given the time series context, also serially. This approach will
lead to a more general result, which is the representation theorem showing that under the simple assumption
of stationarity every infinite dimensional panel of time series admits a dynamic factor representation.

DYNAMIC AGGREGATION. Since we are in a time series context we consider now aggregation across
series and time, therefore, we are interested in studying the dynamic aggregates

w
(n)
t =

n∑
i=1

∞∑
k=−∞

aikxit−k, (42)

such that
∑n
i=1

∑∞
k=−∞ a2

ik = 1.

Let us start from a static one-factor model with unit loadings

x
(n)
t = ft + ξ

(n)
t , (43)

and we assume E[ft ξis] = 0 for any i and s, t ∈ Z.

First, consider an exact factor structure with no serial dependence in ξit and ft, that is E[ftfs] = 0 and
E[ξitξis] = 0 for any s 6= t. Then, (42) becomes

w
(n)
t =

n∑
i=1

∞∑
k=−∞

aikft−k +

n∑
i=1

∞∑
k=−∞

aikξit−k, (44)

and we have

Var
(
w

(n)
t

)
=

∞∑
k=−∞

(
n∑
i=1

aik

)2

Var(ft) +

n∑
i=1

∞∑
k=−∞

a2
ikVar(ξit).

If, for simplicity we also assume aik = ak for any i, then due to normalisation we must have
∑∞
k=−∞ a2

k =
1/n, and

Var
(
w

(n)
t

)
= nVar(ft) +

1

n

n∑
i=1

Var(ξit).

Thus, also under dynamic aggregation, when n → ∞ we separate common and idiosyncratic component
and only the former gives a contribute to the total variance of the aggregate.

Now let us consider an approximate factor structure, as assumed in (a’), and we allow for autocorrelation
in ft and ξ(n)

t , provided they are both covariance stationary. Let us assume a dynamic aggregation as (44)
with aik = ak for any i, so that

∑∞
k=−∞ a2

k = 1/n. We have

Var
(
w

(n)
t

)
= n2

∞∑
k,h=−∞

akahCov(ft−k, ft−h) +

∞∑
k,h=−∞

akah

n∑
i,j=1

Cov(ξit−k, ξjt−k).

Because of stationarity we can write Cov(ft−k, ft−h) = γf (|k−h|) and Cov(ξit−k, ξjt−k) = γξ(ij, |k−h|)
and all these autocovariances are square summable but let us assume that they are also absolutely summable.

Under the chosen normalisation it is always possible to have
∑∞
k=−∞ ak = K/

√
n for some constant
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K.10 Then, setting K = 1 for simplicity, (45) becomes

Var
(
w

(n)
t

)
= nVar(ft) + n

∞∑
k,h=−∞
k 6=h

γf (|k − h|)

+
1

n

n∑
i=1

n∑
j=1

Cov(ξit, ξjt) +
1

n

n∑
i=1

n∑
j=1

∞∑
k,h=−∞
k 6=h

γξ(ij, |k − h|).

The first two terms diverge as n → ∞, the third is finite under assumption (a’) of approximate factor
structure while for the last it is reasonable to assume that is also bounded (the necessary assumption is
made in Section 5 when considering spectral densities). Thus, also in the most general case under dynamic
aggregation when n → ∞ we separate common and idiosyncratic component and only the former gives a
contribute to the total variance of the aggregate.

More precisely, if we define w(n)
tf =

∑n
i=1

∑∞
k=−∞ aikft−k we have shown that for the standardised

dynamic aggregate we have

ẇ
(n)
t :=

w
(n)
t√

Var(w
(n)
t )

=
w

(n)
tf√

Var(w
(n)
tf )

+ oq.m.(1).

REPRESENTATION THEOREMS. We now change approach and show that actually a dynamic factor struc-
ture always exists under very general conditions. Hereafter, we consider a double-indexed stochastic process
x = {xit|i ∈ N, t ∈ Z}, of which x(n) is a subprocess of dimension n and x

(n)
t is a realization. We make

two assumptions.

ASSUMPTION (A1). The process x is second-order stationary, i.e. for any i, j ∈ N, t ∈ Z, and k ∈ Z,
Cov(xit, xjt−k) exist, are finite and do not depend on t.

ASSUMPTION (A2). For any i ∈ N and t ∈ Z, E[xit] = 0 and Var(xit) > 0.

We denote the Hilbert space spanned by x as Hx := L2(Ω,F , P ) for some probability space (Ω,F , P ).
ThenHx is equipped with the covariance scalar product

(x,y) =

∫
Ω

x y′ dFx,y.

We also denote the space Hx
t ⊂ Hx as the space spanned by {xis|i ∈ N, s ≤ t}. Notice that Hx

contains any convergent (in quadratic mean) linear combination of xit thus it contains scalar processes
w = {wt|t ∈ Z} such that

wt =

∞∑
i=1

∞∑
s=−∞

aisxit−s, t ∈ Z.

We have the definition of commonness and idiosyncracy.

DEFINITION. A random variable χ ∈ Hx satisfying Assumptions A1 and A2 is common if

w
(n)
t√

Var(w
(n)
t )

=
χt√

Var(ζt)
+ oq.m.(1),

10If we choose a2k = 1/(αn(|k|+1)) and we define

α =

∞∑
k=−∞

1

n|k|
=

(
2

∞∑
k=0

1

nk
− 1

)
=

(
2n

n− 1
− 1

)
= n

(
2n− n+ 1

n− 1

)
=

(n+ 1)

(n− 1)
,

then
∑∞
k=−∞ a2k = 1/n.
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for some dynamic aggregation scheme, as for example the one defined in (44), and such that limn→∞ Var(w
(n)
t ) =

∞. If we then define the common Hilbert spaceHx
com as the space spanned by all common variables inHx

then its orthogonal complement defined asHx
idio ≡ Hx⊥

com is the idiosyncratic space.

Given these definitions we have:

THEOREM 1 (Hallin and Lippi (2013)). Under Assumptions A1 and A2 there exist two uniquely defined
mutually orthogonal processes χ = {χit} ∈ Hx

com and ξ = {ξit} ∈ Hx
idio such that

xit = χit + ξit, i ∈ N, t ∈ Z.

and we call this representation Generalized Dynamic Factor Model (GDFM) for x.

The reason is that since the space Hx can always be decomposed into Hx
com and Hx

idio (which are orthog-
onal) then χit and ξit are uniquely obtained by projecting xit onto these subspaces. This is a very general
statement and it is of difficult application. We therefore add another assumption:

ASSUMPTION (A3). Assume that there exists a q-dimensional process y = {yjt|j = 1, , . . . , q, t ∈ Z} ∈
Hx with innovation process u having full-rank q and such thatHu

t = Hy
t = Hχt for any t ∈ Z.

We say that χ has dynamic rank q. We then have:

THEOREM 2 (Hallin and Lippi (2013)). Under Assumptions A1, A2, and A3, there exist

1. a q-dimensional process u = {ujt|j = 1, , . . . , q, t ∈ Z} of mutually orthogonal white noises,
i.e. such that Cov(ujt, uks) = 0 for any j, k = 1, . . . , q, t, s ∈ Z and j 6= k and t 6= s;

2. a collection of one-sided square-summable filters bij(L), i ∈ N, j = 1, . . . , q;

such thatHu
t = Hχt and

xit = χit + ξit, i ∈ N, t ∈ Z (45)

χit =

q∑
j=1

bij(L)ujt. (46)

In matrix notation we can write

x
(n)
t = B(n)(L)ut + ξ

(n)
t , t ∈ Z. (47)
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5 The generalised dynamic factor model - Frequency domain

We have seen in example (43) that the common component can be recovered when considering dynamic
linear combinations of x as n → ∞. Intuitively, as in traditional PCA, among all possible dynamic aggre-
gations we are interested in those having maximum variance. With respect to the i.i.d. case, we need to take
into consideration the autocorrelation present in x thus we have to generalize PCA to dynamic PCA. This
will give us other representation results and a tool for estimation of (47). First, we quickly review the basics
of spectral analysis.

SPECTRAL DENSITY. We make an additional assumption.

ASSUMPTION (A4). For all n ∈ N, the spectral measure of x(n) is absolutely continuous with respect to
the Lebesgue measure on [−π, π], that is, x(n) has a spectral density matrix Σ

(n)
x (θ) with entries σij(θ),

for i, j = 1, . . . , n.

Notice that, since the spectral density matrices for different values of n are nested, then their entries do not
depend on n. The spectral density matrix of x is defined as

Σ(n)
x (θ) =

1

2π

∞∑
k=−∞

e−ikθ Γ(n)
x (k), θ ∈ [−π, π], (48)

where Γ
(n)
x (k) = E[xtx

′
t−k]. It is an Hermitian matrix, i.e. Σ

(n)
x (θ) = Σ

(n)†
x (θ), where we indicate

Σ
(n)†
x (θ) = Σ̄

(n)′

x (θ), i.e. the transposed and complex conjugate matrix. The sum in (48) exists because

of Assumption A4, which means that for any i, j,
∑∞
k=−∞

(
Γ

(n)
x (k)

)2

ij
<∞, a reasonable assumption for

second order stationary processes.

By using the inverse Fourier transform of (48) we have

Γ(n)
x (k) =

∫ π

−π
Σ(n)

x (θ)eikθdθ, k ∈ Z.

Any mapping θ 7→ M(θ) defined over [−π, π], which is measurable and has square-integrable elements,
i.e. M ∈ L2([−π, π]), admits a Fourier expansion

M(θ) =
1

2π

∞∑
k=−∞

M(k)e−ikθ, (49)

where the series converges in quadratic-mean and the coefficients are defined as

M(k) =

∫ π

−π
M(θ)eikθdθ. (50)

This relation defines a filter with the same coefficients

M(L) =
1

2π

∞∑
k=−∞

M(k)Lk, (51)

i.e. such that M(e−iθ) = M(θ). Therefore, if x(n) has spectral density Σ
(n)
x (θ) then y(n) = {M(L)x

(n)
t }

has spectral density

Σ(n)
y (θ) = M(θ)Σ(n)

x (θ)M†(θ) = M(e−iθ)Σ(n)
x (θ)M′(eiθ). (52)

Consider the example
yt = vt + Mvt−1, vt ∼ w.n.(0,Γv(0)).
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If we want to compute the spectral density of y we can proceed in different ways.

1. We can compute

Γy(0) = Γv(0) + MΓv(0)M′, Γy(1) = MΓv(0), and Γy(−1) = Γ′y(1)

and the spectral density of yt is

Σy(θ) =
1

2π

(
Γv(0) + MΓv(0)M′ + MΓv(0)e−iθ + Γv(0)M′eiθ

)
.

By inverting the last relation and by noticing that
∫ π
−π e

ikθdθ = 0 for any k ∈ Z \ {0} we can go
back to Γy(0) and Γy(1).

2. Alternatively, if we define the filter M(L) = I + ML then yt = M(L)vt and, by comparing with
(51), the Fourier coefficients are M(0) = 2πI and M(1) = 2πM. Therefore, from (49)

M(θ) =
1

2π

(
M(0) + M(1)e−iθ

)
=
(
I + Me−iθ

)
,

and from (52) and since Σv(θ) = 1
2πΓv(0)

Σy(θ) = M(θ)Σv(θ)M†(θ) =
1

2π

(
I + Me−iθ

)
Γv(0)

(
I + M′eiθ

)
,

which gives the same formula as before.

3. In general, when things are more complex we can use directly the filter M(L) = I + ML and from
(52) and we have

Σy(θ) = M(e−iθ)Σv(θ)M′(eiθ) =
1

2π

(
I + Me−iθ

)
Γv(0)

(
I + M′eiθ

)
.

DYNAMIC PRINCIPAL COMPONENTS. We now show how to recover the common component in the
generalised dynamic factor models defined in Theorem 2. The spectral density matrix can be factorised as

Σ(n)
x (θ) = P̄(n)

x (θ)D(n)
x (θ)P(n)′

x (θ),

where P
(n)
x (θ) is an n × n unitary matrix of complex normalized eigenvectors, i.e. P

(n)†
x (θ)P

(n)
x (θ) =

P
(n)
x (θ)P

(n)†
x (θ) = I and P

(n)
x (θ) = (p

(n)
1x (θ) . . .p

(n)
nx (θ)), and D

(n)
x = diag(λ

(n)
1x (θ) ≥ λ

(n)
2x (θ) ≥ . . . ≥

λ
(n)
nx (θ) > 0) contains the ordered eigenvalues. Since the spectral density is Hermitian, its eigenvalues are

real.

Then,

Σ(n)
x (θ)p̄

(n)
jx (θ) = λ

(n)
jx (θ)p̄

(n)
jx (θ) and Σ(n)

x (θ) =

n∑
j=1

λ
(n)
jx (θ)p̄

(n)
jx (θ)p

(n)′

jx (θ). (53)

As in traditional PCA, for any θ ∈ [−π, π] eigenvalues and eigenvectors are the solutions of the problem

p
(n)
1x (θ) = arg max

u(θ)
u†(θ)Σ(n)

x (θ)u(θ) s.t. u†(θ)u(θ) = 1,

p
(n)
jx (θ) = arg max

u(θ)
u†(θ)Σ(n)

x (θ)u(θ) s.t. u†(θ)u(θ) = 1 and u†(θ)p
(n)
1x (θ) = . . . = u†(θ)p

(n)
j−1x(θ) = 0,

the eigenvalues being the value of the functions at their maximum.

The mapping θ 7→ p
(n)
jx (θ) is square-integrable, therefore it admits a Fourier expansion

p
(n)
jx (θ) =

1

2π

∞∑
k=−∞

[∫ π

−π
p

(n)
jx (θ)eikθdθ

]
e−ikθ
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and we have the associated filters

p(n)
jx

(L) =
1

2π

∞∑
k=−∞

[∫ π

−π
p

(n)
jx (θ)eikθdθ

]
Lk.

Therefore, given the definition of dynamic eigenvectors as those directions that maximize the spectral den-
sity, the aggregated univariate process w(n)

j = {w(n)
jt = p(n)′

jx
(L)x

(n)
t } is called j-th dynamic principal

component is a dynamic linear combination of x(n) with maximum spectral density given by (see (53))

p(n)′

jx
(e−iθ)Σ(n)

x (θ)p(n)
jx

(eiθ) = p
(n)′

jx (θ)Σ(n)
x (θ)p̄

(n)
jx (θ) = λ

(n)
jx (θ).

Moreover, the filters are n×1 column vectors such that p(n)
jx

(L) = (p
j1x

(L) . . . p
jnx

(L))′ with components
defined as

p
jix

(L) =

∞∑
k=−∞

p
jikx

Lk, i = 1, . . . , n.

Now define a generic filter a(n)(L) = (a1(L) . . . an(L))′ such that

ai(L) =

∞∑
k=−∞

aikL
k, i = 1, . . . , n.

It is possible to prove that

p(n)
1x

(L) = argmax
a(n)(L)

Var

(
n∑
i=1

∞∑
k=−∞

aikxit−k

)
, s.t.

n∑
i=1

∞∑
k=−∞

a2
ik = 1

i.e. the first dynamic eigenvector defines a filter which has elements that deliver the dynamic linear combi-
nation of xit with maximum variance. Such aggregated process, which we defined asw(n)

1t = p(n)′

1x
(L)x

(n)
t ,

has variance

Var
(
w

(n)
1t

)
= Var

(
n∑
i=1

∞∑
k=−∞

p
1ikx

xit−k

)
=

∫ π

−π
λ

(n)
1x (θ)dθ.

Similarly the j-th dynamic principal component has maximum variance conditional on being orthogonal to
the first j − 1 dynamic principal components. If we consider the vector process w(n) = {(w(n)

1t . . . w
(n)
nt )′}

it can be seen that has a diagonal spectral density matrix having as elements the dynamic eigenvalues.
Therefore, w(n) has elements which are orthogonal at every lead and lag thus it constitutes an orthogonal
basis of Hx(n)

. Such basis defines those dynamic linear combinations of xit with maximum variance and
are called dynamic principal components.

As in the static case, we can use dynamic principal components for dimension reduction. We know that
P

(n)
x (θ)P

(n)†
x (θ) = P̄

(n)
x (θ)P

(n)′

x (θ) = In, therefore

In = p̄
(n)
1x (θ)p

(n)′

1x (θ) + . . .+ p̄(n)
nx (θ)p(n)′

nx (θ),

and for the corresponding filters we have

In = p̄(n)
1x

(L)p(n)′

1x
(L) + . . .+ p̄(n)

nx
(L)p(n)′

nx
(L).

So that,

xit = p̄(n)
1ix

(L)p(n)′

1x
(L)x

(n)
t + . . .+ p̄(n)

nix
(L)p(n)′

nx
(L)x

(n)
t =

= p̄(n)
1ix

(L)w
(n)
1t + . . .+ p̄(n)

nix
(L)w

(n)
nt , i = 1, . . . , n.

Since {(w(n)
1t . . . w

(n)
nt )′} is an orthogonal basis of Hx(n)

, then we have decomposed xit according to this
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basis. If we project xit onto the first q dynamic principal components, we recover the common component
defined in Theorem 2 (compare with (38) for static PCA)

χ
(n)
it = p̄(n)

1ix
(L)p(n)′

1x
(L)x

(n)
t + . . .+ p̄(n)

qix
(L)p(n)′

qx
(L)x

(n)
t i = 1, . . . , n. (54)

This representation in terms of a q-dimensional process is optimal in the sense that, for any other q-tuple in
Hx(n)

, the projection χ̃(n)
it has larger residual variance:

E[(xit − χ(n)
it )2] ≤ E[(xit − χ̃(n)

it )2].

