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Introductory Material

Course Aims and Objectives

The first part of the course aims to convey a thorough understanding of probability and
distribution theory. A range of methods, related to distributions of practical importance,
are taught. The course builds on material in ST102 Elementary Statistical Theory and
provides the foundation for further courses in statistics and actuarial science.

The following list gives you an idea of the sort of things you will be able to do by the
end of this term – it does not come close to covering everything. By the end of the first
part of the course you should:

• be able to work out probabilities associated with simple (and not so simple) exper-
iments,

• know the distinction between a random variable and an instance of a random vari-
able,

• for any given distribution, be able to select suitable methods and use them to work
out moments,

• be familiar with a large number of distributions,

• understand relationships between variables, conditioning, independence and corre-
lation,

• feel at ease with joint distributions and conditional distributions,

• know the law of large numbers and the central limit theorem and their implications,

• be able to put together all the theory and techniques you have learned to solve
practical problems.

∗Office: COL7.11
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Pre-requisites

Most of you will have done MA100 Mathematical Methods and ST102 Elementary Sta-
tistical Theory. If you have not taken both of these courses (or if the relevant memory has
been deleted) you should (re-)familiarize yourself with their content. Below is a, far from
exhaustive, list of mathematical tools that we will be using.

• Sets: union, intersection, complement.

• Series: arithmetic, geometric, Taylor.

• Differentiation: standard differentials, product rule, function of a function rule.

• Integration: standard integrals, integration by parts.

Structure of the course

During Michaelmas term each student should attend three hours per week, divided in
lectures and seminars.

• Lectures: two hours per week during which I will teach you the theory of proba-
bility. The schedule for Michaelmas term is:

– Thursday 9:00 - 10:00: in room TW1.G.01;

– Thursday 16:00 - 17:00: in room TW1.G.01.

• Seminars: Dr. Miltiadis Mavrakakis will go through the solution of homework
with you, attendance is compulsory and will be recorded on LSE for You, failing to
attend seminars may bar you from the final exam. You are divided in three groups
and the schedule is

Group 1 Friday 9:00 - 10:00 in room NAB.1.07;

Group 2 Tuesday 9:00 - 10:00 in room KSW.G.01;

Gropu 3 Tuesday 10:00 - 11:00: group 3 in room KSW.G.01;

no change of group is possible. There will be no seminars in week 1 and also in
week 2 for groups 2 and 3 which will start in week 3 but with an additional session
in week 11 or week 1 in LT, so that all groups have 9 sessions on MT material.

The coursework for Michaelmas term is made of homework, class tests, and a final exam.

• Homework: you will be assigned 8 weekly problem sets on

– Thursday of weeks 1 to 4 and 7 to 9 to be returned on the next Wednesday by
12:00;

2



collection boxes are per GROUP NUMBER and are located in the entrance hall
on ground floor of Columbia House. After being marked, problem sets are handed
back to in the seminar the following week where we will go through some of the so-
lutions. You are encouraged to solve and discuss the exercises with your colleagues
and cooperate in finding solutions. Marks will be registered on LSE for You so that
your academic advisors can keep track of your efforts. Failing to submit homework
may bar you from exams.

• Help sessions: will be held on

– Thursday 17:00-18:00 in room TW1.G.01 in weeks 1 to 5 and 7 to 10 (teachers
Mr. Cheng Li and Mr. Baojun Dou);

you are encouraged to attend them as they provide the opportunity to work on the
exercises with one-to-one help of two assistant teachers.

• Class tests: two tests will take place in class on

– Thursday 17:00-18:00 in room TW1.G.01 in weeks 6 and 11;

you are strongly encouraged to participate in order to verify the degree of your
preparation. As for homework, tests marks will be registered on LSE for You in
order to allow advisors to monitor your attendance and progress.

• Exam: the course is assessed by a three hour written exam in the Summer term
which covers the material taught during both terms; previous years exams with
solutions are available from LSE library website. Homework and mid-term test do
not count for the final exam mark, but the more effort you put in solving exercises
and studying during the year the more likely you are to pass the exam.

A Guide to Content

The following is a guide to the content of the course rather than a definitive syllabus.
Throughout the course examples, with varying degrees of realism, will be used to illustrate
the theory. Here is an approximate list of the topics I plan to teach, however the material
that goes into the exam will be determined by what is actually covered during the lectures
(I will provide you with an updated list of topics at the end of the term).

1. Events and their Probabilities:

• sample space;

• elementary set theory;

• events;

• probability;

• counting;

• conditional probability;
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• independence.

2. Random Variables and their Distributions:

• random variables;

• distributions;

• discrete random variables and probability mass function;

• continuous random variables and probability density function;

• support and indicator functions;

• expectations (mean and variance);

• moments;

• inequalities (Chebyshev, Markov, Jensen);

• moment generating functions;

• survival and hazard.

3. The Distribution Zoo:

• discrete distributions;

– degenerate;
– Bernoulli;
– binomial;
– negative binomial;
– geometric;
– hypergeometric;
– uniform;
– Poisson and its approximation of binomial;

• continuous distributions;

– uniform;
– normal;
– gamma;
– chi-squared;
– exponential;
– beta;
– log-normal;

4. Multivariate Distributions:

• joint and marginal distributions;

• dependence;

• joint moments;

• inequalities (Hölder, Cauchy-Schwarz, Minkowski);
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• conditional distributions.

5. Multivariate Applications:

• sums of random variables;

• mixtures and random sums;

• random vectors;

• multivariate normal distribution;

• modes of convergence;

• limit theorems for Bernoulli sums;

• law of large numbers;

• central limit theorem.

Books

There are a large number of books that cover at least part of the material in the course.
Finding a useful book is partly a question of personal taste. I suggest you look at what is
available in the library and find a text that covers the material in a way that you find ap-
pealing and intelligible. Reproduced below is the reading list along with some additional
texts that may be worth looking at.

• Casella, G. and R. L. Berger. Statistical inference. [QA276 C33]
(Nearly all material covered in the course can be found in this book.)

• Larson, H. J. Introduction to probability theory and statistical inference. [QA273.A5 L33]

• Hogg, R. V. and A. T. Craig. Introduction to mathematical statistics. [QA276.A2 H71]

• Freund, J. E. Mathematical statistics. [QA276 F88]

• Hogg, R. V. and E. A. Tanis. Probability and statistical inference. [QA273 H71]

• Meyer, P. L. Introductory probability and statistical applications. [QA273.A5 M61]

• Mood, A. M., F. A. Graybill and D. C. Boes. Introduction to the theory of statistics.
[QA276.A2 M81]

• Bartoszyski, R. and M. Niewiadomska-Bugaj. Probability and statistical inference. [QA273
B29]

• Cox, D. R. and D. V. Hinkley. Theoretical statistics. [QA276.A2 C87]
(Not great to learn from but a good reference source.)

• Stuart, A. and J. K. Ord. Kendall’s advanced theory of statistics 1, Distribution theory.
[QA276.A2 K31]
(A bit arcane but covers just about everything.)
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• Grimmett, G. R. and D. R. Stirzaker. Probability and random processes. [QA273 G86]
(Very succinct and very precise. One for those who like it mathematical.)

• Johnson, N. L. and S. Kotz (some volumes also with N. Balakrishnan) Discrete distribu-
tions. and Continuous univariate distributions. [QA273.6 J61]
(The place to go if you have a particular question about a distribution.)

• Larsen R. J. and M. L. Marx. An introduction to mathematical statistics and its applications.
[QA276 L33]
(Good introduction to probability. Lots of examples.)

Practical informations

I will post all material related to the course on moodle. Lecture notes and lecture record-
ings will also be made available in due course. Each week I will upload the problem sets
on Thursday and after you return them on Wednesday I will also upload solutions.

If you have questions related to the course you have different ways to ask me:

1. ask questions in class, feel free to interrupt me at any time;

2. come and see me in my office COL.7.11 in Columbia House during my office hours
on Thursday 13:30 - 15:00. Please make an appointment through LSE for You in
advance to avoid queues;

3. take advantage of the help sessions;

4. use the forum on moodle where all of you can post both questions and answers to
your colleagues; if necessary I will also post my answers there; this is a way to
stimulate the discussion and will avoid me repeating the same answer many times;

(5.) if you think you need to speak with me personally, but you cannot come to my
office hours, send me an email and we will fix an appointment; please try to avoid
emails for questions that might be of interest for all the class and use the moodle
forum instead.

6



1 Probability Space

The main concept of probability is a random experiment, i.e. an experiment with an
uncertain outcome. Associated with random experiments is the probability space which
is made of three ingredients:

1. the collection of all possible outcomes: sample space Ω;

2. the collection of all possible events: σ-algebra F ;

3. the probability measure P ;

and we write it as
(Ω,F , P ).

1.1 Sample space

Experiment: a procedure which can be repeated any number of times and has a well-
defined set of possible outcomes.

Sample outcome: a potential eventuality of the experiment. The notation ω is used for
an outcome.

Sample space: the set of all possible outcomes. The notation Ω is used for the sample
space of an experiment. An outcome ω is a member of the sample space Ω, that is, ω ∈ Ω.

Example: a fair six-sided die is thrown once. The outcomes are numbers between 1 and
6, i.e. the sample space is given by Ω = {1, . . . , 6}.

Example: a fair six-sided die is thrown twice. The outcomes are pairs of numbers be-
tween 1 and 6. For example, (3, 5) denotes a 3 on the first throw and 5 on the second. The
sample space is given by Ω = {(i, j) : i = 1, . . . , 6, j = 1, . . . , 6}. In this example the
sample space is finite so can be written out in full:

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
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Example: the measurement of people’s height has the positive real numbers as sample
space, if we allow for infinite precision in the measurement.

Example: assume to have an experiment with a given sample space Ω, then the experi-
ment corresponding to n replications of the underlying experiment has sample space Ωn.
Notice that, in principle we can repeat an experiment infinitely many times.

1.2 Elementary set theory

Notation: given a sample space Ω, we define the following objects:

Set terminology Probability terminology
A Subset of Ω Event some outcome in A occurs

Ac Complement Event no outcome in A occurs

A ∩B Intersection Event outcome in both A and B occur

A ∪B Union Event outcome in A and/or B occur

A\B Difference Event outcome in A but not in B occur

A ⊆ B Inclusion If outcome is in A it is also in B occur

∅ Empty set Impossible event

Ω Whole space Certain event

Properties of Intersections and Unions

1. Commutative: A ∩B = B ∩ A,
A ∪B = B ∪ A.

2. Associative: A ∩ (B ∩ C) = (A ∩B) ∩ C,
A ∪ (B ∪ C) = (A ∪B) ∪ C.

3. Distributive: A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C),
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

4. With whole space: A ∩ Ω = A,
A ∪ Ω = Ω.

5. With empty set: A ∩ ∅ = ∅,
A ∪ ∅ = A.
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Properties of the complement set: Ac = Ω\A, that is, ω ∈ Ac ⇐⇒ ω /∈ A.

1. (Ac)c = A.

2. A ∩ Ac = ∅.

3. A ∪ Ac = Ω.

4. (A ∪B)c = Ac ∩Bc.

5. De Morgan’s theorem (a generalization of 4 above): (
⋃n
i=1Ai)

c =
⋂n
i=1A

c
i .

Partition of Ω: {A1, . . . , An} is a partition if:

1. mutually exclusive: Ai ∩ Aj = ∅ for any i 6= j, so A1, . . . , An are disjoint sets;

2. exhaustive:
⋃n
i=1Ai = Ω;

3. not-empty: Ai 6= ∅ for any i.

Notice that n can be infinite.

1.3 Events

For any experiment, the events form a collection of all the possible subsets of Ω which we
denote F and has the following properties:

1. ∅ ∈ F ,

2. if A ∈ F then Ac ∈ F ,

3. if A1, A2, . . . ,∈ F , then
⋃∞
i=1Ai ∈ F . The union has to be infinite.

Any collection of subsets with these properties is known as a σ-algebra.

If Ω has n elements, then F has 2n elements. Indeed, the number of elements of F is
made of the sum of all possible combinations of n elements, i.e., for any 0 ≤ k ≤ n, we
need to compute all the possible k-elements subsets of an n-elements set:

n∑
k=0

(
n

k

)
= 2n.

The binomial coefficient is also used to find the coefficients of binomial powers, the gen-
eral formula is

(x+ y)n =
n∑
k=0

(
n

k

)
xn−kyk

and by setting x = y = 1 we have the result above. Another useful formula for the
binomial coefficient is (

n

k

)
=

n!

(n− k)!k!
.
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1.4 Probability

In an experiment the intuitive definition of probability is the ratio between the number of
favorable outcomes over the total number of possible outcomes or with the above notation,
the probability of an event A ⊂ Ω, such that A ∈ F , is:

P (A) =
#elements inA
#elements in Ω

.

Slightly more sophisticated is the “frequentist” definition of probability which is based
on the frequency fn with which a given event A is realized, given a total number n of
repetitions of an experiment:

P (A) = lim
n→∞

fn.

Example: if we toss a fair coin the sample space is Ω = {H,T}, then the event A = {H}
has probability

P ({H}) =
#elements inA
#elements in Ω

=
1

2
.

Alternatively, we could compute this probability by tossing the coin n times, where n is
large, and compute the number of times we get head say kn. If the coin is fair, we should
get

P ({H}) = lim
n→∞

kn
n

=
1

2
.

We here adopt a more mathematical definition of probability, based on the Kolmogorov
axioms.

Probability measure: is a function P : F −→ [0, 1], such that

1. P (A) ≥ 0,

2. P (Ω) = 1,

3. if A1, A2, . . . , is an infinite collection of mutually exclusive members of F then

P (
∞⋃
i=1

Ai) =
∞∑
i=1

P (Ai),

This in turn implies that for any finite collection A1, A2, . . . , An of mutually exclu-
sive members of F then

P (
n⋃
i=1

Ai) =
n∑
i=1

P (Ai).

We can associate a probability space (Ω,F , P ) with any experiment.

Properties of probability measures
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1. P (Ac) = 1− P (A).

2. P (A) ≤ 1.

3. P (∅) = 0.

4. P (B ∩ Ac) = P (B)− P (A ∩B).

5. P (A ∪B) = P (A) + P (B)− P (A ∩B).

6. If A ⊆ B then P (B) = P (A) + P (B\A) ≥ P (A).

7. More generally if A1, . . . , An are events then

P

(
n⋃
i=1

Ai

)
=
∑
i

P (Ai)−
∑
i<j

P (Ai∩Aj)+
∑
i<j<k

P (Ai∩Aj∩Ak)+. . .+(−1)n+1P (A1∩. . .∩An).

8. For any partition A1, . . . , An of Ω

P (B) =
n∑
i=1

P (B ∩ Ai).

Notice that n can be infinite.

9. Boole’s inequality:

P

(
∞⋃
i=1

Ai

)
≤

∞∑
i=1

P (Ai).

2 Counting or occupancy models

Multiplication rule for counting ordered sequences: an operation Ai can be performed
in ni different ways for i = 1, . . . , k. The ordered sequence (operation A1, operation A2,
. . . , operation Ak) can be performed in n1 · n2 · . . . · nk ways. We write this product as∏k

i=1 ni.