It is then possible to show that under Assumptions A1, A2, and A4 (Forni, Hallin, Lippi, and Reichlin,
2000)

|χ(n)
it − χit| = op(1), as n→∞, i ∈ N, t ∈ Z.

Therefore, projecting the data on the first q dynamic principal components allows to recover consistently
the common component of each series.

This is again the blessing of dimensionality: the factor model which is unidentified under finite n gets
asymptotically identified as n → ∞, and boils down, in the limit to a dynamic PCA dimension reduction
technique.

REPRESENTATION THEOREMS. By considering the analogy between static and dynamic PCA as a way
to recover the common component in an approximate static or dynamic factor model, it is then clear that
there exists a relation between idiosyncratic behaviour and dynamic eigenvalues. Indeed, we have seen that
an idiosyncratic process is such that it has a negligible contribution to the total variance of an aggregated
process when n → ∞. If among all possible dynamic aggregations we consider those having maximum
variance, then we know that their variances are given by the integrals of the dynamic eigenvalues, and we
have the following result:

THEOREM 3 (Hallin and Lippi (2013)). Under Assumptions A1, A2, and A4, a vector process ξ ∈ Hx is
purely idiosyncratic if and only if, for any n ∈ N, its largest dynamic eigenvalue λ(n)

1ξ (θ) is bounded a.e. in
[−π, π].

Since by definition a purely idiosyncratic process is killed in the limit n→∞ by dynamic aggregation (see
before the definition of purely common and purely idiosyncratic processes), then its dynamic eigenvalues
which are the largest variance of all possible dynamic aggregations must be bounded. Notice that, since the
spectral density matrices for different values of n are nested, then the eigenvalues increase monotonically
with n and since they are non-negative, then either they are bounded or diverge to infinity.

The representation Theorem 2, jointly with Assumption A3 of finite dynamic dimension q for the com-
mon component has other implications for the dynamic eigenvalues.

THEOREM 4 (Hallin and Lippi (2013)). Under Assumptions A1, A2, A3, and A4,

(i) the dynamic eigenvalues of χ(n) are such that

lim
n→∞

λ(n)
qχ (θ) =∞,

while λ(n)
q+1χ(θ) = 0, a.e. in [−π, π] as n→∞;

(ii) the dynamic eigenvalues of x(n) are such that

lim
n→∞

λ(n)
qx (θ) =∞,

while λ(n)
q+1x(θ) is bounded, a.e. in [−π, π] as n→∞.

Theorem 4 is equivalent to the following original representation theorem used in all applied works on
dynamic factor models.
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THEOREM 5 (Forni and Lippi (2001)). Under Assumptions A1, A2, and A4, the following statements are
equivalent

(a) the components of the panel admit a unique decomposition

xit = χit + ξit, i ∈ N, t ∈ Z,

such that

(i) E[χitξjs] = 0 for any i, j ∈ N and any t, s ∈ Z;

(ii) ξ = {ξit|i ∈ N, t ∈ Z} is purely idiosyncratic, i.e. for any n ∈ N its largest dynamic
eigenvalue, λ(n)

1ξ (θ), is bounded a.e. in [−π, π];

(iii) there exists a q-dimensional process u = {ujt|j = 1, , . . . , q, t ∈ Z} of mutually orthogonal
white noises, and a collection of square-summable filters bij(L), i ∈ N, j = 1, . . . , q such that

χit =

q∑
j=1

bij(L)ujt, i ∈ N, t ∈ Z;

Moreover, the dynamic eigenvalues of χ(n) are such that limn→∞ λ
(n)
qχ (θ) =∞;

(b) the dynamic eigenvalues of x(n) are such that limn→∞ λ
(n)
qx (θ) = ∞, while λ(n)

q+1x(θ) is bounded,
a.e. in [−π, π] as n→∞.

Here we do not need Assumption A3 as the q-dynamic factor representation is given by the behavior of the
dynamic eigenvalues. But the part (b) is equivalent to part (ii) of Theorem 4 which is a consequence of
Assumption A3. Therefore, either we make Assumptions A1, A2, A3 and we have Theorem 2 or we make
Assumptions A1, A2, A4 and we have Theorem 5. Let us compare the two theorems

• Theorem 2:

– advantages: filters are one-sided;

– disadvantages: Assumption A3 of q-dimensional innovations of the common component is
strong;

• Theorem 5:

– advantages: Assumption A4 of existence of spectral density is quite reasonable and the be-
haviour of idiosyncratic eigenvalues is implied by Theorem 3, it also defines q through be-
haviour of common eigenvalues;

– disadvantages: filters are two-sided.

ESTIMATION. Let us first assume that the number of factors q is given. When we observe only T realisa-
tions of x(n) the spectral density has to be estimated. We use a suffix T to indicate estimated quantities. We
start with the sample autocovariances

Γ(nT )
x (k) =

1

T − k

T∑
t=1

x
(n)
t x

(n)′

t−k , k = 0 . . .MT , Γ(nT )
x (−k) = Γ(nT )′

x (k). (55)

One possible estimator of the spectral density is then

Σ(nT )
x (θ) =

MT∑
k=−MT

Γ(nT )
x (k)ωke

−ikθ, (56)

where ωk are some weights, e.g. for the Bartlett window are such that ωk = 1− |k|
MT +1 . Moreover, we must

have, as T →∞, that MT →∞ but MT

T → 0. It can then be shown that the entries of the spectral density
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can be estimated consistently. Once we have a consistent estimator of the spectral density matrix, then the
dynamic eigenvectors are also consistently estimated by the eigenvectors of Σ

(nT )
x (θ) which we denote as

p
(nT )
jx (θ). Now define the estimated common component as:

χ
(nT )
it = p̄(nT )

1ix
(L)p(nT )′

1x
(L)x

(n)
t + . . .+ p̄(nT )

qix
(L)p(nT )′

qx
(L)x

(n)
t . (57)

In practice we have to define a grid of values of θ say we choose 2MT +1 equally spaced values. The filters
in (57) are then obtained as

p(nT )
jix

(L) =

MT∑
k=−MT

p(nT )
jikx

Lk, (58)

p(nT )
jikx

=
1

2MT + 1

MT∑
h=−MT

p
(nT )
jix (θh)eikθh , (59)

where p(nT )
jikx (θh) is the i-th row of the dynamic eigenvector p

(nT )
jx (θh). Summarizing estimation is based

on the following steps

1. compute the lagged covariances Γ
(nT )
x (k) as in (55);

2. compute the spectral density Σ
(nT )
x (θ) as in (56);

3. compute the first q dynamic eigenvectors of the spectral density, p
(nT )
jx (θ), j = 1, . . . , q;

4. compute the coefficients of the filters p(nT )
jikx as in (59);

5. compute the filters p(nT )
jix

(L) as in (58);

6. compute the common component χ(nT )
it as in (57).

We have the following consistency result (Forni, Hallin, Lippi, and Reichlin, 2000). Under Assumptions
A1-A4, as n, T →∞

|χ(nT )
it − χit| = oP (1), i = 1, . . . , n.

The rate of convergence depends on n, T and also on the chosen estimator of the spectral density, so for
our choice it will also depend on MT . Some details on rates are given in Forni, Hallin, Lippi, and Reichlin
(2004). Therefore, as for the PCA estimator of the static model, we have consistency, i.e. convergence in
probability, provided that both n and T are large. While the role of T →∞ is necessary to have consistent
estimates of the spectral densities, the role for n → ∞ is needed to disentangle and identify the common
and idiosyncratic components (see Theorem 6).

LIMITATIONS OF DYNAMIC PRINCIPAL COMPONENTS. Although dynamic PCA is the way to proceed
consistently with the representation results, it presents two main practical problems: (i) the common com-
ponent is in general estimated by means of two-sided filters, and (ii) we cannot recover the space spanned
by the dynamic factors.

First, consider the following “toy” example: x(2i+1)t = ut−1 + ξ(2i+1)t,

x(2i)t = ut + ξ(2i)t,
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and assume Var(ξit) = σ2
ξ <∞ and E[ξitξjt] = 0, for any i, j = 1, . . . , n with i 6= j, and n even. Then,

Σ(n)
x (θ) =

1

2π


e−iθ

1
...

e−iθ

1


(
eiθ 1 . . . eiθ 1

)
+
σ2
ξ

2π
I =

=
1

2π


1 e−iθ . . . 1 e−iθ

eiθ 1 . . . eiθ 1
...

...
. . .

...
...

1 e−iθ . . . 1 e−iθ

eiθ 1 . . . eiθ 1

+
σ2
ξ

2π
I,

which shows that the common component has spectral density of rank 1 since we have just one dynamic
factor.

If we define p
(n)
1x (θ) = 1√

n

(
e−iθ 1 . . . e−iθ 1

)′
, this is such that p

(n)†
1x (θ)p

(n)
1x (θ) = 1 and it is an eigenvec-

tor with dynamic eigenvalue

λ
(n)
1x (θ) = p

(n)†
1x (θ)Σ(n)

x (θ)p
(n)
1x (θ) =

1

2π
(n+ σ2

ξ ).

The corresponding filter is such that p(n)
1x

(e−iθ) = p
(n)
1x (θ) therefore

p(n)
1x

(L) =
1√
n

(L 1 . . . L 1)′.

Since q = 1, the first dynamic principal component is enough to estimate the common component. By
projecting the data on the first dynamic principal component we have (see (54)):

χ
(n)
(2i+1)t = p̄

(n)
1(2i+1)x(L)p(n)′

1x
(L)x

(n)
t

=
L−1

n
(x1t−1 + x2t + . . .+ xn−1t−1 + xnt)

=
1

n
(x1t + x2t+1 + . . .+ xn−1t + xnt+1).

Analogously,

χ
(n)
(2i)t = p̄

(n)
1(2i)x(L)p(n)′

1x
(L)x

(n)
t =

1

n
(x1t−1 + x2t + . . .+ xn−1t−1 + xnt).

If we compute the variance of the previous expressions, we have for any i

Var
(
χ

(n)
it

)
= Var(ut) +

1

n
σ2
ξ → Var(ut) = 1, as n→∞.

which proves Theorem 6 for this simple example.

The problem of the previous procedure is the presence of two-sided (bilateral) filters, that is we need to
use xt+1 to estimate χt. This makes impossible the use of the data up to time T . We need a way to estimate
the model using only one-sided filters and we know that such representation exists from Theorem 2.

Second, notice that contrary to the static case we cannot recover the factor space by means of dynamic
PCA. Indeed by analogy with the static case one would be tempted to write the estimated dynamic loadings
and factors as as

B(nT )(L) =
√
nP(nT )

x (L), u
(nT )
t =

P(nT )′

x (L)x
(n)
t

n
(60)
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where P(nT )
x (L) = (p(nT )

1x
(L) . . .p(nT )

qx
(L))′. However, while the true common shocks ut are a white

noise process by definition, in general u
(nT )
t will be autocorrelated. Indeed in such a setting factors and

loadings are identified only up to an invertible linear filter, thus also autocorrelation of the estimated factors
can be affected by identification. Thus, the above definitions cannot give consistent estimators of the dy-
namic loadings and factors separately. Only the common component is recovered consistent by means of
dynamic PCA.
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6 The approximate dynamic factor model in state-space form

The estimator based on dynamic principal components cannot provide an estimator of the common dynamic
factors and moreover it is likely to deliver a common component built using two-sided filters. Indeed, this
estimation technique is based on Theorem 5 which proves the existence of a representation with two-sided
filters. However, a common component estimated in this way is not useful for empirical purposes. In
particular, while for forecasting it is only important to get an estimate using one-sided filters, for impulse-
response analysis we also need an estimator of the common shocks and for portfolio optimisation it is useful
to estimate consistently the conditional second order structure of the factors themselves.

Two ways have been proposed to solve this problem:

(a) by Forni, Giannone, Lippi, and Reichlin (2009), which is based on a state-space representation of the
dynamic factor model, which in turn requires some additional assumption on the model and for this
reason is sometimes called restricted approximated dynamic factor model;

(b) by Forni and Lippi (2011) and Forni, Hallin, Lippi, and Zaffaroni (2015a,b), which do not require
any restrictive assumption and is called unrestricted generalised dynamic factor model.

Here we focus on the first approach which is strictly related to the works by Stock and Watson (2005)
and Bai and Ng (2006, 2007), which are in turn the theoretical basis of those models usually called Factor
Augmented VAR (FAVAR) and firstly proposed by Bernanke, Boivin, and Eliasz (2005).

REPRESENTATION RESULTS. We here summarise the representation results of Theorems 2-5 presented
in Sections 4 and 5, which were proved by Forni, Hallin, Lippi, and Reichlin (2000); Forni and Lippi
(2001); Hallin and Lippi (2013). Under Assumptions A1-A3 we have the approximate dynamic factor
representation of Theorem 2

xit = χit + ξit = b
′

i(L)ut + ξit, i ∈ N, t ∈ Z, (61)

where

0. E[χitξjs] = 0 for any i, j ∈ N and any t, s ∈ Z;

1. u = {ut = (u1t . . . uqt)
′|t ∈ Z} is a q-dimensional process of orthonormal white noises and q does

not depend on n;

2. b
′

i(L) is a 1× q one-sided infinite vector polynomial with square-summable coefficients;

3. χ(n) = {χ(n)
t = (χ1t . . . χnt)

′|t ∈ Z} is common, that is, if A4 holds, limn→∞ λ
(n)
qχ (θ) = ∞ (see

also Theorem 4);

4. ξ(n) = {ξ(n)
t = (ξ1t . . . ξnt)

′|t ∈ Z} is idiosyncratic, that is, if A4 holds, its largest dynamic
eigenvalue λ(n)

1ξ (θ) is bounded a.e. in [−π, π] and for any n ∈ N (see also Theorem 3).

Moreover, under Assumption A4 we know that (61) is equivalent to the following conditions on dynamic
eigenvalues (see Theorem 5)

5. limn→∞ λ
(n)
qx (θ) =∞;

6. λ(n)
q+1x(θ) is bounded a.e. in [−π, π] and for any n ∈ N.

EXAMPLE OF EQUIVALENCE OF DYNAMIC AND STATIC REPRESENTATIONS. In order to have an
equivalent factor structure which we can then estimate by means of PCA, we would like to be able to write
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(61) as a static approximate factor model. Consider the example by Stock and Watson (2005) of a dynamic
factor model where q factors are loaded with (p− 1) lags

xit =

p−1∑
k=0

λ∗
′

ikft−k + ξit = λ∗
′

i (L)ft + ξit, i ∈ N, t ∈ Z, (62)

and we allow the factors to follow a VAR(p) model

ft =

p∑
k=1

Ckft−k + ηt = C(L)ft−1 + ηt, ηt ∼ w.n.(0,Γη), t ∈ Z. (63)

This is now a model since more assumptions on the data generating process are made, still we have that
(62)-(63) can be written as (61) just by setting

ut = R−1ηt, b
′

i(L) = λ∗
′

i (L)(I−C(L))−1R,

where R is any q × q invertible matrix that makes ut orthonormal (for example we can take R = Γ
1/2
η ).

Now by defining

λ
′

i = (λ∗
′

i0 . . .λ
∗′
ip−1), i ∈ N,

Ft = (ft . . . ft−p+1)′, t ∈ Z,

where λ
′

i is 1× qp and Ft is qp× 1, we can write (62) as

xit = λ
′

iFt + ξit, i ∈ N, t ∈ Z, (64)

which is a static factor model with r = qp factors. Moreover, (63) can now be written as a singular VAR(1)
model for the static factors:

Ft = AFt−1 + Gηt, ηt ∼ w.n.(0,Γη) t ∈ Z, (65)

where A is r × r and G is r × q, and such that

A =


C1 C2 . . . Cp−1 Cp

Iq 0 . . . 0 0
0 Iq . . . 0 0
...

...
. . .

...
...

0 0 . . . Iq 0

 , G =


Iq
0
0
...
0

 . (66)

Therefore, also (64)-(65) is equivalent to (61) just by setting

ut = R−1ηt, b
′

i(L) = λ
′

i(I−AL)−1GR,

where, as before, R is any q × q invertible matrix that makes ut orthonormal (for example we can take
R = Γ

1/2
η ).

RESTRICTIONS IMPLIED BY THE STATE-SPACE MODEL. We say that a static factor model with a sin-
gular VAR representation for the factors as in (64)-(65) is written in state-space. It has to be noticed though
that the example above and the derived equivalent representations hold if and only if we impose additional
assumptions. We now look for the assumptions needed in order to allow us to always write (61) in state-
space form.

First, let us consider the eigenvalues of the covariance matrices. It is clear that we must have a common
component with covariance of rank r. In particular we assume

ASSUMPTION (A5). The eigenvalues of the covariance matrix Γ
(n)
χ are such that there exist finite constants
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cj , cj > 0 , j = 1, . . . , r, such that cj > cj+1, j = 1, . . . , r − 1, and

0 < cj < lim
n→∞

inf
1

n
λ

(n)
jχ ≤ lim

n→∞
sup

1

n
λ

(n)
jχ ≤ cj , j = 1, . . . r.

We known that Assumption A5, is equivalent to conditions (b’) and (b”) (we assume divergence linear
in n) given in Section 3 when considering the static model. So equivalently we can assume (see also the
discussion at the end of Section 2):

ASSUMPTION (A5’). There exists a full-rank r × r matrix H such that Λ′Λ
n → H, as n → ∞, the

covariance matrix ΓF is positive definite.

Moreover, condition 4 above on the dynamic eigenvalues of the idiosyncratic component implies

7. λ(n)
1ξ is bounded for any n ∈ N.

That is, also the eigenvalues of the idiosyncratic covariance matrix, Γ
(n)
ξ , are bounded for any n. Therefore,

condition (a’) is also satisfied. We know that under (a’) and (b’), PCA allows us to recover consistently the
space spanned by the factors which in this case are the elements of the r-dimensional vector F = {Fjt|j =
1, . . . , r, t ∈ Z}. Moreover, we know that under those conditions the eigenvalues of the covariance of the
data satisfy:

8. limn→∞ λ
(n)
rx =∞;

9. λ(n)
r+1x is bounded for any n ∈ N.

Since a VAR for the factors implies an ARMA for the common component we must require that:

ASSUMPTION (A6). The process χ(n) has rational spectral density.

Finally, in order for the static model to be equivalent to the dynamic one we must require the following
condition.

ASSUMPTION (A7). Denoting by Xt the space spanned by χit, i ∈ N, t ∈ Z, we assume that, for any t,
dimXt = r <∞, with q < r < n.

Notice that while Xt = span{χit, i ∈ N} contains only contemporaneous linear combinations of χit, the
Hilbert space Hχt = span{χit−k, i ∈ N, k ≥ 0}, considered in Assumption A3, contains also dynamic
linear combinations using observations up to time t. In particular, Assumption A7 implies that p < ∞
in the previous example and therefore rules out AR loadings of the common factors.11 In Assumption A7
we assume that the static rank of χ is r, which is the rank of its covariance, while in Assumption A3 we
assumed that the dynamic rank of χ is q, which is the rank of its spectral density.

We have the following result that states the existence of the state-space representation of the approximate
dynamic factor model.

THEOREM 6 (Forni, Giannone, Lippi, and Reichlin (2009)). Under Assumptions A1-A7 (with A5 or A5’),
(61) can always be written as

xit = χit + ξit = λ
′

iFt + ξit, i ∈ N, t ∈ Z (67)
Ft = N(L)ut. (68)

such that conditions 0-9 hold, λ
′

i is 1× r, Ft is r× 1, N(L) is a r× q one-sided infinite matrix polynomial
with square-summable coefficients, and, in general, q < r. Moreover,Hχt = Hu

t .
11For example, under A7 we cannot have

χit =
1

1− αiL
ut,

with |αi| < 1, which would require r = ∞ to be written in state-space form. This case is considered by Forni and Lippi (2011);
Forni, Hallin, Lippi, and Zaffaroni (2015a,b).
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As in the example above, by combining (67)-(68), we get an expression equivalent to (61)

xit = λ
′

iN(L)ut + ξit, i ∈ N, t ∈ Z. (69)

We use the following terminology:

F are called static factors: they are loaded only contemporaneously, however they are dynamic in the
sense that their autocorrelation is not zero;

u are called common shocks: they are loaded dynamically, i.e. with leads and lags, however they are
static in the sense that their autocorrelation zero, being white noises.

IDENTIFICATION. Notice that in Theorem 6 no autoregressive representation is assumed for the factors.
The factors by assumption follow a singular MA process and in general its inversion might lead to an
infinite VAR or an ARMA. However, Anderson and Deistler (2008) show that, under Assumption A6 of
rational spectral density, (68) admits a left-inverse of finite order such that12

G(L)Ft = N(0)ut. (70)

The last relation is still not operative since nothing is said about the VAR order (we just know it is finite)
and N(0) cannot be identified. However, by recalling the example above, it is clear that without loss of
generality a VAR(1) is sufficient, and hereafter we replace (68) with the following result.

COROLLARY 1. Under the same assumptions of Theorem 6, (68) can be written as

Ft = AFt−1 + Gηt, ηt ∼ w.n.(0,Γη), (71)

such that det(Ir −Az) 6= 0 for |z| ≤ 1, G is r × q, ηt ∼ w.n.(0,Γη) and Gηt = N(0)ut. Therefore,
there exists a q × q invertible matrix R, such that ut = R−1ηt, which implies GR = N(0).

By combining (67) and (71), we get an expression equivalent to (61)

xit = λ
′

i(I−AL)−1GRut + ξit, i ∈ N, t ∈ Z.

The choice of R is not unique and is necessary only if we are interested in identifying the shocks (as for
example in impulse response analysis). In particular, estimation of (71) might be needed only if we want to
compute recursive forecasts or impulse responses, while if we are interested in just recovering the common
component we can just focus on (67). Moreover, for forecasting we usually do not need to estimate the
matrix G as it does not enter the h-step-ahead forecast of the VAR.

EXAMPLE OF EQUIVALENCE OF DYNAMIC AND STATIC PCA. Let us consider again example (60) where
we have q = 1 and we have seen that the common component can be recovered by means of dynamic
PCA. We now show that a static approach with r = 2 static factors can allow us to recover the common
component exactly as in the dynamic PCA case but without requiring the use of two-sided filters. The model
is equivalent to a model with two factors ut and ut−1 loaded statically, and we can write

Γ(n)
x =


0 1
1 0
...

...
0 1
1 0

E

[(
ut
ut−1

)
(ut ut−1)

]
︸ ︷︷ ︸

I

(
0 1 . . . 0 1
1 0 . . . 1 0

)
+ σ2

ξI =

=


1 0 . . . 1 0
0 1 . . . 0 1
...

...
. . .

...
...

1 0 . . . 1 0
0 1 . . . 0 1

+ σ2
ξI,

12This result is a consequence of Theorem 7 in Section 9.
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which has rank 2 since r = 2. We then need the first two eigenvectors and corresponding eigenvalues which
are

p
(n)
1x =

1√
n/2

(0 1 0 . . . 0 1)′, λ
(n)
1x =

n

2
+ σ2

ξ ,

p
(n)
2x =

1√
n/2

(1 0 1 . . . 1 0)′, λ
(n)
2x =

n

2
+ σ2

ξ .

As explained in Section 3, the common component of series i is obtained by taking weights as the eigen-
vectors (see (38)):

χ(2i+1)t =
(
p

(n)
1(2i+1)xp

(n)′

1x + p
(n)′

2(2i+1)xp
(n)
2x

)
x

(n)
t =

1

n/2
(x1t + x3t + . . .+ xn−3t + xn−1t)

= ut−1 +
1

n/2
(ξ1t + ξ3t + . . .+ ξn−3t + ξn−1t).

Analogously,

χ(2i)t =
(
p

(n)
1(2i)xp

(n)′

1x + p
(n)′

2(2i)xp
(n)
2x

)
x

(n)
t =

1

n/2
(x2t + x4t + . . .+ xn−2t + xnt)

= ut +
1

n/2
(ξ2t + ξ4t + . . .+ ξn−2t + ξnt).

If we compute the variance of the previous expressions, we have for any i

Var
(
χ

(n)
it

)
= Var(ut) +

n/2

n2/4
σ2
ξ → Var(ut) = 1, as n→∞.

In this case since the space spanned by the common component at time t has dimension 2, which is finite
as requested by Assumption A7, therefore we can use PCA to recover the common component and we do
not need two-sided filters.

RELATION WITH FAVAR. An alternative approach used for dimension reduction is based on a VAR model
made of few observed variables, say Y of dimension m, and of r unobserved factors, F, containing all
relevant information of a larger panel x(n).(

Yt

Ft

)
= D(L)

(
Yt−1

Ft−1

)
+

(
εYt
εFt

)
. (72)

This is a mr dimensional VAR which is called Factor Augmented Vector Autoregression (FAVAR) and once
the factors are recovered it can be estimated in the usual way (Bernanke, Boivin, and Eliasz, 2005; Bai
and Ng, 2006). From the previous result we see that if the factors are recovered via PCA and n > T , then
standard

√
T -asymptotics applies, and therefore we can use estimated factors as observed: we say there is

no generated regressors problem. Otherwise, if n < T we have to take into account the estimation error of
the factors which will be of order

√
n.

If we choose Y to be a subset of x(n) then also Y has a factor structure. However, in order to have a
VAR representation like (72) for (Yt,Ft), the innovations (εYt , ε

F
t ) must be white noise. Therefore, if the

idiosyncratic component is autocorrelated, we must write the dynamic factor model for the components of
Y as (see also (62))

yit = λ∗
′

i (L)ft + ξit

= λ∗
′

i (L)ft + δi(L)ξit−1 + νit

= λ†
′

i (L)ft + δi(L)yit−1 + νit, i = 1, . . . ,m, t ∈ Z, (73)

where λ†
′

i (L) = (1− δi(L)L)λ∗
′

i (L) and νit ∼ w.n.(0, σ2
i ). Using the static representation (67)-(71) and
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(73), the VAR (72) becomes (Stock and Watson, 2005)(
Yt

Ft

)
=

(
D11(L) λ′Y A

0 A

)(
Yt−1

Ft−1

)
+

(
λ′Y Gηt

Gηt

)
+

(
νt
0

)
=

(
D11(L) λ′Y A

0 A

)(
Yt−1

Ft−1

)
+

(
εYt
εFt

)
, (74)

where D11(L) is a diagonal m ×m matrix polynomial with entries di(L) and λ′Y is the m × r loadings
matrix for Yt. It has to be noticed that while traditional FAVAR models do not impose any constraint on
(72), the following restrictions are implied by (74):

1. the covariance of Yt has an r-factor structure;

2. εYt = λ′Y Gηt + νt, the innovations of Yt, has a q-factor structure;

3. εFt , the innovations of Ft, have a reduced rank covariance.

TWO-STEP ESTIMATION. The simplest way to estimate the model is in two steps as proposed by Gian-
none, Reichlin, and Sala (2005) and Forni, Giannone, Lippi, and Reichlin (2009)

1. PCA to estimate factors and loadings;

2. VAR on the estimated factors to estimate the other parameters.

For estimation we need two additional identifying assumptions.

ASSUMPTION (A8). Consider H defined in Assumption (A5’), then Γ
1/2
F HΓ

1/2
F has distinct eigenvalues.

In particular, we can choose one of the two equivalent set of identifying conditions:

(i) H = Ir, ΓF has distinct diagonal entries, and Ft are the principal components of χ(n)
t rescaled by√

n;

(ii) ΓF = Ir, H has distinct eigenvalues, and Ft are the the principal components of χ(n)
t rescaled by√

λ
(n)
jχ .

ASSUMPTION (A9). Consider G defined in Corollary 1, then G′G has distinct eigenvalues.

We assume that r is known, then, given Assumption A8 with identification (i) and conditions 8-9, we can
use the normalised eigenvectors corresponding to the r largest eigenvalues of the sample covariance matrix
Γ

(nT )
x to estimate the loadings and by means of the corresponding principal components we recover the

space spanned by the factors. Denote by P(nT ) the n× r matrix of eigenvectors, then

λ
(nT )′

i =
√
np

(nT )′

i , i = 1, . . . , n,

F
(nT )
t =

P(nT )′x
(n)
t√

n
, t = 1, . . . , T, (75)

χit = λ
(nT )′

i F
(nT )
t = p

(nT )′

i P(nT )′x
(n)
t ,

where p
(nT )′

i is the i-th row of P(nT ). We showed how to derive these estimators and we discussed their
consistency in Section 3.

In the second step we estimate the VAR parameters by ordinary least squares

A(nT ) =

(
1

T

T∑
t=2

F
(nT )
t−1 F

(nT )′

t−1

)−1(
1

T

T∑
t=2

F
(nT )
t−1 F

(nT )′

t

)
. (76)
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Finally, denote by ε(nT ) the VAR residuals, with sample covariance

Γ
(nT )

ε(nT ) =
1

T

T∑
t=2

ε(nT )ε(nT )′ =
1

T

T∑
t=2

(
F

(nT )
t −A(nT )F

(nT )
t−1

)(
F

(nT )
t −A(nT )F

(nT )
t−1

)′
.

An estimator of G can be obtained as the normalised eigenvectors corresponding to the q-largest eigenvalues
of Γ

(nT )

ε(nT ) . We have the estimator of the non-identified IRF

b
(nT )
i (L) = λ

(nT )′

i (I−A(nT )L)−1G(nT ), i = 1, . . . , n.

If we assume that the identification matrix R is known, then we have consistency of the identified IRF

|b(nT )
i (L)R− bi(L)| = Op

(
max

(
1√
n
,

1√
T

))
, i = 1, . . . , n.
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7 Principal Component Analysis, Kalman Filter, and Maximum Like-
lihood

We now consider more in detail estimation of the approximate dynamic factor model in state-space form
given in (67) and (71):

x
(n)
t = Λ(n)Ft + ξ

(n)
t , (77)

Ft = AFt−1 + Gut. (78)

Throughout this section we assume that Assumptions A1-A4 in Sections 4 and 5 and A5’-A9 in Section 6
hold. These assumptions in turn imply that conditions 0-9 in Section 6, hold too.13

The two-step approach of Section 6 is very easy to implement however it has some limitations. When
using PCA we estimate consistently the factors without exploiting cross-sectional heteroschedasticity of id-
iosyncratic components (in other words heterogeneity in the signal to noise ratio), dynamics of the factors
themselves, and dynamics of idiosyncratic components. In particular, there is no feedback from the estima-
tion of the factors’ equation (78) to the observables equation (77). Therefore, as already noticed in Section
6, if we are just interested in an estimate of the common component or the factors’ themselves, the second
step of the estimation is irrelevant. We now first consider the implications of estimating (77) by PCA and
then we discuss estimation when taking into account also the effect of (78).

PRINCIPAL COMPONENT ANALYSIS AND MAXIMUM LIKELIHOOD. Recall from Section 3 that given
an estimator of the loadings the PCA factors estimator is given by

F
(nT )
t,PCA

= (Λ(nT )′

PCA
Λ(nT )

PCA
)−1Λ(nT )′

PCA
x

(n)
t ,

moreover because the loadings are consistent estimators it can be shown that14

F
(nT )
t,PCA

= (Λ(n)′Λ(n))−1Λ(n)′x
(n)
t +Op

(
max

(
1√
T
,

1

n

))
. (79)

In order for this estimator to be the most efficient it must be possible to derive it as a Maximum Likelihood
(ML) estimator. We now show that this is the case only if we the true data generating process is a static and
exact factor model with homoschedastic and Gaussian idiosyncratic components (also called spherical) and
we let n→∞.

Under spherical idiosyncratic components, the idiosyncratic covariance matrix is Γ
(n)
ξ = ψIn where ψ > 0.

Under Gaussianity, the log-likelihood of (x
(n)
0 . . .x

(n)
T ) is (omitting constant terms)

`(x
(n)
0 . . .x

(n)
T ; Λ(n),ΓF, ψ) ' −T

2
log det Γ(n)

x − 1

2

T∑
t=1

x
(n)′

t (Γ(n)
x )−1x

(n)
t

= −T
2

log det Γ(n)
x − T

2
tr
[
(Γ(n)

x )−1Γ(nT )
x

]
(80)

= −T
2

log det(Λ(n)ΓFΛ(n)′ + ψIn)− T

2
tr
[
(Λ(n)ΓFΛ(n)′ + ψIn)−1Γ(nT )

x

]
.

If we impose the identification constraint of Assumption (A8) (i), then ΓF is diagonal and Λ(n)′Λ(n)

n = Ir
for any n. Then, by maximising (80), we have the ML estimates of the parameters (Lawley and Maxwell,

13In other words we are saying that Theorem 6 and Corollary 1 hold.
14By means of results on consistency of sample eigenvectors it can be shown that 1√

n
‖Λ(nT )

PCA −Λ(n)‖ = Op(max( 1√
T
, 1
n
)).
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1971; Tipping and Bishop, 1999)

Λ(nT )
ML

=
√
nP(nT ),

Γ
(nT )
F,ML

=
1

n
(D(nT ) − ψ(nT )

ML
Ir), (81)

ψ(nT )
ML

=
1

n
tr
(
Γ(nT )

x −Λ(nT )
ML

Γ
(nT )
F,ML

Λ(nT )′

ML

)
,

where P(nT ) and D(nT ) are the n × r and r × r matrices of normalised eigenvectors and eigenvalues of
Γ

(nT )
x , respectively. Notice that the ML loadings are estimated as in PCA, see (75) and Section 3. By classi-

cal results on ML estimators, if the true underlying model is correctly specified these estimators, as T →∞,
are
√
T -consistent and efficient, even for n fixed.

We denote the vector of true parameters as ϕ(n) = (vec(Λ(n)), vech(ΓF), ψ). Then, given the true pa-
rameters and the data, the optimal estimator of the factors must be such that it solves

F
(n)
t = argmin

F∗t (xt,ϕ(n))
E
[
‖Ft − F∗t (xt,ϕ

(n))‖2
]
,

Note that since we are considering the parameters as given this estimator depends on n (through the load-
ings) but not on T . It is known that the solution of the above problem is given by F

(n)
t = E[Ft|Xt], where

Xt = span{x(n)
s , s ≤ t}. If we consider only linear dependencies as in a factor model then the solution is

F
(n)
t = Proj{Ft|Xt}. Note that under Gaussianity Proj{Ft|Xt} = E[Ft|Xt] Therefore, the optimal linear

estimator of the factors is given by:

F
(n)
t = Proj {Ft|Xt}

= E
[
Ftx

(n)′

t

](
E
[
x

(n)
t x

(n)′

t

])−1

x
(n)
t

= ΓFΛ(n)′
(
Λ(n)ΓFΛ(n)′ + ψIn

)−1

x
(n)
t

=
(
Λ(n)′ψ−1Λ(n) +

(
ΓF

)−1
)−1

Λ(n)′ψ−1x
(n)
t

=
(
Λ(n)′Λ(n) + Γ−1

F ψ
)−1

Λ(n)′x
(n)
t . (82)

where we used the fact that E[Ftξ
(n)′

t ] = 0 and the Woodbury formula.15 By using the identifying constraint
of Assumption (A8) (i), the first term at the denominator of (82) is O(n) and letting n → ∞, the second
term in parenthesis disappear and we obtain

F
(n)
t =

(
Λ(n)′Λ(n)

)−1

Λ(n)′x
(n)
t +O

(
1

n

)
. (83)

Now, if in (82) we replace the true parameters with the estimated ones in (81) denoted as ϕ(nT )
ML

=

(vec(Λ(nT )
ML

), vech(Γ
(nT )
F,ML

), ψ(nT )
ML

), we have the ML estimator of the factors:

F
(nT )
t,ML

=Proj
{

Ft|Xt,ϕ(nT )
ML

}
=
(
Λ(nT )′

ML
Λ(nT )

ML
+ (Γ

(nT )
F,ML

)−1ψ(nT )
ML

)−1

Λ(nT )′

ML
x

(n)
t = F

(n)
t +Op

(
1√
T

)
, (84)

where the last equality holds because the ML estimator of the parameters is
√
T -consistent. By combining

15
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(83) and (84) we have the same result as in (79):

F
(nT )
t,ML

=
(
Λ(n)′Λ(n)

)−1

Λ(n)′x
(n)
t +O

(
1

n

)
+Op

(
1√
T

)
,

F
(nT )
t,PCA

=
(
Λ(n)′Λ(n)

)−1

Λ(n)′x
(n)
t +Op

(
max

(
1√
T
,

1

n

))
.