When the sample space Ω is finite and all the outcomes in Ω are equally likely, we calcu-
late the probability of an event A by counting the number of outcomes in the event:

P (A) =
#elements inA
#elements in Ω

=
|A|
|Ω|

Consider the following problem: k balls are distributed among n distinguishable boxes
in such a manner that all configurations are equally likely or analogously (from the mod-
eling point of view) we extract k balls out on n. We need to define the sample space
and its cardinality, i.e. the number of its elements. The balls can be distinguishable or
undistinguishable which is analogous to saying that the order in the extraction matters or
not. Moreover, the extraction can be with or without replacement, i.e. the choice of a ball
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is independent or not from the ball previously chosen. In terms of balls and boxes this
means that we can put as many balls as we want in each box (with replacement) or only
one ball can fit in each box (without replacement).

There are four possible cases (three of which are named after famous physicists).

Ordered (distinct), without replacement (dependent): in this case we must have k ≤ n
and the sample space is

Ω = {(ω1 . . . ωk) : 1 ≤ ωi ≤ n ∀i ωi 6= ωj for i 6= j},

where ωi is the box where ball i is located. All the possible permutations of k balls that
can be formed from n distinct elements, i.e. not allowing for repetition, are

|Ω| = n · (n− 1) · (n− 2) · . . . · (n− k + 1) =
n!

(n− k)!
.

Ordered (distinct), with replacement (independent) - Maxwell-Boltzmann: the sam-
ple space is

Ω = {(ω1 . . . ωk) : 1 ≤ ωi ≤ n ∀i},

where ωi is the box where ball i is located. Each ball can be selected in n ways, so the
total number of outcomes is

|Ω| = n · n · . . . · n︸ ︷︷ ︸
k times

= nk.

Unordered (not distinct), without replacement (dependent) - Fermi-Dirac: again we
need k ≤ n and the sample space is

Ω =

{
(ω1 . . . ωn) : ωi = {0, 1} ∀i and

n∑
i=1

ωi = k

}
,

with box i occupied if and only if ωi = 1. Starting from the case of distinct balls, we have
to divide out the redundant outcomes and we obtain the total number of outcomes:

|Ω| = n · (n− 1) · (n− 2) · . . . · (n− k + 1)

1 · 2 · . . . · k
=

n!

k!(n− k)!
=

(
n

k

)
.

Unordered (not distinct), with replacement (independent) - Bose-Einstein: the sample
space is

Ω =

{
(ω1 . . . ωn) : 0 ≤ ωi ≤ k ∀i and

n∑
i=1

ωi = k

}
,

with ωi the number of balls in box i. This is the most difficult case to count. The easiest
way is to think in terms of k balls and n boxes. We can put as many balls as we want in
each box and balls are identical. To find all the possible outcomes it is enough to keep
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track of the balls and of the walls separating the boxes. Excluding the 2 external walls,
we have n + 1− 2 = n− 1 walls and k balls, hence we have n− 1 + k objects that can
be arranged in (n− 1 + k)! ways. However, since the balls and the walls are identical we
need to divide out the redundant orderings which are k!(n− 1)!, so

|Ω| = (n− 1 + k)!

k!(n− 1)!
=

(
n− 1 + k

k

)
.

Example: in a lottery 5 numbers are extracted without replacement out of {1, . . . , 90}.
Which is the probability of extracting the exact sequence of numbers (1, 2, 3, 4, 5)?
The possible outcomes of this lottery are all the 5-tuples ω = (ω1, . . . , ω5) such that
ωi ∈ {1, . . . , 90}. We can extract the first number in 90 ways, the second in 89 ways and
so on, so

|Ω| = 90 · 89 · 88 · 87 · 86 =
90!

85!
.

Since all the outcomes are equally likely, the probability we are looking for is 85!/90! '
1/5109.

Example: if in the previous example the order of extraction does not matter, i.e. we look
for the probability of extracting the first 5 numbers independently of their ordering, then
Ω contains all the combinations of 5 numbers extracted from 90 numbers:

|Ω| =
(

90

5

)
.

Since all the outcomes are equally likely, the probability we are looking for is 1/
(

90
5

)
'

1/4107 so as expected it is greater than before, although still very small!

Example: which is the probability that, out of n people randomly chosen, at least two
were born in the same day of the year? We can define a generic event of the sample space
as ω = (ω1, . . . , ωn) such that ωi ∈ {1, . . . , 365}. Each birth date can be selected n times
so

|Ω| = 365 · 365 · . . . · 365︸ ︷︷ ︸
n times

= 365n.

Now we have to compute the number of elements contained in the event A = {ω ∈ Ω :
ω has at least two identical entries}. It is easier to compute the number of elements of the
complement set Ac = {ω ∈ Ω : ω has all entries distinct}. Indeed Ac is made of all
n-tuples of numbers that are extracted out of 365 numbers without replacement, so the
first entry can be selected in 365 ways, the second in 364 ways and so on, then

|Ac| = 365!

(365− n)!
.

If we assume that the outcomes of Ω are all equally likely (which is not completely correct
as we now that birth rates are not equally distributed throughout the year), then

P (A) = 1− 365!

365n(365− n)!
,
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which for n = 23 is 0.507, for n = 50 is 0.974, and for n = 100 is 0.9999997.

Example: an urn contains b black balls and r red balls, we extract without replacement
n ≤ (b + r) balls, what is the probability of extracting k red balls? We first compute all
the possible ways of extracting without replacement n balls out of (b + r), then |Ω| =(
b+r
n

)
. Let us assume that the all the balls are numbered and that the red ones have index

{1, . . . , r} while the black ones have index {r + 1, . . . , b+ r} so we are interested in the
event

A = {ω : ω contains exactly k elements with index ≤ r},

then is like asking for the all possible ways of extracting k balls out of r and n − k balls
out of b, therefore

P (A) =

(
r
k

)(
b

n−k

)(
b+r
n

) .

Reading

Casella and Berger, Sections 1.1, 1.2.

3 Conditional probability

Let A and B be events with P (B) > 0. The conditional probability of A given B is the
probability that A will occur given that B has occurred;

P (A|B) =
P (A ∩B)

P (B)
.

It is as if we were updating the sample space to B, indeed P (B|B) = 1. Moreover, if A
and B are disjoint, then P (A|B) = P (B|A) = 0, once one of the two events took place
the other becomes impossible.

By noticing that

P (A ∩B) = P (A|B)P (B) and P (A ∩B) = P (B|A)P (A),

we have the useful formula

P (A|B) = P (B|A)
P (A)

P (B)
.

Law of total probability: if A1, . . . , An is a partition of Ω and B is any other event
defined on Ω, then

P (B) =
n∑
i=1

P (B|Ai)P (Ai).
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Notice that n can be infinite.

Bayes’ rule: if A1, . . . , An is a partition of Ω and B is any other event defined on Ω, then
for any j = 1, . . . , n

P (Aj|B) = P (B|Aj)
P (Aj)

P (B)
=

P (B|Aj)P (Aj)∑n
i=1 P (B|Ai)P (Ai)

.

Notice that n can be infinite.

Multiplication rule for intersections: let A1, . . . , An be a set of events defined on Ω,

P

(
n⋂
i=1

Ai

)
=

n∏
j=1

P

(
Aj|

j−1⋂
i=0

Ai

)
,

where we define A0 = Ω.

4 Independence

If the occurrence of an event B has no influence on the event A then

P (A|B) = P (A),

then from previous section

P (B|A) = P (A|B)
P (B)

P (A)
= P (B),

so A has no influence on B, moreover from Bayes’ rule

P (A ∩B) = P (A)P (B|A) = P (A)P (B),

and this is the definition of statistical independence. Two events A and B are said to be
independent (A ⊥ B) if and only if

P (A ∩B) = P (A)P (B).

1. If P (A) > 0 then P (B|A) = P (B)⇐⇒ A ⊥ B.
If P (B) > 0 then P (A|B) = P (A)⇐⇒ A ⊥ B.

2. If A ⊥ B then Ac ⊥ Bc, Ac ⊥ B and A ⊥ Bc.

A collection of events A1, . . . , An is said to be mutually independent if for every
subset Ai1 , . . . , Aik we have

P

(
k⋂
j=1

Aij

)
=

k∏
j=1

P (Aij).
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Example A common misconception is that an event A is independent of its complement
Ac. In fact, this is only the case when P (A) ∈ {0, 1} (check this!). Otherwise, the
events A and Ac since the never occur at the same time and hence the probability of their
intersection is zero.

Example: another common misconception is that an event is independent of itself. If A
is an event that is independent of itself, then

P (A) = P (A ∩ A) = P (A)P (A) = (P (A))2.

The only finite solutions to the equation x = x2 are x = 0 and x = 1, so an event is
independent of itself only if it has probability 0 or 1.

Example: consider tossing a coin 3 times, then we have 23 = 8 possible outcomes and if
the coin is fair each outcome has probability 1

8
. If we define Hi the event of having head

at the the i-th toss for i = 1, 2, 3 we have only four possible outcomes contained in each
event Hi, therefore

P (Hi) =
4

8
=

1

2
for i = 1, 2, 3.

To verify that His are independent we need to compute

P (H1 ∩H2 ∩H3) = P ({HHH}) =
1

8
=

1

2
· 1

2
· 1

2
= P (H1)P (H2)P (H3),

but we also have to compute for any i 6= j

P (Hi ∩Hj) = P (Hi)P (Hj),

so for example when i = 1 and j = 3

P (H1 ∩H3) = P ({HTH,HHH}) =
2

8
=

1

2
· 1

2
= P (H1)P (H3).

Example: consider tossing a tetrahedron (i.e. a die with just four faces) with a red, a blue,
a yellow face, and a face with all three colours. Each face has equal probability 1

4
to be

selected.1 We want to see if the events: red (R), green (G), blue (B) are independent. The
probability of selecting any colour is then P (R) = P (G) = P (B) = 1

2
since all colours

appear twice on the tetrahedron. Consider the conditional probability

P (R|G) =
P (RG)

P (G)
=

1/4

1/2
=

1

2
= P (R),

so the event R is independent of the event G, by repeating the same reasoning with all
couples of colours we see that colours are pairwise independent. However, we do not
have mutual independence indeed, for example,

P (R|GB) =
P (RGB)

P (GB)
=

1/4

1/4
= 1 6= P (R) =

1

2
.

1Due to its geometry in this case the selected face is the bottom one once the tetrahedron is tossed.
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Example. Consider the following game: your ST202 lecturer shows you three cups and
tells you that under one of these there is a squashball while under the other two there is
nothing. The aim of the Monty Squashball problem2 is to win the squashball by picking
the right cup. Assume you choose one of the three cups, without lifting it. At this point
one of the remaining cups for sure does not contain the ball and the your lecturer lifts
it showing emptiness (selecting one at random if there is a choice). With two cups still
candidates to hide the squashball, you are given a second chance of choosing a cup: will
you stick to the original choice or will you switch to the other cup?

We can model and solve the problem by using conditional probability and Bayes’ rule.

The probability of getting the ball is identical for any cup, so

P (ball is in k) =
1

3
, k = 1, 2, 3.

Once you choose a cup (say i), your ST202 lecturer can lift only a cup with no ball and
not chosen by yourself, he will lift cup j (different from i and k) with probability

P (ST202 lecturer lifts j|you choose i and ball is in k) =

{
1
2

if i = k,
1 if i 6= k.

Let us call the cup you pick number 1 (we can always relabel the cups). Using Bayes’
rule we compute (for j 6= k and j 6= 1)

P (ball is in k| ST202 lecturer lifts j) =
P (ST202 lecturer lifts j| ball is in k)P (ball is in k)

P (ST202 lecturer lifts j)
.

Since P (ball is in k) = 1/3, we are left to compute (for j 6= 1)

P (lecturer liftsj) =
3∑

k=1

P (lecturer lifts j| ball is in k)P (ball is in k)

=
1

2
∗ 1

3
+ 0 ∗ 1

3
+ 1 ∗ 1

3
=

1

2
.

This can also be seen by symmetry and law of total probability.

So if you choose cup 1 and the ST202 lecturer lifts cup 2, the probability that the ball
is in cup 3 is

P (ball is in 3|ST202 lecturer lifts 2) =
1 · 1

3
1
2

=
2

3
.

while the probability that the ball is in cup 1, i.e. the cup you chose at the beginning

P (ball is in 1|ST202 lecturer lifts 2) =
1
2
· 1

3
1
2

=
1

3
.

Hence, switching gives a higher probability of winning the squashball.
2this is an eco-friendly version of the famous Monty Hall problem which has “doors” for “cups”, “goats”

for “nothing” and a “car” for “squashball”; no animals are harmed in the Monty Squashball problem. It
is also closely related to Bertrand’s box paradox and the Prisoners’ paradox (not to be confused with the
Prisoners’ dilemma)
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Reading

Casella and Berger, Sections 1.3.

5 Random variables

We use random variables to summarize in a more convenient way the structure of experi-
ments.

Borel σ-algebra: is the σ-algebra B(R) (called the Borel σ-algebra) on Ω = R, i.e.
the σ-algebra generated by (i.e. the smalles sigma-algebra containing) the intervals (a, b]
where we allow for a = −∞ and b = +∞.
We could have equally have taken intervals [a, b] (think about this for a while!).

Random variable: a real-valued function is defined on the sample space

X : Ω −→ R

with the property that, for every B ∈ B(R), X−1(B) ∈ F .

Define, for all x ∈ R, the set of outcomes

Ax = {ω ∈ Ω : X(ω) ≤ x}

then Ax ∈ F . Thus, Ax is an event, for every real-valued x.

The function X defines a new sample space (its range) and creates a bijective correspon-
dence between events in the probability space (Ω,F , P ) with events in the probability
space (R,B(R), PX) which allows for easier mathematical computations. We need to de-
fine the probability measure on the Borel σ-algebra.

Example: consider the experiment of tossing a coin n times, the sample space is made of
all the n-tuples ω = (ω1, . . . , ωn) such that ωi = 1 if we get head and ωi = 0 if we get
tail. An example of random variable is the function: number of heads in n tosses which
we can define as

X(ω) =
n∑
i=1

ωi.

Consider the case in which we get m times head with m < n. Then, for every number m
we can define the event Am = {ω = (ω1, . . . , ωn) ∈ Ω : X(ω) =

∑n
i=1 ωi = m}.

Notice that in this example the random variables have only integer values which are a
subset of the real line. Notice also that the original sample space is made of 2n elements,
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while the new sample space is made of the integer numbers {0 . . . , n} which is a smaller
space.

Example: consider the random walk, i.e. a sequence of n steps ω = (ω1, . . . , ωn) such
that the i-th step can be to the left or to the right. We can introduce a random variable that
represents the i-th step by Xi(ω) = ±1 where it takes the value 1 if the step is to the left
and -1 if the step is to the right. We can also introduce the random variable that represents
the position of the random walk after k steps: Yk(ω) =

∑k
i=1Xi(ω).

6 Distributions

We must check that the probability measure P defined on the original sample space Ω is
still valid as a probability measure defined on R. If the sample space is Ω = {ω1, . . . , ωn}
and the range of X is {x1, . . . , xm}, we say that we observe X = xi if and only if the
outcome of the experiment is ωj such that X(ωj) = xi.

Induced probability: we have two cases

1. finite or countable sample spaces: given a random variable X , the associated prob-
ability measure PX is such that, for any xi ∈ R,

PX(X = xi) = P ({ωj ∈ Ω : X(ωj) = xi}).

2. uncountable sample spaces given a random variable X , the associated probability
measure PX is such that, for any B ∈ B(R),

PX(X ∈ B) = P ({ω ∈ Ω : X(ω) ∈ B}).

Hereafter, given the above equivalences, we denote PX simply as P .

Cumulative distribution function (cdf): given a random variable X , it is the function

F : R −→ [0, 1], s.t. F (x) = P (X ≤ x), ∀x ∈ R.