Consistency of F
(nT )
t,ML

is proved analogously:

F
(nT )
t,ML

=
(
Λ(n)′Λ(n)

)−1

Λ(n)′x
(n)
t +O

(
1

n

)
+Op

(
1√
T

)
=
(
Λ(n)′Λ(n)

)−1

Λ(n)′Λ(n)Ft +
(
Λ(n)′Λ(n)

)−1

Λ(n)′ξ
(n)
t +O

(
1

n

)
+Op

(
1√
T

)
= Ft +Op

(
1√
n

)
+O

(
1

n

)
+Op

(
1√
T

)
,

which follows from Assumption (A8) (i) and condition 7 of weak cross-sectional dependence of idiosyn-
cratic components. Consistency of F

(nT )
t,PCA

can be proved in the same way (see also Section 3).

Thus we proved that asymptotically, PCA and ML estimators of the loadings and the factors are equivalent
if the true underlying process is an exact static factor model with Gaussian homoschedastic idiosyncratic
components. If however, the model is either dynamic, approximate, non-Gaussian, or with heteroscedastic
idiosyncratic components, we know that PCA is still consistent, but it is no more obtained by maximising
the likelihood. In this case the PCA estimators can be seen as Quasi-Maximum Likelihood (QML) estimators
which in general is not the most efficient estimator.

WEIGHTED PCA. Since QML estimators are in general not efficient, we can improve estimation by ad-
dressing explicitly the dynamics of factors, and idiosyncratic components which are non-Gaussian, cross-
correlated and heteroscedastic. In particular, the latter feature can be easily accounted for by re-weighting
the PCA estimator using the estimated idiosyncratic variances, this approach is called weighted principal
components analysis (see Choi, 2012). If in (82) we replace an estimate of the idiosyncratic covariance
matrix, Γ

(nT )
ξ,PCA

, as for example the one obtained from PCA, following the same steps as in (82), we have

F
(nT )
t,WPCA

=
(
Λ(nT )′

PCA
(diag(Γ

(nT )
ξ,PCA

))−1Λ(nT )
PCA

+
(
Γ

(nT )
F,PCA

)−1
)−1

Λ(nT )′

PCA
(diag(Γ

(nT )
ξ,PCA

))−1x
(n)
t , (85)

where we address heterscedasticity in the same spirit as in the feasible generalised least squares estimator
for linear regressions. Consistency can be again proved easily starting from consistency of PCA and using
again the approach above. If idiosyncratic components are Gaussian, heteroscedastic but uncorrelated, i.e.
the model is exact and static, then (85) gives the most efficient estimator. If not then this is again a QML
estimator.

REGULARISED PCA. In order to address cross-correlation we should have a consistent and invertible
estimator of Γ

(n)
ξ but we cannot use Γ

(nT )
ξ,PCA

since by construction this is not invertible (it has rank (n− r)).
Consider the likelihood under Gaussianity

`(x
(n)
0 . . .x

(n)
T ; Λ(n),ΓF,Γ

(n)
ξ ) '− T

2
log det(Λ(n)ΓFΛ(n)′ + Γ

(n)
ξ )

− T

2
tr
[
(Λ(n)ΓFΛ(n)′ + Γ

(n)
ξ )−1Γ(nT )

x

]
. (86)

Instead of maximising (86) we could find estimators such that they solve (see Bai and Liao, 2016)

max `(x0 . . .xT ; Λ(n),ΓF,Γ
(n)
ξ ) + κ‖Γ(n)

ξ ‖1, (87)

where κ > 0 is a suitable penalising constant, thus providing a regularised estimator of Γ
(n)
ξ . Or we could

regularise Γ
(nT )
ξ,PCA

as in Fan, Liao, and Mincheva (2013). Other penalisations could also be considered. Let
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us denote any regularised estimator as Γ
(n)
ξ,REG

, then we have the factor estimator:

F
(nT )
t,RPCA

=
(
Λ(nT )′

PCA
(Γ

(nT )
ξ,REG

)−1Λ(nT )
PCA

+
(
Γ

(nT )
F,PCA

)−1
)−1

Λ(nT )′

PCA
(Γ

(nT )
ξ,REG

)−1x
(n)
t . (88)

Consistency can be again proved easily starting from consistency of PCA and by showing that Γ
(n)
ξ,REG

is also
consistent (the rate of convergence will depend on the degree of penalisation κ) using again the approach
above. If idiosyncratic components are Gaussian, heteroscedastic and cross-correlated, i.e. the model is
approximate and static, then (88) gives the most efficient estimator. If not then this is again a QML estimator.

DYNAMIC ESTIMATION. We now move to the case in which we address dynamics explicitly. Consider
the state-space model in (77)-(78), where we assume that the idiosyncratic components are Gaussian but
not cross- nor auto-correlated, but we allow for heteroschedasticity, and we assume the innovations of the
factors to be Gaussian as well:

x
(n)
t = Λ(n)Ft + ξ

(n)
t , ξ

(n)
t ∼ w.n.N(0,Γ

(n)
ξ ), [Γ

(n)
ξ ]ij = 0, for i 6= j,

Ft = AFt−1 + Gηt, ηt ∼ w.n.N(0,Γη). (89)

The assumption of independent idiosyncratic components can be relaxed (see below) but for the moment
let us assume that it holds. Let us first describe estimation of (89) and then we will show how to deal with
these mis-specification errors.

A first way of proceeding is by computing an estimator of the factors via Kalman Filter (KF) using pre-
estimated loadings and VAR parameters obtained for example from the two-step approach of Section 6 (see
Doz, Giannone, and Reichlin, 2011). A second way to estimate the model is by means of an iterative pro-
cedure, called Expectation Maximisation (EM) algorithm (see Watson and Engle, 1983 and Doz, Giannone,
and Reichlin, 2012), which is based on the two steps:

1. Expectation step (E-step): Kalman Smoother (KS) to estimate factors given the parameters of the
model and compute expected likelihood;

2. Maximisation step (M-step): maximisation of expected likelihood to estimated loadings and VAR
parameters given the factors.

As shown by Dempster, Laird, and Rubin (1977), the EM algorithm is equivalent to ML estimation. With
respect to the previous two-step estimator, the KF or KS estimation method is exploiting factors’ dynamics
leading to possible efficiency improvement in the factors’ estimates. Moreover, it allows to deal with
unbalanced panels (missing observations, mixed frequency data). Finally, through the M-step we are also
able to impose restrictions on the model.

KALMAN FILTER. The KF is a recursive procedure for computing the optimal estimator of the latent states,
Ft, at time t given all information up to time t, that is given Xt = span{x(n)

s , s ≤ t}. That is given (89) the
KF gives E[Ft|Xt] = Proj{Ft|Xt}. Let us use the traditional notation and denote as F

(n)
t|s = E[Ft|Xs] and

P
(n)
t|s = E[(Ft − F

(n)
t|s )(Ft − F

(n)
t|s )′|Xs].

For simplicity of notation we omit the superscript n when describing the algorithm. Assume the initial
conditions, F0|0 and P0|0, and the parameters of the model, to be known. Then, given Ft−1|t−1 and
Pt−1|t−1, the one-step-ahead predictions are obtained from the prediction equations

Ft|t−1 = AFt−1|t−1, (90)
Pt|t−1 = APt−1|t−1A

′ + GΓηG′.

Once a new observation xt becomes available, so that the conditioning set becomes Xt, we have the update
equations

Ft|t = Ft|t−1 + Pt|t−1Λ
′(ΛPt|t−1Λ

′ + Γξ)
−1(xt −ΛFt|t−1), (91)

Pt|t = Pt|t−1 −Pt|t−1Λ
′(ΛPt|t−1Λ

′ + Γξ)
−1ΛPt|t−1.
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From the first equation we see that the estimator of the factors Ft|t is obtained as a weighted average of
their one-step-ahead prediction and the prediction error for xt.16 The above recursion starts from t = 0 with
some given initial conditions and ends at t = T . The KF is usually initialised using the first observation
of the factors, F0|0, estimated via PCA and by setting P0|0 = ∞ (or in practice a large value). A second
recursion is then usually employed starting from t = T and going backwards to t = 0 and is called Kalman
Smoother KS and delivers the estimates Ft|T and Pt|T .

It is well known that, if Λ(n) and G have full column rank, then after few iteration the one-step-ahead
covariance matrix P

(n)
t|t−1 converges to a steady state P(n), in particular this happens exponentially fast (see

Harvey, 1990). Moreover, we can show that P(n) = GΓηG′, thus it does not depend on n and can be
denoted as P. For simplicity let us assume r = q so that P is invertible, then once we are in a steady state,
we can write:

F
(n)
t|t = F

(n)
t|t−1 + PΛ(n)′

(
Λ(n)PΛ(n)′ + Γ

(n)
ξ

)−1(
x

(n)
t −Λ(n)F

(n)
t|t−1

)
= F

(n)
t|t−1 +

(
Λ(n)′(Γ

(n)
ξ )−1Λ(n) + P−1

)−1

Λ(n)′(Γ
(n)
ξ )−1

(
x

(n)
t −Λ(n)F

(n)
t|t−1

)
=
(
Λ(n)′(Γ

(n)
ξ )−1Λ(n)

)−1

Λ(n)′(Γ
(n)
ξ )−1x

(n)
t +O

(
1

n

)
, (92)

where we used the Woodbury formula and condition 9 of weak idiosyncratic dependence together with As-
sumption (A8) (i), which allow us to simplify the denominator. This estimator is consistent as n → ∞ (it
can be shown as for the PCA estimator) however it is unfeasible.

Define the true vector of parameters as ϑ(n) =
(
vec(Λ(n)), vec(A), vec(G), vech(Γη), diag(Γ

(n)
ξ )
)

and
consider a consistent estimator ϑ(nT )

PCA-VAR
, which for example can be given by the two-step estimator of Sec-

tion 6. Then, a feasible KF estimator of the factors in (91) is computed using ϑ(nT )
PCA-VAR

. Let us denote such
estimator as

F
(nT )
t,KF

= F
(n)

t|t,ϑ(nT )
PCA-VAR

= Proj
{

Ft|Xt,ϑ(nT )
PCA-VAR

}
= E

ϑ
(nT )
PCA-VAR

[Ft|Xt],

and define the steady state one-step-ahead covariance with estimated parameters as P
ϑ

(nT )
PCA-VAR

. Moreover, let
us assume that the PCA loadings are estimated without the sign indeterminacy (see Section 3), this can be
guaranteed for example by assuming that the first row of the loadings matrix Λ(n) is all positive. Then,
using (92), we have

F
(nT )
t,KF

= F
(n)

t|t−1,ϑ
(nT )
PCA-VAR

+ P
ϑ

(nT )
PCA-VAR

Λ(nT )′
(
Λ(nT )

PCA
P
ϑ

(nT )
PCA-VAR

Λ(nT )′

PCA
+ Γ

(nT )
ξ,PCA

)−1(
x

(n)
t −Λ(nT )

PCA
F

(n)

t|t−1,ϑ
(nT )
PCA-VAR

)
= F

(n)
t|t−1 + PΛ(n)′(Λ(n)PΛ(n)′ + Γ

(n)
ξ )−1(x

(n)
t −Λ(n)F

(n)
t|t−1) +Op

(
max

(
1√
T
,

1√
n

))
= (Λ(n)′(Γ

(n)
ξ )−1Λ(n))−1Λ(n)′(Γ

(n)
ξ )−1x

(n)
t +O

(
1

n

)
+Op

(
max

(
1√
T
,

1√
n

))
= Ft + (Λ(n)′(Γ

(n)
ξ )−1Λ(n))−1Λ(n)′(Γ

(n)
ξ )−1ξ

(n)
t +O

(
1

n

)
+Op

(
max

(
1√
T
,

1√
n

))
= Ft +Op

(
1√
n

)
+O

(
1

n

)
+Op

(
max

(
1√
T
,

1√
n

))
, (93)

which follows again from Assumption (A8) (i) and condition 7 of weak cross-sectional dependence of id-
iosyncratic components. From (93) we have consistency of the KF estimator computed using consistent

16Notice that, by substituting (91) into (90), the KF recursions can be written as

Ft+1|t = AFt|t−1 + APt|t−1Λ′(ΛPt|t−1Λ′ + Γξ)
−1(xt −ΛFt|t−1),

Pt+1|t = APt|t−1A′ + GΓηG′ −APt|t−1Λ′(ΛPt|t−1Λ′ + Γξ)
−1ΛPt|t−1A′.

The second equation is the so-called Riccati difference equation, and the quantity Kt = APt|t−1Λ′H−1
t is called Kalman gain

which is used to update predictions.
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estimates of the parameters.17 Moreover, since by definition F
(nT )
t,KF

is the conditional mean given the pa-
rameters, then, if the true data generating process is (89) and we just know x(n) up to time t, i.e. if we just
use past information, this is the most efficient estimator of the factors. Notice, that however it is not derived
from ML so in general we can compute more efficient estimators.

MAXIMUM LIKELIHOOD ESTIMATION OF PARAMETERS. In principle the parameters in (89) could
be estimated by maximum likelihood. Following the same argument, under Gaussianity, the KF predictor
F

(n)
t|t−1 is the optimal one, that is F

(n)
t|t−1 = E[Ft|Xt−1], and P

(n)
t|t−1 = Var(Ft|Xt−1). We can write

x
(n)
t = ΛF

(n)
t|t−1 + Λ(n)(Ft − F

(n)
t|t−1) + ξ

(n)
t ,

which implies

E[x
(n)
t |x

(n)
t−1] = ΛF

(n)
t|t−1, Var(x

(n)
t |x

(n)
t−1) = Λ(n)P

(n)
t|t−1Λ

(n)′ + Γ
(n)
ξ ,

and we have the Gaussian conditional distribution

x
(n)
t |x

(n)
t−1 ∼ N(Λ(n)F

(n)
t|t−1,Λ

(n)P
(n)
t|t−1Λ

(n)′ + Γ
(n)
ξ ).

Then, if we denote as f(x
(n)
t |x

(n)
t−1) the conditional density of x

(n)
t given x

(n)
t−1, we can write the log-

likelihood of (x
(n)
0 . . .x

(n)
T ) as (omitting constant terms)

`(x
(n)
0 . . .x

(n)
T ;ϑ(n)) =

T∑
t=1

log f(x
(n)
t |x

(n)
t−1) + log f (n)(x

(n)
0 ) (94)

'− 1

2

T∑
t=1

log det(Λ(n)P
(n)
t|t−1Λ

(n)′ + Γ
(n)
ξ )

− 1

2

T∑
t=1

(x
(n)
t −Λ(n)F

(n)
t|t−1)′(Λ(n)P

(n)
t|t−1Λ

(n)′ + Γ
(n)
ξ )−1(x

(n)
t −Λ(n)F

(n)
t|t−1).

Notice that F
(n)
t|t−1 contains A and F

(n)
t−1|t−1 and P

(n)
t|t−1 contains A, G, Γη and P

(n)
t−1|t−1, so in principle

we could maximise numerically (94) given F
(n)
t−1|t−1 and P

(n)
t−1|t−1 from the KF and obtain the ML estimator

of the parameters ϑ(n). However, when n is large this approach is not feasible (there are nr + r2 + rq +
n+ q(q + 1)/2 parameters).

EXPECTATION MAXIMISATION ALGORITHM. The ML estimator of the parameters can be obtained by
means of the iterative procedure called EM algorithm. Consider the joint log-likelihood of (x

(n)
0 . . .x

(n)
T ,F0 . . .FT )

17A similar proof can be done by showing that P
(n)
t|t → 0 as n → ∞, thus working with the mean squared error of the estimator

and proving consistency by means of Chebychev’s inequality. This approach is more convenient when r > q.
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which is given by (omitting constant terms)

`(x
(n)
0 . . .x

(n)
T ,F0 . . .FT ;ϑ(n)) '− T

2
log det Γ

(n)
ξ −

1

2

T∑
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(x
(n)
t −Λ(n)Ft)

′(Γ
(n)
ξ )−1(x

(n)
t −Λ(n)Ft)

− T

2
log det(GΓηG′)− 1

2

T∑
t=1

(Ft −AFt−1)′(GΓηG′)−1(Ft −AFt−1)

=− T
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log det Γ
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2
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(n)
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t −Λ(n)Ft)

− T
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log det Γζ −

1

2
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(Ft −AFt−1)′Γ−1
ζ (Ft −AFt−1)

=− T

2
log det Γ

(n)
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1

2
tr
[
(Γ

(n)
ξ )−1
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(x
(n)
t −Λ(n)Ft)

′(x
(n)
t −Λ(n)Ft)
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− T

2
log det Γζ −

1

2
tr
[
Γ−1
ζ

T∑
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(Ft −AFt−1)′(Ft −AFt−1)

]
,

(95)

where Γζ = GΓηG′. Notice that Γ−1
ζ is in general not defined (unless r = q in which case G = Ir),

however this poses no practical problem since as shown below the inverse matrix is not needed to solve the
algorithm.

The EM algorithm is a sequence of two alternated steps:

E-step: the expectation of the log-likelihood conditional on the data is calculated using the estimates from
the previous iteration, ϑ(nT )

j :

L(ϑ(n);ϑ
(nT )
j ) = E

ϑ
(nT )
j

[`(x
(n)
0 . . .x

(n)
T ,F0 . . .FT ;ϑ(n))|XT ] : (96)

M-step: the parameters are re-estimated through the maximisation of the expected log-likelihood with respect
to ϑ(n):

ϑ
(nT )
j+1 = arg max

ϑ(n)
L(ϑ(n);ϑ

(nT )
j ). (97)

We iterate until convergence is obtained.

In order to compute the expected likelihood in the E-step we must run the KF and then the KS with given
parameters, ϑ(nT )

j , to obtain

F
(n)

t|T,ϑ(nT )
j

= Proj
{

Ft|XT ,ϑ(nT )
j

}
= E

ϑ
(nT )
j

[Ft|XT ]

and P
(n)

t|T,ϑ(nT )
j

= E
ϑ

(nT )
j

[
(Ft − F

(n)

t|T,ϑ(nT )
j

)(Ft − F
(n)

t|T,ϑ(nT )
j

)′|XT
]

and then in the M-step we use those

quantities when computing the ML estimators. More precisely, we have

L(ϑ(n);ϑ
(nT )
j ) =− T

2
log det Γ

(n)
ξ −

1

2
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(n)
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E
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]}
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2
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Γ−1
ζ

T∑
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E
ϑ(nT )j
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(Ft −AFt−1)′(Ft −AFt−1)|XT

]}
, (98)
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By maximising (98), we have the estimators18

Λ
(nT )
j+1 =

( T∑
t=1

E
ϑ

(nT )
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(n)
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. (99)

Notice that these expressions resemble the ordinary least squares solution to the ML estimation for (auto)regressions
with complete data with the difference that the sufficient statistics are replaced by their expectations. It is
clear that although Γζ is not invertible it can be estimated anyway. The estimator of G can then be obtained
as the normalised eigenvectors corresponding to the q-largest eigenvalues of Γ

(nT )
ζ,j+1.

Recall that E
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|XT ] = 0. Then, by writing Ft = F
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. By replacing these sample

moments into (99) we see how to use the KS output for computing ML estimators. If we denote by ϑ(nT )
EM

the
value of the estimated parameters when convergence is achieved we have the final factor estimates obtained
by running the KS one last time, which we define as

F
(nT )
t,EM

= F
(n)

t|T,ϑ(nT )
EM

= Proj
{

Ft|XT ,ϑ(nT )
EM

}
= E

ϑ
(nT )
EM

[Ft|XT ].

Now, the ϑ(nT )
EM

is equivalent up to a numerical error to ϑ(nT )
ML

. In particular, if we initialise the algorithm
at iteration j = 0 with the parameters estimated with the two-step (PCA plus VAR) method of Section
6, the numerical error is negligible. Therefore, ϑ(nT )

EM
is
√
T -consistent for ϑ(n) as ϑ(nT )

ML
and under the

assumption that the true model is (89), this is the most efficient parameter estimator. Moreover,

F
(nT )
t,EM

= F
(n)
t|T +Op

(
1√
T

)
, (100)

18For the covariances recall that in an AR(1), yt = ayt−1 + et, with E[yt−1et] = 0, we have

E[(yt − ayt−1)
2] = E[y2t + a2y2t−1 − 2aytyt−1] = E[y2t ]− aE[ytyt−1],

because E[a2y2t−1] = E[aytyt−1], since E[yt−1et] = 0.
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where F
(n)
t|T = E[Ft|XT ] is the KS estimator using the true value of the parameters. In particular, define the

nT -dimensional vector X(n)
T = (x

(n)′

1 . . .x
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T )′, the rT -dimensional vector FT = (F′1 . . .F
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T )′ and the
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T = L
(n)
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T and we can write (Doz, Giannone, and

Reichlin, 2011)
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= FT +Op
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(
1
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, (101)

where we used the Woodbury formula and condition 4 of weak dynamic dependence of idiosyncratic com-
ponents. By combining (100) and (101) we prove consistency of the EM estimator F

(nT )
t,EM

. Since this is
derived from ML estimates of the parameters and is the conditional expectation given all available informa-
tion, this is the most efficient estimator, provided (89) is correctly specified, that is we have a dynamic exact
factor model.

MIS-SPECIFICATIONS. The EM estimator is explicitly taking into account dynamics in the factors and
heteroscedasticty of the idiosyncratic components. However, we are still imposing some assumptions,
which can be considered as mis-specifications with respect to the approximate dynamic factor model (77)-
(78). The restrictions imposed are:

1. the idiosyncratic components are serially uncorrelated (white noise);

2. the idiosyncratic components are cross-sectionally uncorrelated;

3. the innovations are Gaussian.

We now discuss how to relax these assumptions.

First, we are assuming idiosyncratic components to be white noise. This can be easily generalised to e.g.
autoregressive dynamics, by adding one more state equation for each idiosyncratic component (Bańbura
and Modugno, 2014). In this case, the model (89) will read as

x
(n)
t = Λ(n)Ft + ξ

(n)
t + ν

(n)
t , ν

(n)
t ∼ w.n.N(0, hΓ(n)

ν ), [Γ(n)
ν ]ij = 0, for i 6= j,

Ft = AFt−1 + Gηt, ηt ∼ w.n.N(0,Γη),

ξit = ρiξit−1 + eit, eit ∼ w.n.N(0, σ2
i ), (102)

where we impose h to be small. This might result in having far too many latent states, so it is a good idea to
check which idiosyncratic are autocorrelated, so for example GDP growth rate has an idiosyncratic compo-
nent which is white noise by construction (it is considered measurement error), and stock returns have also
almost zero autocorrelation.

Second, we require an exact factor structure because the KS needs to invert Γ
(n)
ξ and this task for large

n might be hard to accomplish. It is clear from all previous derivations that the structure of Γ
(n)
ξ does not

affect consistency so this mis-specification error has no implications when n → ∞. However, in finite
samples it might have an effect and any mis-specification induces a loss of efficiency. A possibility improve
efficiency is to run the M-step with a penalised expected likelihood as in the case of restricted PCA seen
above. Note however that penalised estimators are intrinsically biased although the bias vanishes asymptot-
ically.
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Finally, we also assume Gaussianity of the innovations. When this assumption is true then we have seen
that the estimated factors are the conditional expectations of the true factors and therefore they are the opti-
mal estimator. Otherwise the KS delivers just the optimal linear estimator, however (101) still holds, indeed
the estimated factors are written as the linear projection of the true factors onXT and consistency still holds.

Summing up, if we do not relax the above restrictions when estimating the model then the model is mis-
specified and we can then think of the EM estimator as a QML estimator (see Doz, Giannone, and Reichlin,
2012) which is no more optimal, i.e. not efficient, since it is not based on the true data generating process.
On the other hand, the EM always delivers an estimator which is consistent as all other estimators considered
in this section.
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8 Forecasting

There are two main ways to make forecasts with dynamic factor models

1. direct forecasts, where data at t+ h is projected onto the factors at time t;

2. recursive forecasts, where data at t+ h is computed using data at time t+ h− 1 and so on.

For the first case it is enough to have an estimate of the factors, so usually PCA is used, while for the second
the dynamics of the model has to be specified, so usually the state-space model is used.

DIRECT FORECASTS. Given the static factor model for a sample of length T

xit = λ′iFt + ξit = χit + ξit, i = 1, . . . , n, t = 1, . . . , T,

we have that the h-step-ahead forecast of xit is given by

xiT+h|T = χiT+h|T + ξiT+h|T , h > 0. (103)

In particular, start by considering the case in which the observed data is predicted only by the factors

xit+h = β′Ft + εit+h, t = 1, . . . , T, h > 0, (104)

where we assume E[εitFt] = 0. Therefore, the best linear factor based h-step-ahead prediction of the
observed data is given by the linear projection

xiT+h|T = Proj{xiT+h|FT } = β′FT , h > 0. (105)

Notice that, since we do not exploit the dynamics of the factors, forecasts depend only on their last obser-
vation. Now, since the common and idiosyncratic component are orthogonal at every lead and lag, then
Proj{ξiT+h|FT } = 0, thus (105) is also the h-step-ahead prediction of the common component

χiT+h|T = Proj{xiT+h|FT } = Proj{χiT+h|FT } = β′FT , h > 0.

Now consider again the model (104). The assumption E[εitFt] = 0 is crucial and might not hold, there
might of course be omitted variables contained in εit. We have three cases.

1. There are no omitted variables, then we just have to estimate the factors and this is typically done by
means of PCA or some variation of this technique.

2. The omitted variables are orthogonal to the factors, then they are by definition idiosyncratic (when
h = 0 in (104) then β = λ′i). By modelling the idiosyncratic component of each series separately,
we can take these into account. A complete forecast of xit is then given by (103), where a forecast for
the idiosyncratic component, ξ(nT )

iT+h, can be also computed for example by using univariate or sparse
autoregressive models (Boivin and Ng, 2005; Bai and Ng, 2008).

3. The omitted variables are correlated with the factors, for example these are lagged values of xit or of
Ft. Then, assumption E[εitFt] = 0 in (104) does not hold and we have to consider the more general
model

xit+h = β′Ft + γ′wt + εit+h, (106)

where wt are the omitted variables. Then,

xiT+h|T = β′FT + γ′wT = χiT+h|T + γ′wT .

The predictor is then computed in two steps, first the factors are extracted, then a linear regression
using the estimated factors and the variables wt is estimated. This is the general model considered
originally by Stock and Watson (2002a). Now since factors are pervasive and idiosyncratic forecasts
are negligible, the only omitted variables can indeed be lagged values of Ft, but then by considering
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a fully dynamic factor model it is enough to consider a forecast of the common component to obtain
a forecast of xit.

Regarding case 2, Luciani (2014) shows that at least in macroeconomic applications, the role of ξ(nT )
iT+h

forecasts is negligible, i.e. adding them to (103) does not improve the forecasts of xit based only on the
factors, χ(nT )

iT+h. So we do not consider this case further. Cases 1 and 3 are considered next.

PCA REGRESSION APPROACH. Given an estimator of the factors, F
(nT )
t , obtained via PCA, the regression

coefficient in (104) is estimated by OLS as

β(nT ) =

(
T∑
t=1

F
(nT )
t F

(nT )′

t

)−1 T∑
t=1

F
(nT )
t xit+h.

Then, since, by definition, the PCA factor estimator is given by F
(nT )
T = Λ(nT )′xT

n , we have

χ
(nT )
iT+h|T = β(nT )′F

(nT )
T = (107)

=

(
T∑
t=1

xit+hF
(nT )′

t

)(
T∑
t=1

F
(nT )
t F

(nT )′

t

)−1

F
(nT )
T

=

(
T∑
t=1

xit+hx
′
t

)
Λ(nT )

(
Λ(nT )′

T∑
t=1

xtx
′
t Λ

(nT )

)−1

Λ(nT )′xT

=

(
T∑
t=1

xit+hx
′
t

)
P(nT )

(
P(nT )′

T∑
t=1

xtx
′
t P

(nT )

)−1

P(nT )′xT ,

where in the last step we used the fact that the loadings estimator can be written as

Λ(nT )′ =
√
nP(nT )′ ,

with P(nT ) being the n × r matrix of normalised eigenvectors of the sample covariance matrix Γ
(nT )
x and

corresponding to the r largest eigenvalues. From (107), we then have the h-step-ahead predictor of the
common component in vector notation

χ
(nT )
T+h|T =

[
Γ(nT )

x (h)P(nT )
(
P(nT )′Γ(nT )

x P(nT )
)−1

] [
P(nT )′x

(n)
T

]
. (108)

where Γ
(nT )
x (h) is the sample h-lags autocovariance matrix. Notice that this predictor contains lagged val-

ues of the common component and therefore of the factors therefore it is dynamic but the way in which the
factors are estimated, PCA, is not accounting for the factors’ dynamics.

Consistency of the prediction can be proved, as n, T →∞,

χ
(nT )
iT+h|T

p→ χiT+h, i = 1, . . . , n, h > 0.

GENERALIZED AND DYNAMIC PCA REGRESSION APPROACH. First, notice that, as n → ∞, we have,
by assumption on eigenvalues like (a’)19∥∥∥∥Γx

n
− Γχ

n

∥∥∥∥ =

∥∥∥∥Γξ
n

∥∥∥∥ =
λ1ξ

n
→ 0.

Using this last result in (108), we can replace the covariance of xt with the covariance of χt. Therefore, we
19An implication of this result is that ∥∥∥∥ 1

√
n
E[xtxit]−

1
√
n
E[χtχit]

∥∥∥∥→ 0.
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have a new predictor of the common component which holds for large n:

χ
(nT )
T+h|T =

[
Γ(nT )
χ (h)P(nT )

(
P(nT )′Γ(nT )

x P(nT )
)−1

] [
P(nT )′x

(n)
T

]
, (109)

or

χ
(nT )
T+h|T =

[
Γ(nT )
χ (h)P(nT )

(
P(nT )′Γ(nT )

χ P(nT )
)−1

] [
P(nT )′x

(n)
T

]
. (110)

In order to compute (109) and (110), the estimated covariance, Γ
(nT )
χ , and lagged covariance matrices,

Γ
(nT )
χ (h), of the common component must be computed. Forni, Hallin, Lippi, and Reichlin (2005) assume

an underlying dynamic factor model driven by q dynamic factors. Then, these matrices can be estimated
using the first q dynamic principal components of the spectral density matrix:

Σ(nT )
χ (θ) =

q∑
j=1

λ
(nT )
jχ (θ)p̄

(nT )
jx (θ)p

(nT )′

jx (θ), Γ(nT )
χ (h) =

∫ π

−π
eihθ Σ(nT )

χ (θ)dθ, (111)

where in practice the integral has to be computed on a grid of values of θ as explained in the previous sec-
tions. Consistently with the assumptions behind the state-space representation of the dynamic factor model,
the common component has a spectral density of rank q but a covariance of rank r > q.

An additional modification of (109) is also possible where instead of using the r eigenvectors of Γ
(nT )
x we

compute a generalised version of these eigenvectors which accounts also for cross-sectional heteroschedas-
ticty of the idiosyncratic components. In particular, we define generalised eigenvectors as the solutions of
the problem

q1 = arg max
u

u′Γ(n)
χ u s.t. u′Γ

(n)
ξ u = 1,

qj = arg max
u

u′Γ(n)
χ u s.t. u′Γ

(n)
ξ u = 1 and u′q1 = . . . = u′qj−1 = 0,

the eigenvalues being the value of the functions at their maximum. This problem is equivalent to find
eigenvector and eigenvalues of the matrix (Γ

(n)
ξ )−1Γ

(n)
χ . Given the estimators Γ

(nT )
χ (see (111)) and

Γ
(nT )
ξ = (Γ

(nT )
x − Γ

(nT )
χ ), we collect the normalised generalised eigenvectors corresponding to the r

largest generalised eigenvalues in a n× r matrix Q(nT ), then we have a new loadings estimator defined as
A(nT ) =

√
nQ(nT ) and the space spanned by the factors is then recovered in the same way as in PCA, i.e.

as

F
(nT )
t =

Q(nT )′xt√
n

=
A(nT )′xt

n
, t = 1, . . . , T.

Since we have also in this case a linear combination of the data such that the normalization conditions are
satisfied it is straightforward to prove consistency also of this estimator. Notice that this is not the PCA
estimator but a different one.

By using Q(nT ) instead of P(nT ) in (109) and (110), we have the predictor of the common component
proposed by Forni, Hallin, Lippi, and Reichlin (2005), is given by

χ
(nT )
T+h|T =

[
Γ(nT )
χ (h)Q(nT )

(
Q(nT )′Γ(nT )

x Q(nT )
)−1

] [
Q(nT )′x

(n)
T

]
, (112)

or

χ
(nT )
T+h|T =

[
Γ(nT )
χ (h)Q(nT )

(
Q(nT )′Γ(nT )

χ Q(nT )
)−1

] [
Q(nT )′x

(n)
T

]
. (113)

This latter estimator in practice poses problems when computing the generalised eigenvectors Q(nT ). In-
deed, when n is large inversion of the idiosyncratic covariance matrix, Γ

(nT )
ξ , is in general not possible

(it has by construction rank n − q). Sparse estimators for this matrix are necessary (see e.g. Boivin
and Ng (2005); Fan, Liao, and Mincheva (2013); Barigozzi and Brownlees (2016)). The simplest case
is when Γ

(nT )
ξ is diagonal, i.e. the most sparse estimator. In this case, the same same reasoning about
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mis-specification given in Section 7 can be applied.

Finally, we have consistency also for (112), as n, T →∞,

χ
(nT )
iT+h|T

p→ χiT+h, i = 1, . . . , n, h > 0.

Similar consistency results can be proved for (108), (109), (110), and (113).

STATE SPACE APPROACH. We know that under some additional assumptions we can write the approximate
dynamic factor model in state space form, that is a static factor model where we also specify the dynamics
of the factor as in (67) and (71). The forecast of the common component is given by the recursive equation20

χ
(nT )
T+h|T = Λ(nT )

(
A(nT )

)h
F

(nT )
T , h > 0,

where we can use estimates of the state space form of the model obtained either by PCA and VAR or by means
of the EM algorithm. From this equation it is clear that for forecasting the fact that in the original model the
r factors Ft are driven by q < r shocks is irrelevant. This is true in everything that follows except when we
consider spectral densities. Consistency of this predictor is then an immediate consequence of consistency
of the estimated parameters.