Properties of cdfs: F is a cdf if and only if

1. Limits: limx→−∞ F (x) = 0 and limx→+∞ F (x) = 1.

2. Non-decreasing: if x < y then F (x) ≤ F (y).

3. Right-continuous: limh→0+ F (x+ h) = F (x).

Probabilities from distribution functions
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1. P (X > x) = 1− F (x);

2. P (x < X ≤ y) = F (y)− F (x);

3. P (X < x) = limh→0− F (x+ h) = F (x−);

4. P (X = x) = F (x)− F (x−).

Identically distributed random variables: the random variables X and Y are identi-
cally distributed if, for any set A ∈ B(R), P (X ∈ A) = P (Y ∈ A). This is equivalent to
saying that FX(x) = FY (x), for every x ∈ R.

Example: in the random walk the step size random variable Xi is distributed as:

P (Xi = 1) =
1

2
, P (Xi = −1) =

1

2
.

while
FX(−1) =

1

2
, FX(1) = 1.

The random variables Xi are identically distributed. Moreover, they are also independent
so

P (ω) = P (X1 = ω1, . . . , Xn = ωn) =
n∏
i=1

P (Xi = ωi),

for any choice of ω1, . . . , ωn = ±1. Therefore, all n-tuples ω are equally probable with
probability

P (ω) = P (X1 = ω1, . . . , Xn = ωn) =
n∏
i=1

1

2
=

1

2n
.

Consider the random variable Z the counts the steps to the right, then the probability of
having k steps to the right and n− k steps to the left is

P (Z = k) = FZ(k) = (# of ways of extracting k 1s out of n) ( Prob. of a generic ω)

=

(
n

k

)
1

2n
.

We say that Xi follows a Bernoulli distribution and Z follows a Binomial distribution.
The previous example of a fair coin can be modeled exactly in the same way but this time
by defining Xi(ω) = 0 or 1.

7 Discrete random variables

A random variableX is discrete if it only takes values in some countable subset {x1, x2, . . .}
of R, then F (x) is a step-function of x, but still right-continuous.
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Probability mass function (pmf): given a discrete random variable X , it is the function

f : R −→ [0, 1] s.t. f(x) = P (X = x) ∀x ∈ R.

Properties of pmfs

1. f(x) = F (x)− F (x−);

2. F (x) =
∑

i:xi≤x f(xi);

3.
∑

i f(xi) = 1;

4. f(x) = 0 if x /∈ {x1, x2, . . .}.

8 Continuous random variables

A random variable X is continuous if it takes values in R and its distribution function
F (x) is an absolutely continuous function of x (F is differentiable “almost everywhere”)
.

Probability density function (pdf): given a continuous random variable X , (a version
of) its density is an integrable function f : R −→ [0,+∞) such that the cdf of X can be
expressed as

F (x) =

∫ x

−∞
f(u)du ∀x ∈ R.

Properties of continuous random variables

1. P (X = x) = 0 for any x ∈ R;

2.
∫ +∞
−∞ f(x)dx = 1;

3. f(x) ≥ 0 for any x ∈ R;

4.
∫ b
a
f(u)du = P (a < X ≤ b).

Notice that, in principle, any nonnegative function with a finite integral over its support
can be turned into a pdf. So if ∫

A⊂R
h(x)dx = K <∞

for some constant K > 0, then h(x)/K is a pdf of a random variable with values in A.

Unified notation: given a random variable X;

P (a < X ≤ b) =

∫ b

a

dF (x) =


∑

i:a<xi≤b f(xi), if X discrete,∫ b
a
f(u)du, if X continuous.
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Reading

Casella and Berger, Sections 1.4 - 1.5 - 1.6.

9 Expectations

Mean: given a random variable X , its mean is defined as

µ = E[X] =

∫ +∞

−∞
xdF (x) =


∑

i xif(xi), if X discrete,∫ +∞
−∞ xf(x)dx, if X continuous,

where f is either the pmf or the pdf. The definition holds provided that
∫ +∞
−∞ |x|dF (x) <

∞.

If we interpret µ as a good guess of X we may also be interested to have a measure of the
uncertainty with which X assumes the value µ, this is known as variance of X .

Variance: given a random variable X , its variance is defined as

σ2 = Var[X] =

∫ +∞

−∞
(x− µ)2dF (x) =


∑

i(xi − µ)2f(xi), if X discrete,∫ +∞
−∞ (x− µ)2f(x)dx, if X continuous,

where f is either the pmf or the pdf. The standard deviation is defined as σ =
√

Var[X].
Notice that σ2 = E[(X − µ)2]. The definition holds provided that

∫ +∞
−∞ (x− µ)2dF (x) <

∞.

Expectations: for an integrable function g : R −→ R such that
∫∞
−∞ |g(x)|dF (x) < ∞,

the expectation of the random variable g(X) as

E[g(X)] =

∫ +∞

−∞
g(x)dF (x) =


∑

i g(xi)f(xi), if X discrete,∫ +∞
−∞ g(x)f(x)dx, if X continuous,

Note that we have cheated a bit here, since we need to show in fact that g(X) is a random
variable and also that the given expression corresponds to the one given above for the
random variable g(X). This can be done but is beyond the scope of ST202. Feel free to
ask me if you would like to hear more about this.

Properties of expectations: for any constant a, integrable functions g1 and g2, and ran-
dom variables X and Y :

1. E[a] = a;
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2. E[ag1(X) + bg2(Y )] = aE[g1(X)] + bE[g2(Y )];

3. if X ≥ Y then E[X] ≥ E[Y ];

4. Var[ag1(X) + b] = a2Var[g1(X)].

The variance of X can be written in a more convenient form

Var[X] = E[(X − E[X])2] = E[X2 + E[X]2 − 2E[X]X] =

= E[X2] + E[X]2 − 2E[X]2 =

= E[X2]− E[X]2.

10 Moments

Moments are expectations of powers of a random variable. They characterise the distribu-
tion of a random variable. Said differently (and somewhat informally), the more moments
of X we can compute, the more precise is our knowledge of the distribution of X .

Moment: given a random variable X , for r a positive integer then the rth moment, µr, of
X is

µr = E[Xr] =

∫ +∞

−∞
xrdF (x)


∑

i x
r
if(xi), if X discrete,∫ +∞

−∞ xrf(x)dx, if X continuous,

where f is either the pmf or the pdf. The definition holds provided that
∫ +∞
−∞ |x|

rdF (x) <
∞.

Central moment: given a random variable X , the rth central moment, mr is

mr = E[(X − µ1)r].

The definition holds provided that
∫ +∞
−∞ |x|

rdF (x) < ∞. so if the r-th moment exists,
then also the r-th central moment exists.

Properties of moments:

1. mean: µ1 = E[X] = µ and m1 = 0;

2. variance: m2 = E[(X − µ1)2] = Var[X] = σ2;

3. coefficient of skewness: γ = E[(X − µ1)3]/σ3 = m3/m
3
2
2 ;

4. coefficient of kurtosis: κ = (E[(X − µ1)4]/σ4) = (m4/m
2
2).

What would a distribution with postive skew and large kurtosis look like?
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11 Inequalities involving expectations

A general inequality: let X be a random variable with X ≥ 0 and let g be a positive
increasing function on R+, then, for any a > 0,

P (g(X) ≥ a) ≤ E[g(X)]

a
.

There are two special cases.

1. Markov’s inequality: let X be a random variable with X ≥ 0 and E[X] defined,
then, for any a > 0,

P (X ≥ a) ≤ E[X]

a
.

2. Chebyshev’s inequality: let X be a random variable with E[X2] < ∞, then, for
any a > 0,

P ((X − E[X])2 ≥ a) ≤ Var[X]

a2
.

Jensen’s inequality: If X is a random variable with E[X] defined, and g is a convex
function with E[g(X)] defined, then

E[g(X)] ≥ g(E[X]).

12 Moment generating functions

These are functions that help to compute moments of a distribution and are also useful
to characterie the distribution. However, it can be shown that the moments do not char-
acterise the distribution uniquely (if you would like to know more about this, check the
log-normal distribution).

Moment generating function (mgf): given a random variable X , it is a function

M : R −→ [0,∞) s.t. M(t) = E[etX ],

where it is assumed M(t) <∞ for |t| < h and some h > 0, i.e. the expectation exists in
a neighborhood of 0. Therefore,

M(t) =

∫ +∞

−∞
etxdF (x) =


∑

i e
txif(xi), if X discrete,∫ +∞

−∞ etxf(x)dx, if X continuous.

Properties of mgfs: if X has mgf M(t) then
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1. Taylor expansion:

M(t) = 1 + tE[X] +
t2

2!
E[X2] + . . .+

tr

r!
E[Xr] + . . . =

∞∑
j=0

E[Xj]

j!
tj;

2. the rth moment is the coefficient of tr/r! in the Taylor expansion;

3. derivatives at zero:

µr = E[Xr] = M (r)(0) =
dr

dtr
M(t)

∣∣∣∣
t=0

.

Proof: by differentiating M(t) (in a neighbourhood of 0 assuming existence)

d

dt
M(t) =

d

dt

∫ +∞

−∞
etxdF (x) =

=

∫ +∞

−∞

d

dt
etxdF (x) =

=

∫ +∞

−∞
xetxdF (x) =

= E[XetX ],

and in general
dr

dtr
M(t) = E[XretX ],

by imposing t = 0 we get the desired result.

Uniqueness: let FX and FY be two cdfs with all moments defined, then:

1. if X and Y have bounded support, then FX(x) = FY (x) for any x ∈ R if and only
if E[Xr] = E[Y r] for any r ∈ N;

2. if the mgfs exist and MX(t) = MY (t) for all |t| < h and some h > 0, then
FX(x) = FY (x) for all x ∈ R.

Cumulant generating function (cgf): given a random variable X with moment generat-
ing function M(t), it is defined as

K(t) = logM(t).

Cumulant: the rth cumulant, cr, is the coefficient of tr/r! in the Taylor expansion of the
cumulant generating function K(t):

cr = K(r)(0) =
dr

dtr
K(t)

∣∣∣∣
t=0

.

Properties of cgfs:
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1. c1 = µ1 = µ (mean, first moment);

2. c2 = m2 = σ2 (variance, second central moment);

3. c3 = m3 (third central moment);

4. c4 + 3c2
2 = m4 (fourth central moment).

Reading

Casella and Berger, Sections 2.2 - 2.3.

13 Discrete distributions

Degenerate: all probability concentrated in a single point a.

• f(x) = 1 for x = a.

• M(t) = eat, K(t) = at.

• µ = a, σ2 = 0.

Bernoulli: trials with two, and only two, possible outcomes, here labeled X = 0 (failure)
and X = 1 (success).

• f(x) = px(1− p)1−x for x = 0, 1.

• M(t) = 1− p+ pet, K(t) = log(1− p+ pet).

• µ = p, σ2 = p(1− p).

Binomial: we want to count the number of successes in n independent Bernoulli trials,
each with probability of success p. Consider n random variables Yi with just two possible
outcomes Yi = 0, 1, their sum X =

∑n
i=1 Yi is the total number of successes in n trials,

so 0 ≤ X ≤ n. Notation X ∼ Bin(n, p). We need to count all the possible ways to
extract x numbers out of n and multiply this number for the probability of success given
by the Bernoulli distribution.

• f(x) = n!
x!(n−x)!

px(1− p)n−x =
(
n
x

)
px(1− p)n−x for x = 0, 1, . . . , n.

• M(t) = (1− p+ pet)n, K(t) = n log(1− p+ pet).

• µ = np, σ2 = np(1− p).
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The Bernoulli distribution is equivalent to a binomial distribution with n = 1.

Examples: tossing a coin n times and counting the number of times we get head (or tail);
n steps in the random walk and counting the steps to the right (or to the left).
Suppose to roll a die k times and we want the probability of obtaining at least one 3. So
we have k Bernoulli trials with success probability p = 1/6. Define the random variable
X that counts the total number of 3 in k rolls, then X ∼ Bin(k, 1/6) and

P (at least one 3) = P (X > 0) = 1− P (X = 0) = 1−
(
k

0

)(
1

6

)0(
5

6

)k
= 1−

(
5

6

)k
If, by throwing two dice, we were interested in the probability of at least double 3 we
would get

P (at least one double 3) = 1−
(

35

36

)k
< P (at least one 3),

since 35/36 > 5/6.

Computing the moments and mgf of the binomial distribution: just notice that a bino-
mial random variable X is the sum of n Bernoulli independent random variables Yi, each
with mean E[Yi] = p and variance Var[X] = p(1− p) hence

E[X] = E

[
n∑
i=1

Yi

]
=

n∑
i=1

E[Yi] = np,

and (independence is crucial here)

Var[X] =
n∑
i=1

Var[Yi] = np(1− p).

The mgf is computed as

M(t) =
n∑
x=0

etx
(
n

k

)
px(1− p)n−x =

n∑
x=0

(
n

k

)
(pet)x(1− p)n−x

use the binomial expansion

(u+ v)n =
n∑
x=0

(
n

x

)
uxvn−x

and by substituting u = pet and v = 1− p we get

M(t) = (pet + 1− p)n.

Negative Binomial: we want to count the number of Bernoulli trials necessary to get a
fixed number of successes (i.e. a waiting time). Consider a random variable X denoting
the trial at which the rth success occurs. We want the distribution of the event {X = x}
for x = r, r + 1, . . .. This event occurs only if we had r − 1 successes in x− 1 trials and
a success at the xth trial. By multiplying these probabilities we have
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• f(x) =
(
x−1
r−1

)
pr(1− p)x−r for x = r, r + 1, . . ..

• M(t) =
(

pet

1−(1−p)et

)r
, K(t) = −r log{(1− 1

p
) + 1

p
e−t} for |t| < − log(1−p).

• µ = r
p
, σ2 = r(1−p)

p2
.

It is also the defined in terms of the number of failures before the rth success.

Geometric: to count the number of Bernoulli trials before the first success occurs. Equiv-
alent to a negative binomial with r = 1.

• f(x) = (1− p)x−1p for x = 1, 2, . . ..

• M(t) = pet

1−(1−p)et , K(t) = − log{(1− 1
p
) + 1

p
e−t} for |t| < − log(1− p).

• µ = 1
p
, σ2 = 1−p

p2
.

This distribution is memoryless, indeed, if X follows a geometric distribution, then, for
integers s > t,

P (X > s|X > t) =
P (X > s ∩X > t)

P (X > t)
=
P (X > s)

P (X > t)

= (1− p)s−t = P (X > s− t),

Given that we observed t failures we observe an additional s − t failures with the same
probability as we observed s − t failures at the beginning of the experiment. The only
thing that counts is the length of the sequence of failures not its position.

Hypergeometric: it is usually explained with the example of the urn model. Assume to
have an urn containing a total of N balls made up of N1 balls of type 1 and N2 = N −N1

balls of type 2, we want to count the number of type 1 balls chosen when selecting n < N
balls without replacement from the urn.

• f(x) =
(
N1

x

)(
N−N1

n−x

)
/
(
N
n

)
for x ∈ {0, . . . , n} ∩ {n− (N −N1), . . . , N1}.

• µ = nN1

N
, σ2 = nN1

N
N−N1

N
N−n
N−1

.

Uniform: for experiments with N equally probable outcomes

• f(x) = 1
N

for x = 1, 2, . . . , N .