MISSING VALUES AND MIXED FREQUENCIES. Model (67) and (71) when estimated by means of the EM
algorithm can be used for real-time applications. The use of real-time data presents two main problems:

1. how to manage missing values, in particular at the end of the sample due to the delay in macroeco-
nomic data releases which come from different sources;

2. how to handle mixed frequencies, which most of the times reduces to how to bridge monthly and
quarterly indicators, eq. GDP is released only quarterly while other indicators as Industrial Production
are released monthly.

In the case of missing values the E-step of the EM algorithm can be modified and there are two possibilities.
At iteration j a new panel x̃

(n)
t,j , is built as follows:

a. Stock and Watson (2002b) modify the observed data x̃it,j = xit if observed or x̃it,j = λ′i(j −
1)Ft|T,j−1 otherwise, where λi(j−1) and Ft|T,j−1 are the estimated loadings and factors at iteration
j − 1;

b. Bańbura and Modugno (2014) impose the restrictions on the variance of the idiosyncratic component:
(Γ̃ξ)ii = (Γξ)ii if xit observed or (Γ̃ξ)ii =∞ otherwise.

Missing frequencies are instead included in the model by imposing restrictions on the loadings. In par-
ticular, consider the case in which we have monthly and quarterly series. If Yt denotes the log-level of a
variable at month t then yMt = Yt − Yt−1 is the month on month growth rate. However, assume that the
variable is recorded only at quarterly frequency then what we observe is the variable Y Qt and if t indicates
months then this variable is available only at t, t+ 3, t+ 6 . . .. Its growth rate is yQt = Yt − Yt−3. Mariano
and Murasawa (2003) propose the approximation

Y Qt ' Yt + Yt−1 + Yt−2,

which for the growth rates implies

yQt = yMt + 2yMt−1 + 3yMt−2 + 2yMt−3 + yMt−4.

20Compare this with the AR(1) forecast where

yT+h|T = ahyT , h ≥ 0.
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The quarter on quarter growth rate that we want to use in the database is a weighted average of a month on
month growth rate. If in a given dataset we have both monthly and quarterly growth rates denoted as xMt
and xQt respectively, then we have either two separate factor models

xMt = ΛMFMt + ξMt ,

xQ3t+1 = ΛQFQ3t+1 + ξQ3t+1,

or a unique model

(
xMt
xQt

)
=

(
ΛM 0 0 0 0
ΛQ 2ΛQ 3ΛQ 2ΛQ ΛQ

)
FMt
FMt−1

FMt−2

FMt−3

FMt−4

+

(
ξMt
ξQt

)
.

In a first iteration, the estimated factor FMt|T,1 can be extracted from the dataset of monthly data xMt only
using KF and KS and then ΛM can be easily estimated. Then, in successive iterations (for j > 1), we can
build a new dataset x̃

(n)
t,j containing both quarterly and monthly data where the quarterly data at iteration j

are computed as

x̃it,j = λ′i(j − 1)
(
FMt|T,j−1 + 2FMt−1|T,j−1 + 3FMt−2|T,j−1 + 2FMt−3|T,j−1 + FMt−4|T,j−1

)
=

= λ′i(j − 1)(1 + L+ L2)2FMt|T,j−1.

This model is used by Stock and Watson (2002b) to predict Industrial Production and CPI inflation and by
Bernanke and Boivin (2003) to forecast also the unemployment rate. A similar approach not described here
is proposed by Bańbura and Modugno (2014). Two other applications of these techniques follow.

EUROCOIN. Altissimo, Cristadoro, Forni, Lippi, and Veronese (2010) developed a business cycle indicators
for the Euro Area known as Eurocoin which is computed each month by the staff of the Banca d’Italia, and
it is published also by the Centre for Economic Policy Research. This indicator was constructed in order to
have an assessment of economic activity that is free from short-run fluctuations. With the term “economic
activity” it is meant that the goal is to capture only those fluctuations due to the structural/macroeconomic
shocks ut, i.e. the business cycle. With the expression “free from short-run fluctuations” it is meant that
the goal is not to estimate all the fluctuations induced by the common shocks, but only those producing
medium-run and long-run fluctuations (i.e. larger then one year).

Let x
(n)
t be a large vector of month on month growth rates, and let yQt be quarter on quarter GDP growth

rate, it is assumed that (x
(n)
t , yQt ) have a joint approximate factor representation:

x
(n)
t = Λ(n)Ft + ξ

(n)
t ,

yQt = λ′yF
Q
t + ξyt.

where FQt = (1 + L + L2)2Ft. Let w(L) be a band-pass filter such that cQt = w(L)yQt is the medium-
run to long-run GDP growth, i.e. related to fluctuations large than 1 year thus keeping frequencies θ ∈
[−π/6, π/6]. Then Eurocoin, denoted as the estimator e(nT )

t , is the linear projection of cQt onto the space
spanned by the quarterly smoothed factors FQt . Formally

e
(nT )
t = Proj

{
cQt |F

Q
t

}
where FQt = span{FQt−h, h ≥ 0}. Then, following the same reasoning as for the predictor of the common
component we have

e
(nT )
t = ȳQt + Γ

(nT )

cFQ

(
Γ

(nT )

FQ

)−1

FQt

where Γ
(nT )

cFQ is an estimator of the covariance between cQt and the factors FQt , and ȳQt is the sample average
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of yQt . In order to estimate the quarterly factors from monthly data, we can use the KF approach described
above thus computing also the common component of yQt which once filtered would give an estimator of
Eurocoin.

Alternatively, Altissimo, Bassanetti, Cristadoro, Forni, Hallin, Lippi, Reichlin, and Veronese (2001) pro-
pose the use of generalised PCA. Denote by φ(n)

t the filtered common component keeping only medium-run
and long-run frequencies. Then, an estimator of the factors is obtained using the eigenvectors corresponding
to the r-largest eigenvalues of the matrix (Γ

(n)
χ +Γ

(n)
ξ )−1Γ

(n)
φ . All matrices can be computed from spectral

density of the common component Σ
(n)
χ (θ) as

Γ(n)
χ =

∫ π

−π
Σ(n)
χ (θ)dθ, Γ

(n)
φ =

∫ π/6

−π/6
Σ(n)
χ (θ)dθ, Γ

(n)
ξ = Γ(n)

x − Γ(n)
χ .

By replacing the spectral density with its estimates obtained by means of the q largest dynamic PCA, we
can compute the generalized eigenvectors and we have the factor estimates denoted as F

Q(nT )
t . Differently

from the previous approach, in this case, the difference between r and q is crucial and must be considered.
Then Γ

(nT )

FQ is estimated using the sample covariance of the estimated factors. Finally, the covariance Γ
(n)

cFQ

is given by

Γ
(n)

cFQ =

∫ π/6

−π/6
Σ

(n)

yfQ
(θ)dθ,

where Σ
(n)

yfQ
(θ) is the cross-spectrum between yQt and the factors FQt and is given by

Σ
(n)

yFQ(θ) =
1

2π

∞∑
k=−∞

e−ikθΓ
(n)

yFQ(k), θ ∈ [−π, π].

with E[yQt FQt−k]. By replacing, the factors with their estimates obtained above with generalised PCA and
estimating cross-covariances and cross-spectra as usual we have an estimator of the covariance between the
factors and cQt .

In an analogous way, Cristadoro, Forni, Reichlin, and Veronese (2005) build a core euro inflation indi-
cator as the projection of HICP on the quarterly factors.

NOWCASTING. Eurocoin is computed without using the state space representation, that is with a purely
dynamic approach based on spectral analysis. On the other hand, Giannone, Reichlin, and Small (2008)
use the state-space representation for computing the quarter on quarter growth rate of GDP. Namely, (notice
that as mentioned above here we do not make any distinction between r and q)

x
(n)
t = Λ(n)Ft + ξ

(n)
t ,

Ft = AFt−1 + εt,

yQt = c+ βFt + ηt. (114)

The factors and loadings can be estimated with the EM algorithm as explained above, while the last equation
is estimated in a second step using OLS.

While GDP is released at the end of a quarter (and then revised in later quarters), Central Banks need to
set policies in real-time, thus often without knowing the present status of the economy. Moreover, also
other variables needed for policy making are released with different timing and their values are often re-
vised later thus also the recent past might be unknown. Predicting the current and past state of the economy
(as current quarter GDP) is called nowcasting. The model above given an estimates of the factors up to any
given time t delivers, via (114), the nowcast of quarter on quarter growth rate of GDP. Direct forecasts of
the same variables can also be computed as in Stock and Watson (2002a).
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9 Structural approximate dynamic factor models in macroeconomics

FACTOR MODELS AND STRUCTURAL VAR. The state-space representation of the approximate dynamic
factor model is particularly useful also for studying impulse response functions (IRF) of observed variables
to unexpected shocks to the economy. The classical tool for studying IRF are Structural VAR (SVAR) models.
These are employed as tools for validating more complex economic models known as Dynamic Stochastic
General Equilibrium (DSGE) models. In particular, the theoretical IRF implied by DSGE can be compared
with those estimated on observed data, thus validating or not the underlying economic theory.

However, SVAR suffer of two main problems:

1. a VAR with n variables has a number of parameters that grows with n2, so if n is large and T is not
large enough we encounter the curse of dimensionality problem;

2. there is the possibility that the space spanned by VAR innovations might not coincide with the space
spanned by structural shocks, this problem is called nonfundamentalness and is discussed in Lippi
and Reichlin (1993, 1994) and Alessi, Barigozzi, and Capasso (2011) and also below.

The availability of large datasets, combined with factor models, helps in solving both problems. In particu-
lar, the curse of dimensionality has already been discussed. Here we focus on nonfundamentalness and we
show that factor models do not suffer of this problem. We then discuss identification of IRF using the the
approximate dynamic factor model (see Section 7 for estimation).

INNOVATIONS AND STRUCTURAL SHOCKS. DSGE models are often used in academic research and Cen-
tral Banks for modelling and analysing national and worldwide economies. These are analytical models
based on finite difference equations with stochastic disturbances. They are used for aggregating the unob-
served behaviour of single agents (e.g. consumers or firms) into observed macroeconomic time series. Let
us call y a large, possibly infinite, dimensional vector process containing all available economic informa-
tion. If we assume that this process is purely non-deterministic, then although unobservable, it has the Wold
representation

yt = εyt +

∞∑
k=1

Ψkε
y
t−k, εyt ∼ w.n.(0,Γεy ), t ∈ Z, (115)

and by definitionHεt = Hy
t .

Moreover, DSGE models can be reduced to VARMA models by log-linearization of the equations around
their steady-state. If y has rational spectral density, we say that it is a VARMA(p1, p2) process if it is a
stationary solution of

Φ(L)yt = Θ(L)ut, ut ∼ w.n.(0, I), t ∈ Z. (116)

The AR and MA filters are respectively defined as Φ(L) = I−
∑p1
k=1 ΦkL

k and Θ(L) = I+
∑p2
k=1 ΘkL

k,
where the roots of det(Φ(z)) must be outside the unit disc. Therefore, there exists two white noise process
εy and u associated with y.

When u is orthonormal (it can always be transformed to be like that), econometricians interpret it as a
vector of unexpected, uncorrelated, shocks affecting the economy as a whole and since y contains all avail-
able information, then it is reasonable to assume Hu

t = Hεyt = Hy
t , for any t ∈ Z. In other words, an

economy-wide VARMA representation of the DSGE model is driven by shocks that belong only to the past
of yt. In order to emphasize their economic meaning, we call u structural shocks. Typically, these shocks
are very few and their nature can be, for example, technological (e.g. a new technical innovation), or mon-
etary (e.g. a change in the interest rate), or fiscal (e.g. an increase in taxes or in government spending), or
financial (e.g. a crash in the stock market). Notice that under the additional assumption of Gaussianity of u
the shocks are also independent. This assumption is made throughout the rest of the section.

NONFUNDAMENTALNESS. However, econometricians observe only a finite and often small amount of
information, i.e. they observe only a subset x(n) of the economy wide process y. Clearly, the structural
shocks u, affecting the whole economy y, affect also a subset x(n) of it. However, there is evidence of
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many economic examples for which the space generated by u, which coincides with the space generated by
the innovations of y, is larger than the space generated by the innovations of x(n), that is:

Hx(n)

t ⊂ Hu
t = Hy

t

‖ ‖
Hεx(n)

t ⊂ Hu
t = Hεyt

, t ∈ Z. (117)

In particular, we have the definition.

DEFINITION. A white noise process u is x(n)-fundamental ifHx(n)

t = Hu
t , for any t ∈ Z.

Then, if we have a situation as in (117), we say that u is x(n)-nonfundamental, or that x(n) is a non-
fundamental VARMA process which implies that at any t ∈ Z, ut belongs to the space spanned by also
future values of x

(n)
t . How can we then retrieve the space spanned by ut using only present and past val-

ues of the observables? What is the meaning of nonfundamental shocks? From (117) we see that u is
x(n)-nonfundamental because the econometricians’ information space Hx(n)

t is smaller than the informa-
tion space Hy

t of an agent able to observe the whole economy y. In this sense nonfundamentalness is a
problem related to information.

The traditional way of retrieving the space generated by the structural shocks Hu
t consists in assuming

finite lag, causal, VAR approximations of a VARMA for a process x(n). By definition of causal VAR, the
associated white noise, say v, is always x(n)-fundamental. Thus, a VAR approximation is valid only as long
as the structural shocks u that we want to recover are x(n)-fundamental, and in this caseHv

t = Hu
t , for any

t ∈ Z. If instead economic theory tells us that u is x(n)-nonfundamental, then VAR are not the appropriate
model to use since in this caseHv

t ⊂ Hu
t , for any t ∈ Z.

Two solutions are possible to solve the problem of nonfundamentalness. Either we apply to vt ad hoc
filters called Blaschke matrices in order to obtain a new white noise process ṽ such that Hv

t ⊂ Hṽ
t = Hu

t ,
for any t ∈ Z. Or we add new information to x

(n)
t in order to have a larger panel x

(m)
t with m > n (i.e.

we enlarge the econometricians’ information space) in such a way that Hx(n)

t ⊂ Hx(m)

t = Hy
t , for any

t ∈ Z. An example of the first way is in Forni, Gambetti, Lippi, and Sala (2014) and we do not consider it
here. The second way is mainly based on factor models, which are apt to deal with the case n → ∞, thus
mimicking the economy-wide process y. In particular, we show that if x(n) has a factor structure, then for
the common component χ(n) we haveHχt = Hu

t , where u are the q common shocks driving χ(n).

CONDITIONS FOR FUNDAMENTALNESS. Let us consider an n-dimensional MA covariance stationary
process x

(n)
t obtained from a given DSGE

x
(n)
t = C(n)(L)ut, ut ∼ w.n.(0, I), t ∈ Z, (118)

where ut is a q-dimensional vector white noise process of structural shocks with q not necessarily equal to
n; C(n)(L) is an n × q matrix of rational, one-sided, and square-summable filters. In principle C(n)(L)
can be of infinite order thus including also an AR component, which we always assume to be causal.

When n = q, u is x(n)-fundamental if and only if:

a) ut is a weak white noise vector;

b) C(n)(z) has no poles inside the unit circle;

c) det C(n)(z) has no roots lying inside the unit circle:

det C(n)(z) 6= 0 ∀ z ∈ C s.t. |z| < 1 .

If, on the other hand, n > q, u is x(n)-fundamental if and only if:

a) ut is a weak white noise vector;
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b) C(z)(n) has no poles inside the unit circle;

c) C(z)(n) has full rank inside the unit circle

rank C(n)(z) = q ∀ z ∈ C s.t. |z| < 1 .

Intuitively, singularity makes nonfundamentalness a non-generic problem. Consider the case q = 1. If
n > 1 we have n submatrices C

(n)
j (z) and the representation is nonfundamental if their determinants have

a common root smaller than one in modulus. Nonfundamentalness is non generic because to have a com-
mon root we must satisfy

(
n
q

)
−1 equality constraints. Intuitively, when n is large, it is highly improbable to

have a common root for all submatrices C
(n)
j (L), as the number of restrictions we should satisfy increases

with n.

We say that C(n)(z) is left-invertible if it exists a n × q full-rank matrix D(n)(z) of rational complex
functions such that D(n)(z)′C(n)(z) = Iq . We have three possibilities:

a) D(n)(z) exists and its Laurent series expansion is composed only of positive powers of z, thus present
and past values of xt are enough to recover ut: we have fundamentalness and invertibility or, better,
invertibility in the past;

b) D(n)(z) exists and its Laurent series expansion contains also negative powers of z, thus we need
also future values of xt to recover ut: we have nonfundamentalness and noninvertibility or, better,
invertibility but in the future;

c) D(n)(z) does not exist and conditions for fundamentalness still hold, we do not have invertibility
either in the past or in the future. For example, in squared systems this happens when det C(n)(z)
has at least one root on the unit circle and all other roots outside.

For simplicity, being the latter a borderline case, we do not deal with it here and in what follows we speak
about roots “outside the unit circle”, meaning “outside and, possibly, on the unit circle”.

As an example consider the permanent income Friedman-Muth model. Income yt is decomposed in a
permanent part y1t and a transitory part y0t which are independently affected by uncorrelated shocks

(1− L)y1t = u1t, y0t = u0t.

If consumption ct follows the permanent income hypothesis, we have: (1−L)ct = u1t+ (1−β)u0t where
β ∈ (0, 1) is the agent discount factor. Therefore, we have

xt =

(
(1− L)yt
(1− L)ct

)
=

(
1 1− L
1 1− β

)(
u1t

u0t

)
= C(L)ut.

In this case det C(z) = (z − β) and hence it has the only root in z = β, which by definition lies inside the
unit circle. The above econometric model representing the permanent income model is nonfundamental.
The space spanned by permanent and transitory shocks to income is not recoverable by considering only
present and past values of income and consumption.

Then let us consider the “toy” example with n = q = 2

x1t = (1− aL)u1t, x2t = (1− bL)u2t,

thus we need both |a| < 1 and |b| < 1 in order to have fundamentalness.21 Consider instead the case n = 2
and q = 1:

x1t = (1− aL)ut, x2t = (1− bL)ut.

21Indeed, we have

u1t = x1t +
∞∑
k=1

(−1)k−1akx1t−k (119)

and the series converges only if |a| < 1.
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Then ut is (x1, x2)-fundamental for any real numbers a and b provided that a 6= b, indeed we can write22

ut =
bx1t − ax2t

b− a
.

In this sense in the case n > q it is easier to have fundamentalness as a less restrictive condition on the
parameters has to be satisfied.

FUNDAMENTALNESS IN FACTOR MODELS - INTUITION. From Theorem 2, we know that as n→∞ the
correct representation of x(n) is not (118) but (see also (47))

x
(n)
t = B(n)(L)ut + ξ

(n)
t , t ∈ Z, (120)

where u is an orthonormal q-dimensional vector white noise process with q < n and B(n)(L) is an n × q
matrix of rational, one-sided, and square-summable filters. Moreover, from Theorem 6, we have the state-
space representation (see also (67)-(68))

x
(n)
t = Λ(n)Ft + ξ

(n)
t , t ∈ Z, (121)

Ft = N(L)ut. (122)

According to DSGE we can interpret:

1. x(n) as the observed variables of a typical macroeconomic dataset;

2. F as some proxies for the state variables, which are unobserved;

3. u as the structural shocks;

4. ξ(n) as measurement errors.

Under these conditions we are interested in the effect of the structural shocks on the common component
χ(n), i.e. we are neglecting the idiosyncratic component. It is then possible to show that actually nonfunda-
mentalness is a non-generic problem in factor models, and, under reasonable assumptions, we can always
guarantee that the structural shocks u are χ(n)-fundamental. In factor models we always have n > q,
therefore, we refer to the condition for fundamentalness in singular systems. It is the singularity of dynamic
factor models that makes the property of nonfundamentalness non generic.

To have fundamentalness we ask for B(n)(L) to have maximum rank q inside the unit circle, i.e. its columns
must be linearly independent. This is equivalent to asking for heterogeneity of the IRF (which are the ele-
ments of B(n)(L)) of the n variables to the q structural shocks. In very large datasets this is very likely to
happen and it is therefore reasonable to assume fundamentalness. Roughly speaking, although in principle
the econometrician has a smaller information space than the agents’ one (i.e. there is room for potential
nonfundamentalness), she can include additional series in the system, and, if dynamic heterogeneity is
guaranteed, then these series contain truly new and useful information.

To clarify this point further, let us consider again the permanent income model. We have seen that the
model is nonfundamental. However, if the econometrician observes also some additional variables x∗t such
that (1− L)x∗it = bi(L)ut, then ut is fundamental for the whole system unless bi(z) has the same root as
the original system, i.e. unless bi(β) = 0 for every variable x∗it added, which is extremely unlikely. Notice

22We have

x1t = a

(
1

a
− L

)
ut, x2t = b

(
1

b
− L

)
ut

and then
x1t

a
−
x2t

b
=

1

a
ut −

1

b
ut =

b− a
ab

ut
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that adding savings st = yt − ct as an additional variable, for example, would not work, indeed

xt =

 (1− L)yt
(1− L)ct
(1− L)st

 =

 1 1− L
1 1− β
0 (β − L)

( u1t

u0t

)
=

(
C(L)
b(L)

)
ut.

The determinants of the three q×q submatrices will all have their only root in β, so it will still be impossible
to recover ut using only past and present observations of income, consumption and savings. This makes
sense, as, being savings just a linear combination of income and consumption, they do not contain any
useful additional information, i.e. we do not have any dynamic heterogeneity in the system.

FUNDAMENTALNESS IN FACTOR MODELS - THEORY. Fundamentalness in singular models is proved in
the following Theorem.

THEOREM 7 (Anderson and Deistler (2008)). Consider an n-dimensional process χ(n), with rational spec-
tral density Σ

(n)
χ (θ) with the first q dynamic eigenvalues diverging as n→∞, and n > q. Then,

Σ(n)
χ (θ) =

1

2π
B(n)(e−iθ)B(n)′(eiθ),

where B(n)(z) is n×q, rational, has no poles and no zeros for |z| ≤ 1 and is associated to the representation

χ
(n)
t = B(n)(L)ut, t ∈ Z,

where ut is a q-dimensional orthonormal weak white noise. Moreover, B(n)(z) admits a finite order left-
inverse A(n)(z) such that we can always write

A(n)(L)χ
(n)
t = B(n)(0)ut, t ∈ Z.

Given the properties of B(n)(z) this Theorem guarantees fundamentalness of the shocks u for the common
component χt. The estimation technique proposed in Forni, Hallin, Lippi, and Zaffaroni (2015b,a) exploits
directly the autoregressive representation of the common component as given in Theorem 7, while here we
consider only the implications of this theorem for the state-space version of the approximate dynamic factor
model.

The idiosyncratic component can be neglected and considered as a vanishing measurement error and indeed
we can show that as n→∞ the shocks u are also x(n)-fundamental. As we have already seen in Section 6,
Theorem 7, when applied to the factors process, (122), guarantees the existence of a VAR model, which can
be exploited when estimating the model. Therefore, we can consider again the state-space representation
(67)-(70) of Section 6, where (122) is replaced by

G(L)Ft = N(0)ut,

and G(L) is one-sided and such that G(L)N(L) = N(0). Under Assumption A5’, condition (b”) given

in Section 3 is satisfied and Λ(n)′Λ(n)

n → H, with H being r × r and full-rank. Moreover, from Theorem

3, condition (a’) in Section 3 is also satisfied. Define the r × n one-sided filter S(n)(L) = G(L)H−1Λ(n)′

n ,
then, in a way similar to what we did in the PCA case in Section 3 we can show that, as n→∞, 23

S(n)(L)x
(n)
t = G(L)H−1 Λ(n)′Λ(n)

n
Ft + G(L)H−1 Λ(n)′ξ

(n)
t

n

= G(L)H−1 Λ(n)′Λ(n)

n
N(L)ut + G(L)H−1 A(n)′ξ

(n)
t

n

q.m.−→ N(0)ut, (123)

where convergence is in quadratic mean (and therefore also in probability). As n → ∞, ut lies in the
space spanned by the present and past values of x

(n)
t , i.e. the structural shocks are x(n)-fundamental.

In terms of Hilbert spaces, by recognizing that Hx(n)

t = Hχ
(n)

t ⊕ Hξ
(n)

t , then, as n → ∞, we have
23Notice that the autoregressive polynomial S(n)(L) is one-sided since G(L) is one-sided.
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Hx(n)

t → Hχ
(n)

t = Hu
t , for any t ∈ Z.

Summing up, fundamentalness is equivalent to the assumptions of reduced rank (i.e. comovements) and
dynamic heterogeneity, which are perfectly reasonable assumptions when dealing with large datasets. As
already pointed out, in empirical applications with large cross sections we often find evidence of reduced
static and dynamic ranks, i.e. r < n and q < n, which suggest the presence of few pervasive factors.
Dynamic heterogeneity is then a reasonable property in a factor model with large cross sectional dimension
n as economic variables react differently to the few structural shocks. Even if the structural shocks are
fundamental for the whole system, they may not be fundamental for some subsamples of series. However,
this is not a major problem in this context. Indeed, thanks to dynamic heterogeneity, the missing informa-
tion due to local nonfundamentalness is completed with additional cross-sectional information contained in
other series. In this sense, we can consider nonfundamentalness a non-generic problem for dynamic factor
models.

IDENTIFICATION OF IMPULSE RESPONSES. We know from Section 7 how to estimate IRF. Without loss
of generality, we know that a VAR(1) for the factors is sufficient, and we replace (122) with

Ft = AFt−1 + Gηt, ηt ∼ (0,Γη),

with G being r × q and such that Gηt = N(0)ut. Therefore, we know that it is always possible to find an
invertible q × q matrix R such that ηt = Rut and the identified IRF are given by

xit = λ
′

i(I−AL)−1GRut + ξit

= c′i(L)Rut + ξit

= b′i(L)ut + ξit, i ∈ N, t ∈ Z. (124)

and we refer to c′i(L) as to the non-identified IRF and to b′i(L) as to the identified IRF, these are collected
into the n×q matrix polynomials C(n)(L) and B(n)(L), respectively. Since we are interested in identifying
the shocks we must deal with the choice of R. Since we typically we assume normality of the shocks u,
then in order to impose independence of the identified shocks u it is enough to impose orthogonality, thus
we can restrict R to be an orthogonal matrix, i.e. such that R′R = Iq . The main advantage with respect to
SVAR is that in this case identification is always reduced to the choice of an orthogonal matrix R with only
q(q − 1)/2 parameters, independently of the number of series n considered, which is typically much larger
than q. In contrast with the SVAR case, we do not have to impose any limitation on the size of the panel in
order to estimate and identify the structural shocks.

As we can assume that the idiosyncratic component contains negligible information (e.g. it contains mea-
surement errors), after estimating a dynamic factor model on a large panel x(n), we can compare the es-
timated impulse responses of a q-dimensional subset of series x

(q)
t , with those obtained by estimating a

q-dimensional SVAR using only x
(q)
t . This is the approach used in Forni and Gambetti (2010); Luciani

(2013); Barigozzi, Conti, and Luciani (2013).

There are many possibility for choosing the identification strategy, i.e. the choice and estimation of R.
Three main strategies are possible:

1. recursive or Cholesky identification used by Forni and Gambetti (2010) in factor models;

2. identification based on long-run restrictions as proposed by Blanchard and Quah (1989) and used by
Forni, Giannone, Lippi, and Reichlin (2009) in factor models;

3. identification based on sign restrictions as proposed by Uhlig (2005) and then applied in factor models
by Luciani (2013) and Barigozzi, Conti, and Luciani (2013).

In the recursive scheme Forni and Gambetti (2010) identify a monetary policy shock by assuming that
it does not affect at impact neither Industrial Production nor the CPI. Consider the q × q subset of IRF
corresponding to the rows of Industrial Production, CPI, Federal Funds rate, and CHF/USD exchange rate

62



(the order is important here), and define this sub-matrix as Cq(L). The Cholesky triangular factorization is
such that

Cq(0)C′q(0) = KK′

with K being lower triangular. The matrix K has 6 zeros, corresponding to the 6 restrictions we need when
q = 4. The rotation matrix is then defined as

R = [Cq(0)]−1K.

In this way, from (124), the impact of the 4 shocks on the 4 selected variables are

χipi,t

χcpi,t

χffr,t

χexr,t


= Bq(0)ut = Cq(0)[Cq(0)]−1



k1 0 0 0

k2 k3 0 0

k4 k5 k6 0

k7 k8 k9 k10





u1t

u2t

u3t

u4t


,

and we call u3t the monetary policy shock and the related IRF for all variables are in the third column of
C(L)R.

For identification based on long-run restrictions consider the simple case q = 2. A generic rotation matrix
in 2 dimensions is always written as

R =

(
cos θ sin θ
− sin θ cos θ

)
;

with θ ∈ [0, 2π] being the rotation angle. We have to impose one restriction, i.e. fix the rotation angle θ.
Assume that one of the two shocks say u2t is a transitory shock (e.g. a demand shock), while the other say
u1t has a permanent effect on all variables (e.g. technology or productivity shock). Following the example
in Blanchard and Quah (1989) we then assume that u2t has no long-run effect on real variables, e.g. on
Industrial Production and unemployment rate (we need q = 2 variables to impose restrictions on as we have
two shocks). Then we have χipi,t

χur,t

 =

 b11(L) b12(L)

b21(L) b22(L)

 u1t

u2t

 =

=

 c11(L) c12(L)

c21(L) c22(L)

( cos θ sin θ
− sin θ cos θ

)(
cos θ − sin θ
sin θ cos θ

) v1t

v2t


The restriction we impose is

b12(1) = c11(1) sin θ + c12(1) cos θ = 0

and solving for θ we have the estimated angle

θ = tan−1

(
−c12(1)

c11(1)

)
.

Things get more complex with q > 2, e.g. with q = 3 we need 3 angles and with q = 6 we need 15 angles.

When we have many shocks we can use sign restrictions. For example, as in Barigozzi, Conti, and Lu-
ciani (2013), we can identify a monetary policy shock by imposing that at impact it has positive effect on
the Federal Funds rate, and negative on CPI, Industrial Production and on other variables. Assume that the
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monetary policy shock is u1t then we look for a rotation matrix such that the identified system is



χipi,t

χffr,t

χcpi,t
...


=



b11(0)︸ ︷︷ ︸
<0

. . . b1q(0)

b21(0)︸ ︷︷ ︸
<0

. . . b2q(0)

b31(0)︸ ︷︷ ︸
>0

. . . b3q(0)

...



 u1t

...
uqt



u1t is the monetary policy shock and the others are left unidentified. In order to determine the rotation
we extract a q(q − 1)/2 dimensional uniform distribution of angles defined on [0, 2π]. Thus, we build a
distribution of q × q rotation matrices and among these we keep only those satisfying the restrictions. In
factor models, we can impose up to n sign restrictions for any shock, however if we impose too many
restrictions we are likely to find no rotation satisfying them. This strategy gives only partial identification
as there might be more than one rotation satisfying the restrictions. On the other hand, both the recursive
and the long-run identification schemes have exact solutions, hence we have just identified models.
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10 Factor models in finance

Factor models for financial data, are aimed at analysing either stock returns or their volatility (conditional
variance). We consider here the following topics

1. the Arbitrage Pricing Theory (APT) and optimal investment portfolios;

2. network analysis of interdependencies in idiosyncratic components to measure risk;

3. parametric models for large conditional variance matrices.

APT AND THE STATIC APPROXIMATE FACTOR MODEL. Stock returns are often seen to have very low au-
tocorrelation and therefore are often modelled as white noises, and, in this case, a static factor model seems
to be an appropriate choice. Therefore, Chamberlain and Rothschild (1983) consider a static approximate r
factor model for returns

x
(n)
t = µ(n) + Λ(n)Ft + ξ

(n)
t , (125)

where µ(n) = (µ1 . . . µn)′. Notice that differently from the usual case the variables have mean µi which is
not zero, and µ(n) = E[x

(n)
t ] is the vector of means. The usual assumptions of the approximate factor mod-

els are made. In particular, with reference to the properties in Section 7, we make Assumption A5’, implies
diverging eigenvalues of the common component (linearly in n) and we assume bounded eigenvalues of
the idiosyncratic covariance matrix, which is consequence of condition 4. The factors and the idiosyncratic
components are orthogonal because of condition 0.

Now, consider the orthogonal projection of the expected return vector µn onto the space spanned by the
(r + 1) columns of (ιn,Λ

(n)), where ιn is an n-dimensional column of ones:

µ(n) = ιnρ+

r∑
j=1

λ
(n)
j τj + c(n), (126)

where ρ and τj are the projection coefficients and λ(n)
j is the jth column of Λ(n) and is n-dimensional.

Since the above is an orthogonal projection, the residuals c(n) must satisfy the orthogonality conditions24

c(n)′λ
(n)
j =

n∑
i=1

ciλij = 0, j = 1, . . . , r, (127)

c(n)′ιn =

n∑
i=1

ci = 0. (128)

A portfolio is a weighted average of the stock returns where the weights represent the fraction of total
wealth allocated to each stock. So if we consider a portfolio with weights given by c(n), and denoted as
p

(n)
t = c(n)′x

(n)
t then by (128), the portfolio is costless. Thus, by (125), using (126), (127), (128), we have

p
(n)
t = c(n)′x

(n)
t = c(n)′µ(n) + c(n)′Λ(n)Ft + c(n)′ξ

(n)
t = c(n)′µ(n) + c(n)′ξ

(n)
t

= c(n)′ιnρ+ c(n)′
r∑
j=1

λ
(n)
j τj + c(n)′c(n) + c(n)′ξ

(n)
t

= c(n)′c(n) + c(n)′ξ
(n)
t . (129)

The expected return on this portfolio is then

E[p
(n)
t ] = E[c(n)′x

(n)
t ] = c(n)′c(n). (130)

24It is customary to consider nested sequences thus when moving from n to n+1 the first n entries of all vectors remain unchanged
and therefore ci and λij do not depend on n.
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Now let us consider the variance of this portfolio, which is a measure of risk associated to the portfolio,
using (127) or directly (129), we have

Var(p
(n)
t ) = Var(c(n)′x

(n)
t ) = c(n)′Γ(n)

x c(n)

= c(n)′Λ(n)ΓFΛ(n)′c(n) + c(n)′Γ
(n)
ξ c(n)

= c(n)′Γ
(n)
ξ c(n). (131)

Thus, from (131) and the definition of eigenvalues, we have the bounds on the portfolio variance (recall that
c(n)′c(n) = ‖c(n)‖2)

λ
(n)
nξ ‖c

(n)‖2 ≤ Var(p
(n)
t ) ≤ λ(n)

1ξ ‖c
(n)‖2 (132)

Define the Sharpe ratio as the ratio between the expected return and the risk of a given portfolio

δ(n) =
|E[p

(n)
t ]|√

Var(p
(n)
t )

=
‖c(n)‖2√
Var(p

(n)
t )

. (133)

This gives the trade-off mean-variance and the larger the Sharpe ratio the better it is. Then, from (130),
(131), and (132), we have the bounds

‖c(n)‖2

λ
(n)
1ξ

≤ (δ(n))2 ≤ ‖c
(n)‖2

λ
(n)
nξ

. (134)

In the case δ(n) → ∞ we say that we have arbitrage, indeed, if we assume λ(n)
nξ > 0, the only possibility

for this to happen is that ‖c(n)‖2 →∞, which in turn implies E[p
(n)
t ]→∞ and Var(p

(n)
t )→ 0, and this is

a portfolio with infinite return and zero risk.