• µ = N+1
2
, σ2 = N2−1

12
.
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Poisson: to count the number of events which occur in an interval of time. The assumption
is that for small time intervals the probability of an occurrence is proportional to the length
of the waiting time between two occurrences. We consider the random variable X which
counts the number of occurrences of a given event in a given unit time interval, it depends
on a parameter λ which is the intensity of the process considered. Notation Pois(λ).

• f(x) = λxe−λ

x!
for x = 0, 1, . . ..

• M(t) = eλ(et−1), K(t) = λ(et − 1).

• µ = λ, σ2 = λ.

The intensity is the average number of occurrences in a given unit time interval. Notice
that the Poisson distribution can also be used for the number of events in other specified
intervals such as distance, area or volume.

Example: think of crossing a busy street with an average of 300 cars per hour passing. In
order to cross we need to know the probability that in the next minute no car passes. In
a given minute we have an average of λ = 300/60 = 5 cars passing through. If X is the
number of cars passing in one minute we have

P (X = 0) =
e−550

0!
= 6.7379 · 10−3,

maybe is better to cross the street somewhere else. Notice that λ has to be the intensity
per unit of time. If we are interested in no cars passing in one hour then λ = 300 and
clearly the probability would be even smaller. If we want to know the average number of
cars passing in 5 minutes time then just define a new random variable X which counts the
cars passing in 5 minutes, which is distributed as Poisson with λ = 300/12 = 25 and this
is also the expected value.

The Poisson approximation: if X ∼ Bin(n, p) and Y ∼ Pois(λ) with λ = np, then for
large n and small p we have P (X = x) ' P (Y = x). More rigorously we have to prove
that for finite λ = np

lim
n→∞

FX(x;n, p) = FY (x;λ)

we can use mgfs and prove equivalently that

lim
n→∞

MX(t;n, p) = lim
n→∞

(1− p+ pet)n = eλ(et−1) = MY (t;λ).

Proof: we can use the following result: given a sequence of real numbers s.t. an → a for
n→∞, then

lim
n→∞

(
1 +

an
n

)n
= ea.

Now

lim
n→∞

MX(t;n, p) = lim
n→∞

(1− p+ pet)n = lim
n→∞

(
1 +

1

n
(et − 1)np

)n
=

= lim
n→∞

(
1 +

1

n
(et − 1)λ

)n
= eλ(et−1).
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14 Continuous distributions

Uniform: a random number chosen from a given closed interval [a, b]. Notation U(a, b).

• f(x) = 1
b−a for a ≤ x ≤ b.

• M(t) = etb−eta
t(b−a)

for t 6= 0 and M(0) = 1.

• µ = a+b
2
, σ2 = (b−a)2

12
.

Normal or Gaussian: this is the most important distribution. Notation N(µ, σ2).

• f(x) = 1
σ
√

2π
e−(x−µ)2/(2σ2) for −∞ < x <∞.

• M(t) = eµt+σ
2t2/2.

• E[X] = µ, Var[X] = σ2.

If X ∼ N(µ, σ2) then (X − µ)/σ = Z ∼ N(0, 1), is a standard normal distribution, i.e.
with zero mean and unit variance. We can use the moments of Z to compute the moments
of X , indeed

E[X] = E[µ+ σZ] = µ, Var[X] = Var[µ+ σZ] = σ2.

The shape of f(x) is symmetric around µ with inflection points at µ ± σ. A statistical
table (in the past) or a computer programme (nowadays) can be used to calculate the
distribution function. The following values will be useful later on:

P (|X − µ| ≤ σ) = P (|Z| ≤ 1) = .6826,

P (|X − µ| ≤ 2σ) = P (|Z| ≤ 2) = .9544,

P (|X − µ| ≤ 3σ) = P (|Z| ≤ 3) = .9974.

In particular, the so-called two-sigma rule states that (roughly) 95% (in a repeated sample)
of the data from a normal distribution falls within two standard deviations of its mean.

The normal distribution is characterized by just its first two moments. We can com-
pute higher order moments by using the following relation (holding for any differentiable
function g(X)) for X ∼ N(µ, σ2):

E[g(X)(X − µ)] = σ2E[g′(X)].

Check this (hint: use integration by parts).

From the above relation we have that all moments of a normal distribution are com-
putable starting from the second central moment. Moreover, for a standard normal random
variable Z all moments of odd order are zero, in particular

skewness γ =
E[Z3]

E[Z2]3/2
= E[Z2Z] = E[2Z] = 0,

kurtosis κ =
E[Z4]

E[Z2]2
= E[Z3Z] = E[3Z2] = 3.
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The skewness coefficient measures the asymmetry and indeed is zero for the normal, and
the kurtosis coefficient measures flatness of the tails, usually we are interested in the co-
efficient of excess kurtosis (with respect to the normal case), i.e. κ− 3.

Computing moments and mgf of the standard normal distribution: the mgf is com-
puted as

M(t) =
1√
2π

∫ +∞

−∞
e−

z2

2
+tzdz =

=
1√
2π

∫ +∞

−∞
e−

z2−2tz+t2

2 et
2/2dz =

=
et

2/2

√
2π

∫ +∞

−∞
e−

(z−t)2
2 dz = e

t2

2 .

The Taylor expansion of M(t) is

M(t) = 1 + 0 +
t2

2
+ 0 +

t4

222!
+ . . . =

+∞∑
j=0

t2j

2jj!
=

= 1 + µ1t+ µ2
t2

2!
+ µ3

t3

3!
+ µ4

t4

4!
+ . . . =

+∞∑
r=0

µr
tr

r!
,

hence the moments of Z (which in this case are equal to the central moments) are for
r = 0, 1, 2, . . .

µ2r+1 = E[Z2r+1] = 0,

µ2r = E[Z2r] =
(2r)!

2rr!
.

Gamma: is a family of distributions characterized by parameters α > 0 and θ. We need
the gamma function defined by

Γ(t) =

∫ ∞
0

yt−1e−ydy, for t > 0.

Properties of the gamma function Γ(t) = (t− 1)Γ(t− 1) for t > 1 and Γ(n) = (n− 1)!
for positive integer n. Notation for the gamma distribution; Gamma(α, θ) or G(α, θ).

• f(x) = 1
Γ(α)

θαxα−1e−θx for 0 ≤ x <∞.

• M(t) = 1
(1−t/θ)α for t < θ.

• µ = α/θ, σ2 = α/θ2.

31



α is the shape parameter determining if the distribution has a peak or it is monotonically
decreasing, while θ is the scale parameter influencing the spread of the distribution hence
its peak location.

Chi-square: if Zj are independent standard normal, then X =
∑r

j=1 Z
2
j has a chi-square

distribution with r degrees of freedom. Notation χ2
r or χ2(r). Equivalent to a gamma

distribution with α = r/2 and θ = 1/2.

• f(x) = 1
Γ(r/2)2r/2

xr/2−1e−x/2 for 0 ≤ x <∞.

• M(t) = 1
(1−2t)r/2

for t < 1/2.

• µ = r, σ2 = 2r.

Exponential: waiting time between events distributed as Poisson with intensity θ. Nota-
tion Exp(θ) (somewhat ambiguous). Equivalent to a gamma distribution with α = 1.

• f(x) = θe−θx for 0 ≤ x <∞.

• M(t) = θ
θ−t for t < θ.

• µ = 1/θ, σ2 = 1/θ2.

It is a memoryless distribution, indeed if X ∼ Exp(θ), then for integers s > t,

P (X > s|X > t) =
P (X > s ∩X > t)

P (X > t)
=
P (X > s)

P (X > t)

=

∫ +∞
s

θe−xθdx∫ +∞
t

θe−xθdx
= e−(s−t)θ = P (X > s− t).

Example: it is used in modeling survival rates (see below).

Log-normal: it is the distribution of a random variable X such that logX ∼ N(µ, σ2). It
is used for random variables with positive support, and it is very similar to, although less
flexible, and more analytically tractable than the gamma distribution.

• f(x) = 1
σ
√

2π
1
x
e−(log x−µ)2/(2σ2) for 0 < x <∞.

• E[X] = eµ+σ2/2, Var[X] = e2(µ+σ2) − e2µ+σ2 .

Notice that in this case M(t) is not defined (see ex. 2.36 Casella & Berger). Examples
are the distributions of income or consumption. This choice allows to model the logs of
income and consumption by means of the normal distribution which is the distribution
predicted by economic theory.
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15 Survival and hazard

Survival function: given a continuous non-negative random variable X , it is the function

F̄ (x) = 1− F (x) = P (X > x).

where x is interpreted as a threshold and we are interested in the probability of having
realizations of X beyond x. We usually assume that F̄ (0) = 1.

In the context of survival analysis the cdf and the pdf are called lifetime distribution func-
tion and event density, respectively.

Hazard function or hazard rate: it is the probability of having a realization of X in a
small interval beyond the threshold x, i.e. conditional on survival of X beyond x:

h(x) = lim
ε→0+

F̄ (x+ ε)− F̄ (x)

εF̄ (x)
= lim

ε→0+

P (X ≤ x+ ε|X > x)

ε
,

it is then defined as

h(x) =
f(x)

F̄ (x)
= − F̄

′(x)

F̄ (x)
.

Its relationship with cdf is:

h(x) = − d

dx
log(1− F (x)), F (x) = 1− exp

(
−
∫ x

0

h(u)du

)
.

Reading

Casella and Berger, Sections 3.1 - 3.2 - 3.3.

16 Bivariate joint and marginal distributions

For simplicity we first give the definitions for the bivariate case and then we generalise to
the n-dimensional setting.

Joint cumulative distribution function: for two random variables X and Y the joint cdf
is a function FX,Y : R× R→ [0, 1] such that

F (x, y) = P (X ≤ x, Y ≤ y).

Properties of joint cdf:

33



1. FX,Y (−∞, y) = limx→−∞ FX,Y (x, y) = 0,
FX,Y (x,−∞) = limy→−∞ FX,Y (x, y) = 0,
FX,Y (+∞,+∞) = limx→+∞,y→+∞ FX,Y (x, y) = 1;

2. Right continuous in x: limh→0+ FX,Y (x+ h, y) = FX,Y (x, y),
Right continuous in y: limh→0+ FX,Y (x, y + h) = FX,Y (x, y).

3. For any y, the function F (x, y) is non-decreasing in x.
For any x, the function F (x, y) is non-decreasing in y.

We are interested in the probability thatX and Y take values in a given (Borel !) subset of
the plane R× R ≡ R2. The simplest is a rectangular region A = {(x, y) ∈ R2 s.t. x1 <
x ≤ x2 and y1 < x ≤ y2}. Then

P (A) = P (x1 < X ≤ x2, y1 < Y ≤ y2) =

= FX,Y (x2, y2)− FX,Y (x1, y2)− [FX,Y (x2, y1)− FX,Y (x1, y1)].

Marginal cumulative distribution functions: if FX,Y is the joint distribution function
of X and Y then the marginal cdfs are the usual cdfs of the single random variables and
are given by

FX(x) = lim
y→∞

FX,Y (x, y) = FX,Y (x,∞),

FY (y) = lim
x→∞

FX,Y (x, y) = FX,Y (∞, y).

Marginal cdfs are generated from the joint cdf, but the reverse is not true. The joint cdf
contains information that is not captured in the marginals. In particular it tells us about
the dependence structure among the random variables, i.e. how they are associated.

17 Bivariate joint and marginal pmf and pdf

Joint probability mass function: for two discrete random variables X and Y it is a
function fX,Y : R× R→ [0, 1] such that

fX,Y (x, y) = P (X = x, Y = y) ∀ x, y ∈ R.

In general

P (x1 < X ≤ x2, y1 < Y ≤ y2) =
∑

x1<x≤x2

∑
y1<y≤y2

fX,Y (x, y).

Marginal probability mass functions: for two discrete random variables X and Y , with
range {x1, x2, . . .} and {y1, y2, . . .} respectively, the marginal pmfs are

fX(x) =
∑

y∈{y1,y2,...}

fX,Y (x, y)

fY (y) =
∑

x∈{x1,x2,...}

fX,Y (x, y).
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Joint probability density function: for two jointly continuous random variables X and
Y , it is an integrable function fX,Y : R× R→ [0,+∞) such that

FX,Y (x, y) =

∫ y

−∞

∫ x

−∞
fX,Y (u, v)dudv ∀ x, y ∈ R,

notice that this implies

fX,Y (x, y) =
∂2FX,Y (u, v)

∂u∂v

∣∣∣∣
u=x,v=y

,

Properties of joint pdf:

1. fX,Y (x, y) ≥ 0 for any x, y ∈ R;

2. normalisation: ∫ +∞

−∞

∫ +∞

−∞
fX,Y (x, y)dxdy = 1;

3. probability of a rectangular region:

P (x1 < X ≤ x2, y1 < Y ≤ y2) =

∫ y2

y1

∫ x2

x1

fX,Y (x, y)dxdy;

4. for any (Borel) set B ⊆ R2 the probability that (X, Y ) takes values in B is

P (B) =

∫ ∫
B

fX,Y (x, y)dxdy.

In the one-dimensional case events are usually intervals of R and their probability is pro-
portional to their length, in two-dimensions events are regions of the plane R2 and their
probability is proportional to their area, in three-dimensions events are regions of the
space R3 and their probability is proportional to their volume. Lengths, areas and vol-
umes are weighted by the frequencies of the outcomes which are part of the considered
events hence they are areas, volumes and 4-d volumes under the pdfs. Probability is the
measure of events with respect to the measure of the whole sample space which is 1 by
definition.

Marginal probability density functions: for two jointly continuous random variables X
and Y , they are integrable functions fX : R→ [0,+∞) and fY : R→ [0,+∞) such that

fX(x) =

∫ +∞

−∞
fX,Y (x, y)dy, ∀ x ∈ R,

fY (y) =

∫ +∞

−∞
fX,Y (x, y)dx, ∀ y ∈ R.

Therefore, the marginal cdfs are

FX(x) =

∫ x

−∞

∫ +∞

−∞
fX,Y (u, y)dydu, ∀ x ∈ R,

FY (y) =

∫ y

−∞

∫ +∞

−∞
fX,Y (x, v)dxdv, ∀ y ∈ R.
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18 Cdf, pmf, and pdf of n random variables

Multivariate generalization: for n random variables X1, . . . , Xn we have analogous
definitions:

1. the joint cdf is a function FX1,...,Xn : Rn → [0, 1] such that

FX1,...,Xn(x1, . . . , xn) = P (X1 ≤ x1, . . . Xn ≤ xn);

2. the marginal cdfs are, for any j = 1, . . . , n, the functions

FXj(xj) = FX1,...,Xn(∞, . . . ,∞, xj,∞, . . . ,∞);

3. the marginal pmf or pdf are, for any j = 1, . . . , n, the functions

fXj(xj) =


∑

x1
. . .
∑

xj−1

∑
xj+1

. . .
∑

xn
fX1,...,Xn(x1, . . . , xn), discrete case,∫∞

−∞ . . .
∫∞
−∞ fX1,...,Xn(x1, . . . , xn)dx1 . . . dxj−1dxj+1 . . . dxn, continuous case;

4. if g is a well-behaved function g : Rn → R, then

E[g(X1, . . . , Xn)] =


∑

x1
. . .
∑

xn
g(x1, . . . , xn)fX1,...,Xn(x1, . . . , xn), discrete,∫ +∞

−∞ . . .
∫ +∞
−∞ g(x1, . . . , xn)fX1,...,Xn(x1, . . . , xn)dx1 . . . dxn, continuous.

.

Reading

Casella and Berger, Section 4.1.

19 Independence of two random variables

Besides the usual univariate measures of location (mean) and scale (variance), in the mul-
tivariate case we are interested in measuring the dependence among random variables.

Joint cdf of independent random variables: two random variables X and Y are inde-
pendent if and only if the events {X ≤ x}, {Y ≤ y} are independent for all choices of x
and y, i.e., for all x, y ∈ R,

P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y),

FX,Y (x, y) = FX(x)FY (y).

Joint pmf or pdf of independent random variables: two random variablesX and Y are
independent if and only if, for all x, y ∈ R,

fX,Y = fX(x)fY (y).
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The two above are necessary and sufficient conditions, while the following is just neces-
sary conditions but not sufficient (see also below the distinction between independence
and uncorrelation).

Expectation and independence: if X and Y are independent then

E[XY ] = E[X]E[Y ].

Moreover, if g1 and g2 are well-behaved functions then also g1(X) and g2(Y ) are inde-
pendent random variables, hence

E[g1(X)g2(Y )] = E[g1(X)]E[g2(Y )].

20 Independence of n random variables

Multivariate generalisation: in the n-dimensional case we have analogous definitions:

1. the random variables X1, X2, . . . , Xn are mutually independent if and only if the
events {X1 ≤ x1}, {X2 ≤ x2}, . . . , {Xn ≤ xn} are independent for all choices of
x1, x2, . . . , xn ∈ R:

FX1,...,Xn(x1, . . . , xn) = FX1(x1)FX2(x2) . . . FXn(xn) =
n∏
j=1

FXj(xj);

2. X1, X2, . . . , Xn are mutually independent if and only if x1, x2, . . . , xn:

fX1,...,Xn(x1, . . . , xn) = fX1(x1)fX2(x2) . . . fXn(xn) =
n∏
j=1

fXj(xj).

3. if X1, X2, . . . , Xn are mutually independent then

E[X1, X2, . . . , Xn] = E[X1]E[X2] . . .E[Xn] =
n∏
j=1

E[Xj],

and if g1, g2, . . . , gn are well-behaved functions then also g1(X1), g2(X2), . . . , gn(Xn)
are mutually independent random variables, hence

E[g1(X1)g2(X2) . . . gn(Xn)] = E[g1(X1)]E[g2(X2)] . . .E[gn(Xn)] =
n∏
j=1

E[gj(Xj)].
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21 Measures of pairwise dependence

Covariance function: for two random variables X and Y we define

Cov(X, Y ) = E[(X − E[X])(Y − E[Y ])],

which is equivalent to

Cov(X, Y ) = E[XY ]− E[X]E[Y ].

Properties of covariance:

1. symmetry: Cov(X, Y ) = Cov(Y,X);

2. bilinearity

Cov(X1+X2, Y1+Y2) = Cov(X1, Y1)+Cov(X1, Y2)+Cov(X2, Y1)+Cov(X2, Y2),

and for any a, b ∈ R
Cov(aX, bY ) = abCov(X, Y );

3. relationship with variance: Var[X] = Cov(X,X),
Var[X + Y ] = Var[X] + Var[Y ] + 2Cov(X, Y ),
Var[X − Y ] = Var[X] + Var[Y ]− 2Cov(X, Y );

4. if X and Y are independent, Cov(X, Y ) = 0.

Correlation coefficient: for random variables X and Y ,

Corr(X, Y ) =
Cov(X, Y )√
Var[X]Var[Y ]

.

Correlation is the degree of linear association between two variables. It is a scaled covari-
ance, |Corr(X, Y )| ≤ 1. Moreover, |Corr(X, Y )| = 1 if and only if there exist numbers
a 6= 0 and b such that P (Y = aX + b) = 1 ( a linear relation between variables). If
Corr(X, Y ) = 1 then a > 0, if Corr(X, Y ) = −1 then a < 0.

Uncorrelation and independence: Corr(X, Y ) = 0, i.e. X and Y are uncorrelated, if
and only if

E[XY ] = E[X]E[Y ].

This result implies that

X, Y independent ⇒ X, Y uncorrelated.

but not the viceversa. Indeed correlation means only linear dependence.
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Example: we know that independence implies

E[g1(X)g2(Y )] = E[g1(X)]E[g2(Y )].

for any g1, g2 well-behaved functions. Consider the discrete random variables X and Y
such that the joint pmf is

fX,Y (x, y) =


1/4 if x = 0 and y = 1
1/4 if x = 0 and y = −1
1/4 if x = 1 and y = 0
1/4 if x = −1 and y = 0
0 otherwise

Now, E[XY ] = 0 and E[X] = E[Y ] = 0, thus Cov(X, Y ) = 0, the variables are un-
correlated. If we now choose g1(X) = X2 and g2(Y ) = Y 2 we have E[g1(X)g2(Y )] =
E[X2Y 2] = 0, but

E[g1(X)]E[g2(Y )] =
1

2

1

2
=

1

4
6= 0.

So X and Y are not independent.

Example: suppose X is a standard normal random variable, i.e. with E[Xk] = 0 for
k odd, and let Y = X2. Clearly X and Y are not independent: if you know X , you also
know Y . And if you know Y , you know the absolute value of X . The covariance of X
and Y is

Cov(X, Y ) = E[XY ]− E[X]E[Y ] = E[X3]− 0 · E[Y ] = E[X3] = 0.

Thus Corr(X, Y ) = 0, and we have a situation where the variables are not independent,
yet they have no linear dependence. A linear correlation coefficient does not encapsulate
anything about the quadratic dependence of Y upon X .

22 Joint moments and mgfs for two random variables

Expectation of a function of two random variables: if g is a well-behaved function
g : R × R → R and X and Y are random variables with joint pmf or pdf function fX,Y
then

E[g(X, Y )] =


∑

y

∑
x g(x, y)fX,Y (x, y), discrete case,∫∞

−∞

∫ +∞
−∞ g(x, y)fX,Y (x, y)dxdy, continuous case.

Joint moments: if X and Y are random variables with joint pmf or pdf fX,Y then the
(r, s)th joint moment is

µr,s = E[XrY s] =


∑

y

∑
x x

rysfX,Y (x, y), discrete case,∫ +∞
−∞

∫ +∞
−∞ xrysfX,Y (x, y)dxdy, continuous case.
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Joint central moments: the (r, s)th joint central moment is

mr,s = E[(X − E[X])r(Y − E[Y ])s] =

=


∑

y

∑
x[(x− µX)r(y − µY )s]fX,Y (x, y), discrete case,∫ +∞

−∞

∫∞
−∞[(x− µX)r(y − µY )s]fX,Y (x, y)dxdy, continuous case.

Properties of joint moments:

1. mean for X: µ1,0 = E[X];

2. rth moment for X: µr,0 = E[Xr];

3. variance for X: m2,0 = E[(X − E[X])2];

4. rth central moment for X: mr,0 = E[(X − E[X])r];

5. covariance: m1,1 = E[(X − E[X])(Y − E[Y ])] = Cov(X, Y );

6. correlation: m1,1/
√
m2,0m0,2 = Corr(X, Y ).

Joint moment generating function: given two random variables X and Y is a function
MX,Y : R× R→ [0,+∞) such that

MX,Y (t, u) = E[etX+uY ] =


∑

y

∑
x e

tx+uyfX,Y (x, y), discrete case,∫ +∞
−∞

∫∞
−∞ e

tx+uyfX,Y (x, y)dxdy, continuous case.

Properties of joint mgfs:

1. Taylor expansion:

MX,Y (t, u) = E

[
+∞∑
i=0

(tX)i

i!

+∞∑
j=0

(uY )j

j!

]
=

+∞∑
i=0

+∞∑
j=0

E[X iY j]
tiuj

i!j!
;

2. the (r, s)th joint moment is the coefficient of trus/(r!s!) in the Taylor expansion;

3. derivatives at zero:

µr,s = E[XrY s] = M
(r,s)
X,Y (0, 0) =

dr+s

dtrdus
MX,Y (t, u)

∣∣∣∣
t=0,u=0

;

4. moment generating function for marginals: MX(t) = E[etX ] = MX,Y (t, 0),
MY (u) = E[euY ] = MX,Y (0, u);

5. if X and Y independent:

MX,Y (t, u) = MX(t)MY (u).
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Joint cumulants: let KX,Y (t, u) = logMX,Y (t, u) be the joint cumulant generating func-
tion, then we define the (r, s)th joint cumulant cr,s as the coefficient of (trus)/(r!s!) in the
Taylor expansion of KX,Y . Thus,

Cov(X, Y ) = c1,1 and Corr(X, Y ) =
c1,1√
c2,0c0,2

.

23 Joint moments and mgfs of n random variables

Multivariate generalisation: for random variables X1, . . . , Xn with joint pmf or pdf
fX1,...,Xn:

1. joint moments:

µr1,...,rn =E[Xr1
1 . . . Xrn

n ]

=


∑

x1
. . .
∑

xn
xr11 . . . xrnn fX1,...,Xn(x1, . . . , xn), discrete case,∫ +∞

−∞ . . .
∫ +∞
−∞ xr11 . . . xrnn fX1,...,Xn(x1, . . . , xn)dx1 . . . dxn, continuous case;

2. joint central moments:

mr1,...,rn = E[(X1 − E[X1])r1 . . . (Xn − E[Xn])rn ].

3. joint moment generating function:

MX1,...,Xn(t1, . . . , tn) = E[et1X1+...+tnXn ],

and the coefficient of tr11 . . . trnn /(r1! . . . rn!) in the Taylor expansion of MX1,...,Xn is
E[Xr1

1 . . . Xrn
n ];

4. independence: if X1, . . . , Xn are independent then

MX1,...,Xn(t1, . . . , tn) = MX1(t1) . . .MXn(tn) =
n∏
j=1

MXj(tj);

5. joint cumulant generating function:

KX1,...,Xn(t1, . . . , tn) = log(MX1,...,Xn(t1, . . . , tn)),

and the (r1, . . . , rn)th joint cumulant is defined as the coefficient of (tr11 . . . trnn )/(r1! . . . rn!)
in the Taylor expansion of KX1,...,Xn .
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24 Inequalities

Hölder’s inequality: let p and q be two integers such that 1
p

+ 1
q

= 1, if X belongs to Lp

and Y belongs to Lq, then XY belong to L1 and

E[|XY |] ≤ E[|X|p]1/pE[|Y |q]1/q.

Cauchy-Schwarz’s inequality: this is Hölder’s inequality when p = q = 2; if X and Y
belong to L2, then XY belongs to L1 and

E[|XY |] ≤
√

E[X2]E[Y 2].

As a consequence, if X and Y have variances σ2
X and σ2

Y , then

|Cov(X, Y )| ≤ σXσY ,

which means |Corr(X, Y )| ≤ 1.

Minkowski’s inequality: let p ≥ 1, if X and Y belong to Lp, then X + Y belongs to Lp

and
E[|X + Y |p]1/p ≤ E[|X|p]1/p + E[|Y |p]1/p.

Reading

Casella and Berger, Sections 4.2 - 4.5 - 4.7.

25 Conditional distributions

When we observe more than one random variable their values may be related. By consid-
ering conditional probabilities we can improve our knowledge of a given random variable
by exploiting the information we have about the other.

Conditional cumulative distribution function: given X and Y random variables with
P (X = x) > 0, the distribution of Y conditional (given) to X = x is defined as

FY |X(y|x) = P (Y ≤ y|X = x).

It is a possibly different distribution for every value of X , we have a family of distribu-
tions.

Conditional probability mass function: given X and Y discrete random variables with
P (X = x) > 0, the conditional pmf of Y given X = x is

fY |X(y|x) = P (Y = y|X = x) =
fX,Y (x, y)

fX(x)
,
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such that the conditional cdf is

FY |X(y|x) =
∑
yi≤y

fY |X(yi|x).

Conditional probability density function: given X and Y jointly continuous random
variables with fX(x) > 0, the conditional pdf of Y given X = x is

fY |X(y|x) =
fX,Y (x, y)

fX(x)
,

such that the conditional cdf is

FY |X(y|x) =

∫ y

−∞

fX,Y (x, v)

fX(x)
dv.

Conditional, joint and marginal densities: given fX(x) > 0 we have:

1. conditional pmf or pdf:

fY |X(y|x) =
fX,Y (x, y)

fX(x)
=


fX,Y (x,y)∑
y fX,Y (x,y)

, discrete case,

fX,Y (x,y)∫∞
−∞ fX,Y (x,y)dy

, continuous case;

2. joint pmf or pdf:
fX,Y (x, y) = fY |X(y|x)fX(x);

3. marginal pmf or pdf:

fY (y) =


∑

x fY |X(y|x)fX(x), discrete case,∫∞
−∞ fY |X(y|x)fX(x)dx, continuous case;

4. reverse conditioning (if also fY (y) > 0):

fX|Y (x|y) =
fX,Y (x, y)

fY (x)
=
fX(x)

fY (y)
fY |X(y|x).

These are all direct implications of Bayes’ theorem.

26 Conditional moments and mgfs

Conditional expectation: given X and Y random variables the expectation of Y given
X = x is

E[Y |X = x] =


∑

y yfY |X(y|x), discrete case,∫ +∞
−∞ yfY |X(y|x)dy, continuous case.
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If we consider all possible values taken by X then we have a new random variable which
is the conditional expectation of Y given X and it is written as E[Y |X]. It is the best
guess of Y given the knowledge of X . All properties of expectations still hold.

Law of iterated expectations: since E[Y |X] is a random variable we can take its expec-
tation:

E[E[Y |X]] = E[Y ].

Indeed, in the continuous case

E[E[Y |X]] =

∫ +∞

−∞
E[Y |X = x]fX(x)dx =

=

∫ +∞

−∞

∫ +∞

−∞
y
fX,Y (x, y)

fX(x)
fX(x)dxdy = E[Y ].

A useful consequence is that we can compute E[Y ] without having to refer to the marginal
pmf or pdf of Y :

E[Y ] =


∑

x E[Y |X = x]fX(x), discrete case,∫ +∞
−∞ E[Y |X = x]fX(x)dx, continuous case.

Conditional expectations of function of random variables: if g is a well-behaved, real-
valued function, the expectation of g(Y ) given X = x is defined as:

E[g(Y )|X = x] =


∑

y g(y)fY |X(y|x), discrete case,∫ +∞
−∞ g(y)fY |X(y|x)dy, continuous case.

The conditional expectation of g(Y ) given X is written as E[g(Y )|X] and it is also a ran-
dom variable.

As a consequence any function of X can be treated as constant with respect to expec-
tations conditional on X . In general for well-behaved functions g1 and g2

E[g1(X)g2(Y )|X] = g1(X)E[g2(Y )|X].

Notice that also E[Y |X] is a function of X so

E[E[Y |X]Y |X] = E[Y |X]E[Y |X] = (E[Y |X])2.

Conditional variance: for random variables X and Y , it is defined as

Var[Y |X = x] = E[(Y − E[Y |X = x])2|X = x] =

=


∑

y[y − E[Y |X = x]]2fY |X(y|x), discrete case,∫∞
−∞[y − E[Y |X = x]]2fY |X(y|x)dy, continuous case.
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The conditional variance of Y given X is written as Var[Y |X] and it is a random variable
function of X . Moreover,

Var[Y |X] = E[Y 2|X]− (E[Y |X])2,

By using the law of iterated expectations,

Var[Y ] = E[Y 2]− (E[Y ])2 =

= E[E[Y 2|X]]− {E[E[Y |X]]}2 =

= E[Var[Y |X] + (E[Y |X])2]− {E[E[Y |X]]}2

= E[Var[Y |X]] + E[{E[Y |X]}2]− {E[E[Y |X]]}2

= E[Var[Y |X]] + Var[E[Y |X]],

This result tells us that
Var[Y ] ≥ E[Var[Y |X]],

the expected value of the conditional variance is in general smaller than the uncondi-
tional variance. If X contains useful information for Y then conditioning on X makes
uncertainty about the value of Y smaller. The case in which equality holds is when
Var[E[Y |X]] = 0, i.e. when E[Y |X] is no more random, which is when X contains
no information on Y , i.e. they are independent.