So to impose no arbitrage, δ(n) < ∞, we must require ‖c(n)‖2 < ∞. In particular, from (134), we
also find that

(δ(n))2λ
(n)
nξ ≤ ‖c

(n)‖2 ≤ (δ(n))2λ
(n)
1ξ <∞, (135)

since by assumption the eigenvalues of the idiosyncratic covariance are bounded. As a consequence of the
upper bound in (135), for any i we must have ci → 0 as n → ∞, therefore from (126) we have that the
return on the ith stock tends to

µi → ρ+

r∑
j=1

λijτj , n→∞ (136)

which is the same result as in the Capital Asset Pricing Model (CAPM). If we consider the factors as
coming from the market we are saying that we can price each stock based on its relation to the market.25 In
other words, we have the well known result that, under a factor structure, after aggregation (i.e. building a
portfolio) only the factor component survives when n→∞.

PORTFOLIO OPTIMISATION AND LARGE COVARIANCE MATRICES. We have seen how to build a no
arbitrage portfolio. However, in portfolio optimisation we want to build portfolios with maximum expected
return or minimum risk. We here focus on the second case, thus,26

min
u

Var(u′x
(n)
t ) = min

u
u′Γ(n)

x u, s.t. u′ιn = 1. (137)

25The loadings are sometimes denoted as βij and in finance are called betas.
26If instead we also set a given a pre-specified portfolio return µ∗, we want to solve

min
u

Var(u′x
(n)
t ) = min

u
u′Γ

(n)
x u, s.t. u′u = 1, u′µ(n) = E[u′x

(n)
t ] = µ∗.

The solution of (137) is given by the optimal weights

w(n) = β
(
Γ
(n)
x

)−1
ιn + γ

(
Γ
(n)
x

)−1
µ(n)
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The solution of (137) is given by the optimal weights

w(n) =

(
Γ

(n)
x

)−1
ιn

ι′n
(
Γ

(n)
x

)−1
ιn
, (138)

which has Sharpe ratio

δ(n) =

∣∣ι′n(Γ(n)
x

)−1
µ(n)

∣∣[
ι′n
(
Γ

(n)
x

)−1
ιn
]1/2 .

It is then clear that to solve the problem we need an estimator of the inverse covariance matrix of x(n),
which for large n might be very hard to obtain. In particular, if we let n → ∞ then the sample covariance
matrix is not a consistent estimator of the true covariance unless n2/T → 0, which is hardly the case (see
(36)). Many alternative estimators of the covariance matrix which deliver an invertible matrix even in the
large n case have been proposed, however most of them are for independent data (hence not time series).
Moreover, a whole class of estimators assumes that the covariance matrix is a sparse matrix, and the usual
definition of sparsity is that

‖Γ(n)
x ‖1 = max

j=1,...,n

n∑
i=1

∣∣[Γ(n)
x

]
ij

∣∣ = o(n). (139)

Since ‖Γ(n)
x ‖1 ≥ ‖Γ(n)

x ‖2 = λ
(n)
1x , condition (139) clearly violates the assumption of a factor structure

where λ(n)
1x = O(n).

Fan, Liao, and Mincheva (2013) provide a regularised estimator of the covariance matrix which holds
for time dependent data and is compatible with factor structure. The covariance matrix is written as

Γ(n)
x = Λ(n)′ΓFΛ(n) + Γ

(n)
ξ = Γ(n)

χ + Γ
(n)
ξ ,

which shows that it is made of a reduced rank matrix plus a matrix which we know has small cross-sectional
dependence, that is λ(n)

1ξ is bounded for any n. Hence, we can assume sparsity of the idiosyncratic covari-
ance, indeed it is always true that

λ
(n)
1ξ = ‖Γ(n)

ξ ‖2 ≤ ‖Γ
(n)
ξ ‖1 = o(n).

The covariance matrix is then estimated in two steps:

1. PCA to estimate the covariance of the common component Γ
(nT )
χ as in Sections 3 and 7, and define

Γ
(nT )
ξ = Γ

(nT )
x − Γ

(nT )
χ , where Γ

(nT )
x is the sample covariance of x(n);

2. penalise Γ
(nT )
ξ by forcing to zero all entries that satisfy a certain condition, for example define Γ

(nT )
ξ,τ

such that its entries satisfy [
Γ

(nT )
ξ,τ

]
ij

=
[
Γ

(nT )
ξ

]
ij
I∣∣[Γ(nT )

ξ

]
ij

∣∣>τ ,
which is called hard-thresholding, while other penalisations are also possible.

where

β =
(µ(n)′ − µ∗ι′n)

(
Γ
(n)
x

)−1
µ(n)

ι′n
(
Γ
(n)
x

)−1
ιnµ(n)′

(
Γ
(n)
x

)−1
µ(n) −

[
ι′n
(
Γ
(n)
x

)−1
µ(n)

]2 ,
γ =

ι′n
(
Γ
(n)
x

)−1
(µ∗ιn − µ(n))

ι′n
(
Γ
(n)
x

)−1
ιnµ(n)′

(
Γ
(n)
x

)−1
µ(n) −

[
ι′n
(
Γ
(n)
x

)−1
µ(n)

]2 .
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The resulting estimated covariance is defined as

Γ(nT )
x,τ = Γ(nT )

χ + Γ
(nT )
ξ,τ , (140)

and it can proved that is a consistent estimator of the true covariance and that (Γ
(nT )
x,τ )−1 exists. Therefore,

(140) can be used into (138) to estimate the optimal weights of the minimum risk portfolio.

NETWORKS AND PARTIAL CORRELATION MATRICES. Another object of interest in financial application
is the partial correlation matrix, that is the matrix with as generic (i, j)th entry, ρij , the correlation between
stock returns xi and xj given all other returns. The partial correlation is directly related to the inverse
covariance matrix by the relation

ρij = −

[
(Γ

(n)
x )−1

]
ij√[

(Γ
(n)
x )−1

]
ii

[
(Γ

(n)
x )−1

]
jj
.

(141)

Therefore, the method explained above is useful to compute also partial correlation.

On the other hand, graphical models literature has shown that partial correlations have a useful repre-
sentation as networks, which in turn can be used to study the propagation of shocks through the market
in what can be seen as an assessment of systemic risk by looking at most connected nodes in the network
(Diebold and Yılmaz, 2014). To this end it is customary to consider sparse networks rather than full ones.
In this sense the estimator proposed above is not ideal since having defined Γ

(nT )
ξ,τ as sparse in general does

not imply that also its inverse is sparse. Moreover, once again the factor structure is in contradiction with
the idea that (Γ

(n)
x )−1 is sparse. To see this, consider, as an example, the static approximate factor model

(125) with one factor (r = 1). The inverse covariance matrix of x(n) is given by

(Γ(n)
x )−1 = (Γ

(n)
ξ )−1 −

(Γ
(n)
ξ )−1λ(n)λ(n)′(Γ

(n)
ξ )−1

1 + λ(n)′(Γ
(n)
ξ )−1λ(n)

,

where λ(n) is the n × 1 vector of factor loadings. Under the assumption of diverging eigenvalues like
Assumption A5’ in Section 6, we have ‖λ(n)‖2 = λ(n)′λ(n) = Tr(λ(n)λ(n)′) = O(n), and the matrix
(Γ

(n)
x )−1 cannot be sparse in the sense of (139) even if (Γ

(n)
ξ )−1 is sparse. Moreover, if we think of the

factor as a weighted average of all other series, say ft = a′xt =
∑n
i=1 aixit, then though a factor model xi

is function of all other x’s, that is ρij 6= 0 for all j.

Therefore, in large dimensional settings networks should be considered for the idiosyncratic component
only. A way to obtain sparse estimators of the inverse idiosyncratic covariance is by considering the regres-
sion for the estimated idiosyncratic components (for example obtained from PCA)

ξ
(nT )
it =

n∑
i=1
i 6=j

βijξ
(nT )
jt + vit, i = 1, . . . , n. (142)

Since βij 6= 0 if and only if
[
(Γ

(nT )
x )−1

]
ij
6= 0, then, by estimating (142) for example with LASSO, we

obtain through (141) an estimated sparse partial correlation network.

This approach can be applied to returns, but it is more interesting on volatility time series as these can
be seen as risk measures. In the latter case conditional lagged dependencies should also be considered and
hence (142) should be replaced by sparse VAR models (Barigozzi and Hallin, 2016b).

FACTOR GARCH MODELS. In the previous application the dynamics of the factors has not be considered,
indeed as we said returns are usually modelled as white noise. However, we also know that squared returns
are likely to be correlated, that is returns are not independent. A way to model this feature is by assuming
that returns are conditionally heteroschedastic that is their variance and covariance conditional on the past
evolve with time. In univariate setting this is captured with GARCH models, but in a multivariate setting
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these models are hardly generalised due to the too many parameters that would be needed. A parsimonious
solution is provided by the factor GARCH model (Diebold and Nerlove, 1989)

x(n) = Λ(n)Ft + ξ
(n)
t ,

Ft = H
1/2
t νt, νt ∼ i.i.d.N(0, Ir),[

Ht

]
ii

= ωi + αiF
2
it−1 + βi

[
Ht−1

]
ii
, i = 1, . . . , r, (143)

with ωi > 0, αi, βi ≥ 0 to guarantee positivity, and αi + βi < 1 to ensure weak stationarity. Then it is
straightforward to see that

E[Ft|Xt−1] = 0, Var(Ft|Xt−1) = Ht.

Moreover, we can also assume
[
Ht

]
ij

to be either constant (which would result in a CCC-GARCH) or time
dependent (which would result in a DCC-GARCH or a BEKK-GARCH).

From (143) we immediately have that the conditional covariance of x(n) is given by

Var(x
(n)
t |Xt−1) = Λ(n)HtΛ

(n)′ + Var(ξ
(n)
t |Xt−1)

In the simplest case we assume ξ(n)
t to be white noise and also homoschedastic so that Var(ξ(n)

t |Xt−1) =

Γ
(n)
ξ . Generalisations to univariate idiosyncratic GARCH models are also possible, thus making Var(ξ

(n)
t |Xt−1)

diagonal and time dependent.

Estimation of (143) in two steps is possible by first extracting the factors via PCA and then estimating
the appropriate GARCH model (Alessi, Barigozzi, and Capasso, 2009; Aramonte, del Giudice Rodriguez,
and Wu, 2013). This approach is however not efficient since it does not exploit conditional heteroscedas-
ticity in estimating the factors. Alternatively, the KF approach can be used, possibly embedded in an EM
algorithm, to deliver more efficient estimates (Harvey, Ruiz, and Sentana, 1992; Sentana, Calzolari, and
Fiorentini, 2008, although in the finite n case).
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11 Number of factors

EXPLAINED VARIANCES. Given the equivalence between a static model with r factors and a dynamic
model with q factors, where typically q ≤ r, it is natural to assume that the variance explained by the q
largest dynamic eigenvalues:

EVD =

∑q
j=1

∫ π
−π λ

(n)
jx (θ)dθ∑n

j=1

∫ π
−π λ

(n)
jx (θ)dθ

is the same as the variance explained by the r largest eigenvalues of the covariance matrix:

EV S =

∑r
j=1 λ

(n)
jx∑n

j=1 λ
(n)
jx

By comparison of the two, we often find that in order to have EVD = EV S we need r > q. This intuition
is also confirmed by the results of the criteria to determine q and r presented below.

DYNAMIC FACTORS. We consider here the criterion proposed by Hallin and Liška (2007) which is based
on the representation Theorem 2, thus on the GDFM.27 The criterion is based on the properties of dynamic
eigenvalues of the data and looks for the value q that minimizes the contribution of the idiosyncratic com-
ponent. Clearly, in order to avoid overestimation of q a penalty p(n, T ) is required and due to the large
n, T setting such function must depend on both dimensions. Moreover, the penalty is tuned by means of a
constant c. Thus for a grid of values of q = 0, . . . , qmax and c ∈ [0, cmax], we need to compute the criterion

IC(nT )(c, q) =
1

n

n∑
i=q+1

1

2MT + 1

MT∑
h=−MT

λ
(nT )
ix (θh) + c q p(n, T ),

where we considered a grid of frequencies θh on which we estimated the spectral density and its dynamic
eigenvalues. Then, for any c we have to solve

q(nT )(c) = arg min
q=0,...,qmax

IC(nT )(c, q). (144)

In order to determine c and the estimate the number of dynamic factors, we have to compute the criterion for
J < n sub-blocks of series of size nj = n− J + j with j = 1, . . . , J . For each sub-block we can compute
the number of dynamic factors by minimising the analogous of (144) which we denote by q(njT )(c). Thus
the variation in the number of dynamic factors as the size of the panel varies is

S(c) =
1

J

J∑
j=1

q(njT )(c)− 1

J

J∑
j=1

q(njT )(c)

2

.

This procedure mimics the idea that the number of dynamic factors is constant for a panel of size nj when
nj is large enough, indeed q in Theorem 2 is defined for an infinite dimensional panel. Thus, we look for
values of c such that:

1. S(c) = 0;

2. q(nT )(c) is constant and less than qmax.

Starting from the smallest value of c denote by c∗ the first value of c such that the two conditions are
met. Then the estimator of the number of dynamic factors is q(nT )(c∗). We have the consistency result, as
n, T →∞ (Hallin and Liška, 2007)

q(nT )(c∗)
p→ q,

27An an alternative method is a test proposed by Onatski (2009) and based on the properties of dynamic eigenvalues. While the
methods by Amengual and Watson (2007) and Bai and Ng (2007) require first the estimation of the number of static factors r.
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provided that p(n, T ) → 0 and min(n,M2
T ,M

−1/2
T T 1/2)p(n, T ) → ∞, where MT is the truncation pa-

rameter used to estimate the spectral density and is such that MT →∞ and MTT
−1 → 0 as T →∞.

STATIC FACTORS. We consider here the criterion by Alessi, Barigozzi, and Capasso (2010) which is a
modification of the original criterion by Bai and Ng (2002).28 The criterion works exactly as the previous
criterion for dynamic factors but considers the eigenvalues of the covariance matrix. Thus for a grid of
values of r = 0, . . . , rmax and c ∈ [0, cmax], we need to compute the criterion29

IC(nT )(c, r) =
1

n

n∑
i=r+1

λ
(nT )
ix + c r p(n, T ),

Then, for any c we have to solve

r(nT )(c) = arg min
r=0,...,rmax

IC(nT )(c, r). (145)

The optimal value of the constant denoted as c∗ is determined exactly as in the case of dynamic factors
and the estimator of the number of static factors is obtained as r(nT )(c∗). We then have consistency, as
n, T →∞ (Bai and Ng, 2002)

r(nT )(c∗)
p→ r,

provided that p(n, T )→ 0 and min(n, T )p(n, T )→∞.

28Other methods based on the behaviour of eigenvalues are proposed by Onatski (2010), Ahn and Horenstein (2013), and Trapani
(2017).

29Equivalently, the criterion is often written as

IC(c, r) =
1

T

T∑
t=1

(
x
(n)
t −Λ

(nT )
r F

(nT )
t,r

)′ (
x
(n)
t −Λ

(nT )
r F

(nT )
t,r

)
+ c r p(n, T ) = tr(Γ(nT )

ξ ) + c r p(n, T ).
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12 Selected literature on recent developments

Below is a list of references about new developments in the factor model literature not covered in these
notes.

FACTOR MODELS IN PRESENCE OF A BLOCK STRUCTURE OR WEAK FACTORS.

1. Hallin and Liška (2011); Barigozzi, Hallin, and Soccorsi (2018) in the GDFM framework;

2. Moench and Ng (2011); Breitung and Eickmeier (2014) in the static framework with hierarchical
structure;

3. Onatski (2012); Onatski, Moreira, and Hallin (2013, 2014) on the existence of weak factors.

DYNAMIC FACTOR MODELS FOR VOLATILITY.

1. Barigozzi, Brownlees, Gallo, and Veredas (2014) approximate factor model for volatilities (i.e. in a
multiplicative setting);

2. Barigozzi and Hallin (2015, 2016a) in a GDFM setting, i.e. dynamic factors common to the volatility
of common and idiosyncratic returns.

NON-STATIONARY FACTOR MODELS.

1. Peña and Poncela (2004) in an exact factor model, i.e. finite n setting with stationary idiosyncratic
component;

2. Bai (2004) in an approximate factor model with stationary idiosyncratic component;

3. Bai and Ng (2004) tests for unit roots in an approximate factor model with non-stationary idiosyn-
cratic component;

4. Barigozzi, Lippi, and Luciani (2016a,b) representation and estimation of IRF (VECM and VAR case) in
an approximate non-stationary dynamic factor model with non-stationary idiosyncratic component.

FACTOR MODELS WITH STRUCTURAL BREAKS.

1. Breitung and Eickmeier (2011); Corradi and Swanson (2014); Cheng, Liao, and Schorfheide (2014)
tests for breaks in the loadings;

2. Stock and Watson (2002a); Bates, Plagborg-Møller, Stock, and Watson (2013) conditions for estima-
tion even in presence of structural breaks;
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