Conditional distributions and independence: if X and Y are independent random vari-
ables then for cdfs we have

FY |X(y|x) = FY (y) ∀ x, y ∈ R,
FX|Y (x|y) = FX(x) ∀ x, y ∈ R.

and for pmfs or pdfs we have

fY |X(y|x) =
fX,Y (x, y)

fX(x)
=
fX(x)fY (y)

fX(x)
= fY (y) ∀ x, y ∈ R,

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
=
fX(x)fY (y)

fY (y)
= fX(x) ∀ x, y ∈ R.

Finally,
E[Y |X] = E[Y ].

Conditional moment generating function: given X = x, it is the function defined as

MY |X(u|x) = E[euY |X = x] =


∑

y e
uyfY |X(y|x), discrete case,∫ +∞

−∞ euyfY |X(y|x)dy, continuous case.

This is a conditional expectation so it is a random variable. We can calculate the joint mgf
and marginal mgfs from the conditional mgf,

MX,Y (t, u) = E[etX+uY ] = E[etXMY |X(u|X)],

MY (u) = MX,Y (0, u) = E[MY |X(u|X)].
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Example: suppose that X is the number of hurricanes that form in the Atlantic basin
in a given year and Y is the number making landfall. We assume we know that each
hurricane has a probability p of making landfall independent of other hurricanes. If we
know the number of hurricanes that form say x we can view Y as the number of success
in x independent Bernoulli trials, i.e. Y |X = x ∼ Bin(x, p). If we also know that
X ∼ Pois(λ), then we can compute the distribution of Y (notice that X ≥ Y )

fY (y) =
+∞∑
x=y

fY |X(y|x)fX(x) =

=
+∞∑
x=y

x!

y!(x− y)!
py(1− p)x−yλ

xe−λ

x!
=

=
λypye−λ

y!

+∞∑
x=y

[λ(1− p)]x−y

(x− y)!
=

=
λypye−λ

y!

+∞∑
j=0

[λ(1− p)]j

j!
=

=
λypye−λ

y!
eλ(1−p) =

=
(λp)ye−λp

y!
,

thus Y ∼ Poisλp. So E[Y ] = λp and Var[Y ] = λp, but we could find these results without
the need of the marginal pdf. Since Y |X = x ∼ Bin(x, p), then

E[Y |X = x] = Xp Var[Y |X = x] = Xp(1− p)

Since X ∼ Pois(λ), by using the law of iterated expectations, we have

E[Y ] = E[E[Y |X = x]] = E[X]p = λp

and

Var[Y ] = E[Var[Y |X = x]]+Var[E[Y |X = x]] = E[X]p(1−p)+Var[Xp] = λp(1−p)+λp2 = λp.

Alternatively we can use the mgfs, we have

MX(t) = exp{λ(et − 1)} MY |X(u|X) = (1− p+ peu)X ,

therefore

MY (u) = E[MY |X(u|X)] = E[(1− p+ peu)X ] =

= E[exp{X log(1− p+ peu)}] =

= MX(log(1− p+ peu)) =

= exp{λ(1− p+ peu − 1)} =

= exp{λp(eu − 1)},

which is the mgf of a Poisson distribution.
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27 An example of bivariate distribution

Consider the function

fX,Y (x, y) =

{
x+ y if 0 < x < 1 and 0 < y < 1,
0 otherwise.

• It is a valid density, indeed it is a positive real valued function and it is normalized∫ +∞

−∞

∫ +∞

−∞
fX,Y (x, y)dxdy =

∫ 1

0

∫ 1

0

(x+ y)dxdy =

=

∫ 1

0

[
x2

2
+ xy

]1

0

dy =

∫ 1

0

[
1

2
+ y

]
dy =

=

[
y

2
+
y2

2

]1

0

= 1.

• The joint cdf is

FX,Y (x, y) =

∫ y

−∞

∫ x

−∞
fX,Y (u, v)dudv =

=

∫ y

−∞

∫ x

−∞
(u+ v)dudv =

=

∫ y

0

[
x2

2
+ xv

]
dv =

[
x2v

2
+
xv2

2

]1

0

=

=
1

2
xy(x+ y) for 0 < x < 1, 0 < y < 1.

More precisely we have

FX,Y (x, y) =



1
2
xy(x+ y) if 0 < x < 1 and 0 < y < 1,

1
2
x(x+ 1) if 0 < x < 1 and y ≥ 1,

1
2
y(y + 1) if x ≥ 1 and 0 < y < 1,

1 if x ≥ 1 and y ≥ 1,
0 otherwise.

• The marginal pdf of X is

fX(x) =

∫ +∞

−∞
fX,Y (x, y)dy =

=

∫ 1

0

(x+ y)dy = x+
1

2
.

• We can compute probabilities as P (2X < Y ), we first define the event B =

47



{(x, y) s.t. 0 < x < y
2
, 0 < y < 1} then

P (2X < Y ) = P (B) =

∫ ∫
B

fX,Y (x, y)dxdy =

=

∫ 1

0

∫ y/2

0

(x+ y)dxdy =

∫ 1

0

[
y2

8
+
y2

2

]
dy =

=

[
y3

24
+
y3

6

]1

0

=
5

24
.

Analogously we could define C = {(x, y) s.t. 0 < x < 1
2
, 2x < y < 1} and

compute P (C).

• the (r, s)th joint moment is

E[XrY s] =

∫ +∞

−∞

∫ +∞

−∞
xrysfX,Y (x, y)dxdy

=

∫ 1

0

∫ 1

0

xrys(x+ y)dxdy =

∫ 1

0

[
1

r + 2
ys +

1

r + 1
ys+1

]
dy =

=

[
1

(r + 2)(s+ 1)
ys+1 +

1

(r + 1)(s+ 2)
ys+2

]1

0

=
1

(r + 2)(s+ 1)
+

1

(r + 1)(s+ 2)
.

Thus, E[XY ] = 1
3
, E[X] = E[Y ] = 7

12
, E[X2] = 5

12
so Var[X] = 11

144
and finally

Cov(X, Y ) = E[XY ]− E[X]E[Y ] =
1

3
− 49

144
= − 1

144
,

and Corr(X, Y ) = − 1
11

, so X and Y are not independent.
We find this result also by noticing that given the marginals and the joint pdfs we
have

fX(x)fY (y) = xy +
x+ y

2
+

1

4
,

therefore fX(x)fY (y) 6= fX,Y (x, y) so X and Y are not independent.

• The conditional pdf of Y given X = x is

fY |X(y|x) =
fX,Y (x, y)

fX(x)
=

{
x+y

x+ 1
2

if 0 < y < 1

0 otherwise.

• The conditional expectation of Y given X = x is

E[Y |X = x] =

∫ +∞

−∞
yfY |X(y|x)dy =

=

∫ 1

0

y
x+ y

x+ 1
2

dy =

=
1

x+ 1
2

[
xy2

2
+
y3

3

]1

0

=

=
3x+ 2

6x+ 3
.
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• we can use the law of iterated expectations

E[E[Y |X = x]] =

∫ 1

0

3x+ 2

6x+ 3

(
x+

1

2

)
dx =

=
1

6

∫ 1

0

3x+ 2dx

=
1

6

(
3

2
+ 2

)
=

7

12
= E[Y ].

Reading

Casella and Berger, Sections 4.2 - 4.4 - 4.5.

28 Sums of random variables

We start with the bivariate case and then we generalise it to n variables.

Moments of a sum: if X and Y are random variables then:

E[X + Y ] = E[X] + E[Y ], Var[X + Y ] = Var[X] + Var[Y ] + 2Cov(X, Y ),

and, by using the linearity of expectations and the binomial expansion, we have for r ∈ N

E[(X + Y )r] =
r∑
j=0

(
r

j

)
E[XjY r−j].

Probability mass/density function of a sum: ifX and Y are random variables with joint
density fX,Y (x, y) and we define Z = X + Y then the pmf/pdf of Z is

fZ(z) =


∑

u fX,Y (u, z − u), discrete case,∫ +∞
−∞ fX,Y (u, z − u)du, continuous case.

In the continuous case just change variables X = U and Y = Z −U . In the discrete case
notice that

{X + Y = z} =
⋃
u

{X = u ∩ Y = z − u}

and, since this is a sum of disjoint events, for any u, we have

P (X + Y = z) =
∑
u

P (X = u ∩ Y = z − u).
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Probability mass/density function of a sum of independent random variables: if X
and Y are independent random variables and we define Z = X + Y then the pmf/pdf of
Z is

fZ(z) =


∑

u fX(u)fY (z − u), discrete case,∫ +∞
−∞ fX(u)fY (z − u)du, continuous case.

This operation is known as convolution

fZ = fX ∗ fY ⇔
∫ +∞

−∞
fX(u)fY (z − u)du.

Convolution is commutative so fX ∗ fY = fY ∗ fX .

Moment generating function of the sum of independent random variables: if X and
Y are independent random variables and we define Z = X + Y then the mgf of Z is

MZ(t) = MX(t)MY (t),

and the cumulant generating function is

KZ(t) = KX(t) +KY (t).

Example: suppose the X and Y are independent r.v. exponentially distributed, X ∼
Exp(λ) and Y ∼ Exp(θ), with λ 6= θ, then the pdf of Z = X + Y is

fZ(z) =

∫ +∞

−∞
fX(u)fY (z − u)du =

=

∫ z

0

λe−λuθe−θ(z−u)du =

= λθe−θz
[
−1

λ− θ
e−(λ−θ)u

]z
0

=

=
λθ

λ− θ
(e−θz − e−λz) 0 ≤ z < +∞.

Note the domain of integration [0, z]. Indeed, since both X and Y are positive r.v., also U
and Z − U have to be positive, thus we need 0 < U ≤ Z.
In theory, we could also use mgfs, but in this case we get a function of t that does not
have an expression that resembles one of a known distribution.

Example: suppose theX and Y are independent r.v. normally distributed,X ∼ N(µX , σ
2
X)

and Y ∼ N(µY , σ
2
Y ), then then to compute the pdf of Z = X + Y we use the cumulant

generating functions

KX(t) = µXt+
σ2
Xt

2

2
, KY (t) = µY t+

σ2
Y t

2

2
,

and

KZ(t) = (µX + µY )t+
(σ2

X + σ2
Y )t2

2
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by uniqueness of cumulant generating functions Z ∼ N(µX + µY , σ
2
X + σ2

Y ).

Multivariate generalization: for n independent random variables X1, . . . , Xn let S =∑n
j=1Xj then

1. the pmf/pdf of S is
fS = fX1 ∗ . . . ∗ fXn ;

2. the mgf of Sis
MS(t) = MX1(t) . . .MXn(t).

3. if X1, . . . , Xn are also identically distributed they have a common mgf MX(t) thus

fS = f ∗ f ∗ . . . ∗ f︸ ︷︷ ︸
n−times

, MS(t) = [MX(t)]n, KS(t) = nKX(t).

To indicate independent and identically distributed random variables we use the notation
i.i.d.

Example: given n i.i.d. Bernoulli r.v. X1 . . . Xn with probability p and mgf

MX(t) = 1− p+ pet,

the sum S =
∑n

j=1Xj has mgf

MS(t) = (1− p+ pet)n,

thus, by uniqueness of mgf, S ∼ Bin(n, p).

Example: given X1, . . . , Xn independent r.v. normally distributed Xj ∼ N(µj, σ
2
j ) then,

for fixed constants a1, . . . , an and b1, . . . , bn, we have

S =
n∑
j=1

(ajXj + bj) ∼ N

(
n∑
j=1

(ajµj + bj),
n∑
j=1

a2
jσ

2
j

)
.

If Xj ∼ iidN(µ, σ2), then

S =
n∑
j=1

Xj ∼ N(nµ, nσ2).

Other examples of sums of independent random variables

1. Poisson:
X ∼ Pois(λ1), Y ∼ Pois(λ2)⇒ Z ∼ Pois(λ1 + λ2)

Xj ∼ iidPois(λ)⇒ S ∼ Pois(nλ) j = 1, . . . n;
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2. Gamma:

X ∼ Gamma(r1, θ), Y ∼ Gamma(r2, θ)⇒ Z ∼ Gamma(r1 + r2, θ)

Xj ∼ iidExp(λ)⇒ S ∼ Gamma(n, λ) j = 1, . . . n;

3. Binomial:

X ∼ Bin(n1, p), Y ∼ Bin(n2, p)⇒ Z ∼ Bin(n1 + n2, p)

Xj ∼ iidBin(k, p)⇒ S ∼ Bin(nk, p) j = 1, . . . n.

29 Limit theorems for Bernoulli sums

Assume to observe n independent Bernoulli trialsXi with an unknown probability of suc-
cess p. We study the behaviour of the process Sn =

∑n
i=1 Xi which counts the number

of successes in n trials. If Xi ∼ iidBernoulli(p), then Sn ∼ Bin(n, p). For any i we have
that E[Xi] = p and Var[Xi] = p(1− p) so that E[Sn] = np and Var[Sn] = np(1− p).

Law of Large Numbers: there are two forms of this law:

1. Weak Law of Large Numbers: as n→ +∞, Sn/n
m.s.→ p, i.e.

lim
n→+∞

E

[(
Sn
n
− p
)2
]

= 0,

which implies Sn/n
P→ p, i.e.

lim
n→∞

P

(∣∣∣∣Snn − p
∣∣∣∣ < ε

)
= 1, ∀ε > 0;

2. Strong Law of Large Numbers: as n→ +∞, Sn/n
a.s.→ p, i.e.

P

(
lim
n→∞

∣∣∣∣Snn − p
∣∣∣∣ = 0

)
= 1.

The law establishes the convergence of the empirical average (or sample mean) Sn/n to
the expected value of Xi, i.e. to p (or population mean). It is uesful if we observe many
Bernoulli trials and we want to determine p: it is a first example of inference.

Proof of the weak law: for each n we have

E

[(
Sn
n
− p
)2
]

=
E
[
(Sn − np)2]

n2
=

Var[Sn]

n2
=
p(1− p)

n
→ 0, as n→ +∞.
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Example: when tossing a coin Xi is 1 if we get head or 0 if we get tail (a Bernoulli trial),
Sn is the number of heads we get in n independent tosses. The frequency of heads will
converge to 1/2 which is the value of p in this particular case.

The following result is a special case of the Central Limit Theorem which we shall
see in due course.

De Moivre-Laplace Limit Theorem: as n→ +∞, and for Z ∼ N(0, 1),

lim
n→∞

P

(
√
n
Sn/n− p√
p(1− p)

≤ α

)
= P (Z ≤ α) =

∫ α

−∞

e−z
2/2

√
2π

dz, ∀α ∈ R,

which implies
√
n
Sn/n− p√
p(1− p)

d→ Z.

We are saying that the sample mean (which is a random variable) of the Bernoulli trials
converges in distribution or is asymptotically distributed as a normal random variable with
mean p (this we know already from the law of large numbers) and variance p(1 − p)/n,
thus the more trials we observe the smaller the uncertainty about the expected value of the
sample mean, the rate of convergence being

√
n. This result contains useful informations

not only on the point-wise estimate of the population mean but also on the uncertainty
and the speed with which we have convergence.

Finally, remember that Sn ∼ Bin(np, np(1− p)), then, by rearranging the terms, we have

Sn − np√
np(1− p)

d→ Z.

i.e. the Binomial distribution can be approximated by a normal distribution with mean np
and variance np(1− p).

Reading

Casella and Berger, Sections 5.2

30 Mixtures and random sums

Hierarchies and mixtures: suppose we are interested in a random variable Y which has
a distribution that depends on another random variables, say X . This is called a hierar-
chical model and Y has a mixture distribution. In the first instance we do not know the
marginal distribution of Y directly, but we know the conditional distribution of Y given
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X = x and the marginal distribution of X (see the example on hurricanes of Section 26).

The key results which are necessary for characterising Y , are

E[Y ] = E[E[Y |X]]

Var = E[Var[Y |X]] + Var[E[Y |X]]

fY (y) = E[fY |X(y|X)] and MY (t) = E[MY |X(t|X)]

Example: Poisson mixing. If Y |Λ = λ ∼ Pois(λ), for some positive r.v. Λ, then

E[Y |Λ] = Var[Y |Λ] = Λ.

Therefore,
E[Y ] = E[Λ], Var[Y ] = E[Λ] + Var[Λ].

Random sums: We consider the case in which X1, X2, . . . is a sequence of independent
identically distributed random variables and Y =

∑N
j=1 Xj , where N is also a random

variable which is independent of each Xi. Y is called random sum and can be viewed
as a mixture such that Y |N = n is a sum of random variables, so all results of previous
section still hold.

Conditional results for random sums: suppose that {Xj} is a sequence of i.i.d. random
variables with mean E[X] and variance Var[X], for any j, and suppose that N is a random
variable taking only positive integer values and define Y =

∑N
j=1Xj , then

E[Y |N ] = NE[X],

Var[Y |N ] = NVar[X],

MY |N(t|N) = [MX(t)]N and KY |N(t|N) = NKX(t).

Marginal results for random sums: suppose that {Xj} is a sequence of i.i.d. random
variables with mean E[X] and variance Var[X], for any j, and suppose that N is a random
variable taking only positive integer values and define Y =

∑N
j=1Xj , then

E[Y ] = E[N ]E[X],

Var[Y ] = E[N ]Var[X] + Var[N ]{E[X]}2,

MY (t) = MN(logMX(t)) and KY (t) = KN(KX(t)).

Example: each year the value of claims made by an owner of a health insurance policy is
distributed exponentially with mean α independent of previous years. At the end of each
year with probability p the individual will cancel her policy. We want the distribution of
the total cost of the health insurance policy for the insurer. The value of claims in year j
is Xj and the number of years in which the policy is held is N , thus

Xj ∼ iidExp

(
1

α

)
, N ∼ Geometric(p).
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The total cost for the insurer is Y =
∑N

j=1Xj . Therefore, E[Y ] = α 1
p
. To get the

distribution we use the cumulant generating function

KX(t) = − log(1− αt), KN(t) = − log

(
1− 1

p
+

1

p
e−t
)
,

and

KY (t) = KN(KX(t)) = − log

(
1− 1

p
+

1

p
(1− αt)

)
= − log

(
1− α

p
t

)
,

by uniqueness we have that Y ∼ Exp
(
p
α

)
.

The Poisson approximation: assume to have Xj ∼ iidBernoulli(p), and N ∼ Pois(λ).
Consider Y =

∑N
j=1Xj , then Y |N = n ∼ Bin(n, p) and

E[Y ] = λE[X],

Var[Y ] = λE[X2],

MY (t) = MN(logMX(t)) = eλ(MX(t)−1),

KS(t) = λ(MX(t)− 1).

By using the mgf of a Bernoulli MX(t) = 1− p+ pet we get

MY (t) = eλ(MX(t)−1) = eλp(e
t−1),

by uniqueness of mgf, Y ∼ Pois(λp) (see the example on hurricanes of Section 26).

Reading

Casella and Berger, Section 4.4

31 Random vectors

This is just a way to simplify notation when we consider n random variables. Expecta-
tions are element wise and we have to remember that the variance of a vector is a matrix.

Random vector: an n-dimensional vector of random variables, i.e. a function

X = (X1, . . . , Xn)T : Ω→ Rn.

The cdf, pmf or pdf, and mgf of a random vector are the joint cdf, pmf or pdf, and mgf of
X1, . . . , Xn so, for any x = (x1, . . . , xn), t = (t1, . . . , tn) ∈ Rn,

FX(x) = FX1,...,Xn(x1, . . . , xn),

fX(x) = fX1,...,Xn(x1, . . . , xn),

MX(t) = MX1,...,Xn(t1, . . . , tn).
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Expectation of a random vector: the expectation of a random vector is a vector of the
expectations, i.e. it is taken element by element

E[X] =

 E[X1]
...

E[Xn]

 .

For jointly continuous random variables we have

E[X] =

∫
Rn

xfX(x)dx =

=

∫ +∞

−∞
. . .

∫ +∞

−∞
x1 . . . xnfX1,...,Xn(x1, . . . , xn)dx1 . . . dxn.

Variance-covariance matrix: given n random variables X1, . . . , Xn we know what is
the variance of each of them and we know the covariance of each couple. All these
informations can be summarized in just one object, defined as

Σ = Var[X] = E[(X− E[X])(X− E[X])T ],

Where X is n × 1 (a column vector), then XT is 1 × n (a row vector), and Σ is a n × n
matrix. Taking element by element expectation of this matrix we get

Σ =


Var[X1] Cov(X1, X2) . . . Cov(X1, Xn)

Cov(X2, X1) Var[X2] . . . Cov(X2, Xn)
...

... . . . ...
Cov(Xn, X1) . . . . . . Var[Xn]

 .

The matrix is symmetric and if the variables are uncorrelated then it is a diagonal matrix.
If the variables are also identically distributed then Σ = σ2In where σ2 is the variance
of each random variable and In is the n-dimensional identity matrix. Finally, as the uni-
varaite variance is always positive, in this case we have that Σ is a non-negative definite
matrix, i.e.

bTΣb ≥ 0 ∀b ∈ Rn.

Example: if N = 2 and assume E[X] = E[Y ] = 0 then

Σ = E
[(

X
Y

)
(X Y )

]
= E

[
X2 XY
Y X Y 2

]
=

(
E[X2] E[XY ]
E[Y X] E[Y 2]

)
=

(
Var[X] Cov(X, Y )

Cov(X, Y ) Var[Y ]

)
.

Conditioning for random vectors: if X and Y are random vectors, and if fX(x) > 0,
we can define the conditional pdf/pmf as

fY|X(y|x) =
fX,Y(x,y)

fX(x)
.

or
fX,Y(x,y) = fY|X(y|x)fX(x).
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Decomposition of probability mass/density function: given an n-dimensional random
vector X and given x ∈ Rn, then

fX(x) = fXn|Xn−1...X1(xn|xn−1 . . . x1)fXn−1|Xn−2...X1(xn−1|xn−2 . . . x1) . . . fX2|X1(x2|x1)fX1(x1) =

=
n∏
j=1

fXj |Xj−1
(xj|xj−1),

where the random vector Xj−1 is the random vector X without its j-th element.

Example: consider 3 r.v. X1, X2 and X3, we can group them in different ways and we
get for example

fX1,X2,X3(x1, x2, x3) = fX3|X1,X2(x3|x1, x2)fX1,X2(x1, x2),

and applying again the definition above to the joint pdf/pmf of X1 and X2 we have

fX1,X2,X3(x1, x2, x3) = fX3|X1,X2(x3|x1, x2)fX2|X1(x2|x1)fX1(x1).

32 Multivariate normal distribution

We start with the bivariate case. We want a bivariate version of the normal distribution.
Given two standard normal random variables, we can build a bivariate normal that de-
pends only on their correlation.

Standard bivariate normal: given U and V i.i.d. standard normal random variables, and
for some number |ρ| < 1, define X = U and Y = ρU +

√
1− ρ2V , then we can prove

that

1. X ∼ N(0, 1) and Y ∼ N(0, 1);

2. Corr(X, Y ) = ρ;

3. the joint pdf is that of a standard bivariate normal random variable and depends
only on the parameter ρ:

fX,Y (x, y) =
1

2π
√

1− ρ2
exp

[
−(x2 − 2ρxy + y2)/(2(1− ρ2))

]
.

The random vector X = (X, Y )T is normally distributed and we write(
X
Y

)
∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
,

or X ∼ N(0,ΣX,Y ) where ΣX,Y is the 2× 2 variance covariance matrix;
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4. the joint mgf is

MX,Y (s, t) = exp
[

1

2
(s2 + 2ρst+ t2)

]
.

Bivariate normal for independent random variables: if the random variables U and V
are independent and standard normal, the joint pdf and mgf are

fU,V (u, v) =
1

2π
e−(u2+v2)/2,

MU,V (s, t) = e(s2+t2)/2.

The random vector (U, V ) is normally distributed with variance covariance matrix

ΣU,V =

(
1 0
0 1

)
.

Computing the joint pdf: given X = U and Y = ρU +
√

1− ρ2V , we have to compute
fX,Y (x, y) given fU,V (u, v). Given the function h : R2 → R2 such that h(X, Y ) = (U, V )
and the domain of h is C ⊆ R2 and it is in one-to-one correspondence with the support
of (U, V ), we have the rule

fX,Y (x, y) =

{
fU,V (h(x, y))|Jh(x, y)| for (x, y) ∈ C

0 otherwise

where

Jh(x, y) = det

 ∂
∂x
h1(x, y) ∂

∂x
h2(x, y)

∂
∂y
h1(x, y) ∂

∂y
h2(x, y)

 .

In this case, C = R2,

u = h1(x, y) = x, v = h2(x, y) =
y − ρx√

1− ρ2
,

and |Jh(x, y)| = 1√
1−ρ2

, thus

fX,Y (x, y) = fU,V

(
x,

y − ρx√
1− ρ2

)
1√

1− ρ2
.

Generic bivariate normal: if X∗ = µX + σXX and Y ∗ = µY + σY Y then X∗ ∼
N(µX , σ

2
X) and Y ∗ ∼ N(µY , σ

2
Y ) with Corr(X∗, Y ∗) = ρ and the joint pdf is

fX∗,Y ∗(x, y) =
1

σXσY
fX,Y

(
x− µX
σX

,
y − µY
σY

)
.

A generic jointly normal random vector is distributed as(
X∗

Y ∗

)
∼ N

((
µX
µY

)
,

(
σ2
X Cov(X, Y )

Cov(X, Y ) σ2
Y

))
.
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Conditional distribution: of Y ∗ given X∗ is

Y ∗|X∗ = x ∼ N

(
µy + ρ

σY
σX

(x− µX), σ2
Y (1− ρ2)

)
.

It is obtained by using the joint and the marginal pdfs.

Multivariate case

1. Multivariate normal density: let X1, . . . , Xn be random variables and define the
n × 1 random vector X = (X1, . . . , Xn)T . If X1, . . . , Xn are jointly normal then
X ∼ N(µ,Σ), where the mean µ = E[X] is an n × 1 vector and the covariance
matrix Σ = Var[X] is an n × n matrix whose (i, j)th entry is Cov(Xi, Xj). The
joint density functions is

fX1,...,Xn(x1, . . . , xn) = fX(x) = (2π)−n/2| det Σ|−1/2e−(x−µ)′Σ−1(x−µ)/2.

2. Conditional expectation for multivariate normal: suppose that X = (X1, . . . , Xn)T

and Y = (Y1, . . . , Ym)T , for some integers n and m, and X ∼ N(µX ,ΣX) and
Y ∼ N(µY ,ΣY ) . If, Cov(X,Y) = ΣXY = Σ′Y X , then

E[Y|X] =µY + ΣY XΣ−1
X (X− µX),

Var[Y|X] =ΣY −ΣY XΣ−1
X ΣXY .

Joint normality and independence:

• normally distributed and independent random variables are jointly normally dis-
tributed, however, a pair of jointly normally distributed variables need not be inde-
pendent;

• while it is true that the marginals of a multivariate normal are normal too, it is not
true in general that given two normal random variables their joint distribution is
normal;

• in general, random variables may be uncorrelated but highly dependent, but if a
random vector has a multivariate normal distribution then any two or more of its
components that are uncorrelated are independent, this implies that any two or more
of its components that are pairwise independent are independent;

• it is not true however that two random variables that are marginally normally dis-
tributed and uncorrelated are independent: it is possible for two random variables
to be distributed jointly in such a way that each one alone is marginally normally
distributed, and they are uncorrelated, but they are not independent.

Example: consider X a standard normal random variable and define

Y =

{
X if |X| > c
−X if |X| < c
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where c is a positive number to be specified. If c is very small, thenCorr(X, Y ) ' 1;
if c is very large, then Corr(X, Y ) ' −1. Since the correlation is a continuous func-
tion of c, there is some particular value of c that makes the correlation 0. That value is
approximately 1.54. In that case, X and Y are uncorrelated, but they are clearly not inde-
pendent, since X completely determines Y . Moreover, Y is normally distributed. Indeed,
its distribution is the same as that of X . We use cdfs:

P (Y ≤ x) = P ((|X| < c ∩ −X < x) ∪ (|X| > c ∩X < x)) =

= P ((|X| < c ∩X > −x)) + P ((|X| > c ∩X < x)) =

= P ((|X| < c ∩X < x)) + P ((|X| > c ∩X < x))

where the last row depends on the fact that for a symmetric distribution P (X < x) =
P (X > −x). Thus, since the events {|X| < c} and {|X| > c} are a partition of the
sample space which is R, then

P (Y ≤ x) = P (X ≤ x),

hence Y is a standard normal random variable too. Finally, notice that the sum X + Y
for c = 1.54 has a substantial probability (about 0.88) of it being equal to 0, whereas
the normal distribution, being a continuous distribution, has no discrete part, i.e., does
not concentrate more than zero probability at any single point. Consequently X and Y
are not jointly normally distributed, even though they are marginally normally distributed.

Reading

Casella and Berger, Definition 4.5.10

33 Bernoulli motivation for the Law of Large Numbers

This section starts off somewhat more abstract but concludes with the most important and
widely-used theorem in probability, the Central Limit Theorem. Along the way we also
state and prove two laws of large numbers.

To get started, as an example, consider a sequence of independent Bernoulli random
variables Xi ∼ X with p = 1/2 and let Yn = 1√

n

∑n
i=1(2Xi − 1). Note that we have nor-

malised the Xi so that E[Yn] = 0 and Var(Yn) = 1. In particular, the mean and variance
of Yn does not depend on n. A gambler could think of Yn as their (rescaled) earnings in
case they win £1 each time a fair coin ends up head and lose £1 each time the coin leads to
tail. Astonishingly, even though Yn is constructed from a humble Bernoulli distribution,
as n gets large, the distribution of Yn approaches that of the normal distribution. Indeed,
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using moment generating functions (and MaX+b(t) = ebtMX(at) for a, b ∈ R), we get

MYn(t) =
(
e−t/

√
nMX(2t/

√
n)
)n

=

(
e−t/

√
n(1− 1

2
+

1

2
e2t/

√
n)

)n
=

(
1

2
e−t/

√
n +

1

2
et/
√
n

)n
→

(
(
1

2
− 1

2
t/
√
n+

1

4
t2/n) + (

1

2
+

1

2
t/
√
n+

1

4
t2/n)

)n
(Taylor)

=

(
(1 +

1

2
t2/n)

)n
→ et

2/2,

which we recognise as the moment generating function of a standard normal distribution.
Since moment generating functions (usually, more on this below) uniquely determine the
distribution, it follows that Yn “converges” to a normally distributed random variable. We
shall see below that there is nothing special here about the Bernoulli distribution as hardly
any distribution (though there are some) can resist the attraction of the normal distribution.
But before we get to that, we first have a closer look at the various kinds of convergence
of random variables and how these notions are related.

34 Modes of convergence

In what follows we consider a sequence of random variables X1, X2, . . . and we consider
four (and there are more!) types of convergence.

The first notion is that of almost sure convergence. Perhaps you find the terminology sur-
prising since in mathematical statements we are used to certainty and almost sure sounds
rather vague (in fact, there is even a notion of vague convergence), but almost sure in the
setting here means that convergence happens on a set with probability 1.

Almost sure convergence: the sequence {Xn} converges to X almost surely if

P

(
ω ∈ Ω : lim

n→+∞
Xn(ω) = X(ω)

)
= 1,

and we use the notation Xn
a.s.→ X .

It means that Xn(ω) converges to X(ω) for all ω ∈ Ω except perhaps for some ω ∈ N
where P (N) = 0.
Note that in the Casella Berger book this is stated in the equivalent form

P
(

lim
n→∞

|Xn −X| < ε
)

= 1, ∀ ε > 0.
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Note that whenever we write P (A) we should check that A is in our sigma-algebra. In-
deed, with A := {ω : limn→+∞Xn(ω) = X(ω)} we have that ω ∈ A if and only if

∀k ∈ N ∃N ∈ N s.t. ∀n ≥ N |Xn(ω)−X(ω)| < 1

k

and hence

A =
⋂
k∈N

⋃
N∈N

⋂
n≥N

{
ω ∈ Ω : |Xn(ω)−X(ω)| < 1

k

}
is a measurable set (being the countable intersection of a countable union of a countable
intersection of measurable sets!). Useful equivalent definitions are

P (|Xn −X| > ε for infinitely many n) = 0 for any ε > 0

and

lim
n→∞

P

(
∞⋃
m=n

|Xm −X| > ε

)
= 0 for any ε > 0.

To see that the latter two definitions are equivalent, first consider an increasing sequence
of events Bn, meaning that Bi ⊂ Bi+1 for each i. Using countable additivity it follows
that (with B0 = ∅)

P

(⋃
n

Bn

)
= P

(⋃
n

(Bn\Bn−1)

)
=
∑
n

P (Bn\Bn−1) = lim
n→∞

P (Bn).

A diagram might help here to see why the above is true and the final equality is an example
of a so-called telescoping series. This is called the continuity property of probability.
Next, note that

⋃∞
m=n{|Xm − X| > ε} is a decreasing sequence of sets and by taking

complements equivalence now follows (try filling in the details).

The remaining three modes of convergence are somewhat more straightforward.

Convergence in probability: the sequence {Xn} converges to X in probability if

lim
n→∞

P (|Xn −X| < ε) = 1, ∀ ε > 0,

and we use the notation Xn
P→ X .

An obviously equivalent definition is

lim
n→∞

P (|Xn −X| > ε) = 0, ∀ ε > 0.

Mean-square convergence: the sequence {Xn} converges to X in mean-square if

lim
n→∞

E
[
(Xn −X)2

]
= 0,

and we use the notation Xn
m.s.→ X .
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Convergence in distribution: the sequence {Xn} converges to X in distribution if

lim
n→∞

FXn(t) = FX(t),

for any t at which FX is continuous. We use the notation Xn
d→ X .

Relations among the modes of convergence:

1. if Xn
a.s.→ X then Xn

P→ X;

2. if Xn
m.s.→ X then Xn

P→ X;

3. if Xn
P→ X then Xn

d→ X .

Proof:

1. If Xn converges to X almost surely, this means that for any ε > 0

lim
n→∞

P

(
∞⋃
m=n

|Xm −X| > ε

)
= 0.

Since {|Xn −X| > ε} ⊂
⋃∞
m=n{|Xm −X| > ε} it follows that

lim
n→∞

P (|Xn −X| > ε) = 0,

so Xn converges to X in probability.

2. From Chebyshev’s inequality we know that for any ε > 0

P (|Xn −X| > ε) ≤ E[(Xn −X)2]

ε2
→ 0

as n → ∞ and hence mean-square convergence indeed implies convergence in
probability.

3. Suppose for simplicity that Xn and X are continuous random variables and assume
that Xn

P→ X . From the bounds

P (X ≤ t− ε) ≤ P (Xn ≤ t) + P (|Xn −X| ≥ ε)

and
P (Xn ≤ t) ≤ P (X ≤ t+ ε) + P (|Xn −X| ≥ ε)

it follows by letting ε > 0 arbitrarily small that

P (Xn ≤ t)→ P (X ≤ t) as n→∞.

This argument can be adapted to the case whenXn orX are not continuous random
variables as long as t is a point of continuity of FX .

Note that it follows that convergence in distribution is implied by any of the other modes
of convergence. None of the other implications hold in general. For some of the examples
and also for the proof of (a special case of) the Strong Law of Large Numbers the so-called
Borel Cantelli Lemmas are incredibly useful.
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35 Borel Cantelli Lemmas

The Borel Cantelli Lemmas are two fundamental lemmas in probability theory. Let An
be a sequence of events and denote by A := ∩n ∪∞m=n Am the event that infinitely many
of the An occur. The Borel Cantelli Lemmas give sufficient conditions on the An under
which either P (A) = 0 or P (A) = 1.

Borel Cantelli 1: Suppose
∑∞

n=1 P (An) <∞. Then P (A) = 0.

Proof: Note that since by definition A ⊂ ∪∞m=nAm for each n, it follows that

P (A) ≤ P (
∞⋃
m=n

Am) ≤
∞∑
m=n

P (Am)→ 0 as n→∞

since
∑∞

n=1 P (An) <∞.

Borel Cantelli 2 Suppose that A1, A2, . . . are independent and
∑∞

n=1 P (An) =∞. Then
P (A) = 1.

Proof: It suffices to show that P (Ac) = 0. Note that

P (Ac) = P

(⋃
n

∞⋂
m=n

Acm

)

= lim
n→∞

P

(
∞⋂
m=n

Acm

)
(as
⋂∞
m=nA

c
m is increasing in n)

= lim
n→∞

∞∏
m=n

(1− P (Am)) (independence)

≤ lim
n→∞

∞∏
m=n

e−P (Am) (since 1− x ≤ e−x)

= lim
n→∞

e−
∑∞
m=n P (Am)

= 0

whenever
∑∞

n=1 P (An) =∞.

36 Examples of various modes of convergence

Example “in probability” does not imply “almost surely”

Let Xn be independent Bernoulli random variables with parameter p = 1/n. Then it
obviously holds that Xn

P→ 0 since P (|Xn − 0| > ε) = P (Xn = 1) = 1/n → 0
as n → ∞. You may find it surprising (at least upon first reading) that Xn does not
converge to 0 almost surely. Indeed, considering An := {Xn = 1} it holds that

∞∑
n=1

P (An) =
∞∑
n=1

1

n
=∞

64



as the harmonic series diverges3. Now, from the second Borel Cantelli Lemma it follows
that P (Xn = 1 for infinitely many n) = 1, so Xn does not converge to 0 almost surely.

Example “square mean” does not imply “almost surely”

Let Xn be defined as in the previous example. Then

E[(Xn − 0)2] =
1

n
→ 0

as n→∞, so Xn converges in mean square to 0 but not almost surely.

Example “in probability” does not imply “square mean”

Convergence in probability only means that the probability that Xn and X differ by at
most ε > 0 goes to zero as n → ∞, and, in particular, it does not lead to any restriction
on the values of Xn when it is not close to X . Take for example Xn = 0 with p = 1−1/n

and Xn = n with p = 1/n. Again, it holds that have that Xn
P→ 0. However, since

E[(Xn − 0)2] =
n2

n
= n

does not converge to zero, the random variables Xn do not converge to 0 in square mean.

Example “almost surely” does not imply “square mean”

If we tweak Xn and define the sequence now with P (Xn = 0) = 1− 1/n2 and P (Xn =
n) = 1/n2 we have that for any ε > 0

P (|Xn − 0| > ε) =
1

n2
.

Since
∑∞

n=1 n
−2 < ∞, (in fact4, it is π2/6), it now follows from the first Borel Cantelli

Lemma that

P (|Xn − 0| > ε for infinitely many n) = 0 for any ε > 0,

or equivalently, Xn
a.s.→ 0. On the other hand,

E[(Xn − 0)2] = n2/n2 = 1

and so Xn does not converge to 0 in mean square.

Example “in distribution” does not imply anything

Let Z be a standard normal random variable and let Xn = (−1)nZ. Than Xn converges
in distribution to Z but does not converge in any of the other three modes.

Example “almost surely” implies “in probability”
3for example, this follows form the fact that the harmonic series 1 + 1/2 + (1/3 + 1/4) + (1/5 +

1/6 + 1/7 + 1/8) + . . . has a lower bound 1 + 1/2 + (1/4 + 1/4) + (1/8 + 1/8 + 1/8 + 1/8) + . . . =
1 + 1/2 + 1/2 + 1/2 + . . . =∞

4for various proofs of this surprising result see http://empslocal.ex.ac.uk/people/
staff/rjchapma/etc/zeta2.pdf
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Consider Xn and X ∼ U [0, 1] such that Xn(ω) = ω + ωn and X(ω) = ω for any
ω ∈ [0, 1]. Then if ω ∈ [0, 1) we have ωn → 0 and so Xn(ω) → X(ω) = ω. When
ω = 1 we have Xn(1) = 2 but X(1) = 1. However, the set in which we have problems is
A = {ω s.t. ω = 1} and we have

P (A) = 1−P (Ac) = 1−P ({ω s.t. ω ∈ [0, 1)}) = 1−[FX(1)−FX(0)] = 1−[1−0] = 0.

We have also convergence in probability. We can write Xn = X +Xn, then

P (|Xn −X| > ε) = P (|Xn| > ε) =

= P (Xn < −ε ∪Xn > ε) =

= P (X < −ε1/n ∪X > ε1/n) =

→ P (X < −1 ∪X > 1) = 0.

Example “in probability” does not imply “almost surely”

Consider Xn and X ∼ U [0, 1] such that

X1(ω) = ω + I[0,1](ω),

X2(ω) = ω + I[0,1/2](ω),

X3(ω) = ω + I[1/2,1](ω),

X4(ω) = ω + I[0,1/3](ω),

X5(ω) = ω + I[1/3,2/3](ω),

X6(ω) = ω + I[2/3,1](ω).

Define also X(ω) = ω. Let’s compute the probability limit

P (|Xn −X| > ε) = P (X + Iδn −X > ε)→ 0,

since δn is an interval that becomes smaller and smaller as n → ∞. Then Xn → X in
probability. However, for any ω we have an n such that Xn(ω) = ω, Xn+1(ω) = ω + 1,
and Xn+2(ω) = ω. Therefore the set of outcomes such that Xn does not converge to X is
the whole sample space [0, 1] which implies that no almost sure convergence exists.

Example “in probability” implies “in distribution”

Convergence in probability implies convergence in distribution. Assume that Xn ∼
U [0, 1] and are i.i.d. such that Xn = max1≤i≤nXi. We prove that Xn converges in
probability to the random variable X = 1.

P (|Xn − 1| > ε) = P (Xn − 1 > ε ∪Xn − 1 < −ε) =

= P (Xn > ε+ 1) + P (Xn < 1− ε) =

= 0 + P (eni=1Xi < 1− ε) =

=
n∏
i=1

P (Xi < 1− ε) =

= (1− ε)n → 0.
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Then consider ε = t/n

P (Xn ≤ 1− t/n) = (1− t/n)n → e−t,

therefore
P (Xn ≥ 1− t/n) = P (n(1−Xn) ≤ t)→ 1− e−t,

which is a cdf of an Exponential r.v. thus, n(1−Xn) ∼ Exp(1).

Example “in distribution” and continuity of cdf

Define Xn ∼ U [1/2− 1/n, 1/2 + 1/n] then as n→∞, Xn → X = 1/2 in distribution,
where the limiting r.v. is a degenerate r.v. with all its mass in 1/2. We have

FXn(t) =

{
0 t ≤ 1/2− 1/n or t ≥ 1/2 + 1/n
t−(1/2−1/n)

2/n
t ∈ [1/2− 1/n, 1/2 + 1/n].

As n → ∞ the cdf converges to FXn(1/2) = 1/2, however the limiting r.v. has cdf
FX(1/2) = 1 as all the mass of X is in t = 1/2. So in t = 1/2 the cdf of Xn does not
converge to the cdf of X . However, t = 1/2 is a point where FX is not continuous, thus
we still have convergence in distribution.

37 Two Laws of Large Numbers

Let X1, X2, . . . be a sequence of independent identically distributed random variables
with moments E[Xi] = µ and Var[Xi] = σ2, such that σ2 < ∞, for all i. We define
Sn =

∑n
i=1 Xi and Sn/n is the sample mean (a random variable). Then we have two

results.

Weak Law of Large Numbers:

lim
n→∞

P

(∣∣∣∣Snn − µ
∣∣∣∣ < ε

)
= 1, ∀ε > 0

that is Sn/n
P→ µ.

Proof: for every ε > 0, we use Chebychev’s inequality

P (|Sn/n− µ| > ε) ≤ E[(Sn/n− µ)2]

ε2
=

Var[Sn/n]

ε2
=

Var[Sn]

n2ε2
=

σ2

nε2

which converges to 0 as n goes to∞.

Whereas the weak law of large numbers numbers is straightforward to prove, perhaps not
surprisingly the strong law of large numbers requires some more effort.

Strong Law of Large Numbers:

P

(
lim
n→∞

∣∣∣∣Snn − µ
∣∣∣∣ = 0

)
= 1,
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that is Sn/n
a.s.→ µ.

Proof: Here we give the proof in the case that we have the additional assumption that
E[X4

i ] <∞. In that case, note that

E[(Sn/n− µ)4] =
1

n4
E

( n∑
i=1

(Xi − µ)

)4
 .

Note that this is a rather humongous sum. Justify (exercise) that it is equal to

1

n4

{
nE[(X − µ)4] + 3n(n− 1)

(
E
[
(X − µ)2

])2
}
.

Note that this expression can be bounded byCn−2 for someC > 0 which does not depend
on n. Using Chebyshev’s inequality with g(x) = x4 we have that for ε > 0

P (|Sn/n− µ| ≥ ε) ≤ E[(Sn/n− µ)4]

ε4
≤ C

ε4n2
.

Since 1/n2 is summable we deduce from Borel Cantelli 1 that Sn/n
a.s.→ µ. (to see why,

reconsider the example above of almost sure convergence but not convergence in mean
square).

On the assumptions: for the proof of weak and strong law above we have used the
assumption of finite second and fourth moment, respectively. This is in fact stronger than
what is needed. A sufficient condition is the weaker assumption E[|X|] < ∞ ; the proof
is much more demanding though.

The Strong Law of Large Numbers implies the Weak Law of Large Numbers and also
convergence in distribution Sn/n

d→ µ which can be interpreted as convergence to the
degenerate distribution with all of the mass concentrated at the single value µ. We shall
soon see that, just as in the case of the sum of Bernoulli random variables at the begin-
ning, we can say a lot more about the limiting distribution of Sn by proper rescaling. To
be more specific, since Sn/n − µ converges to zero and since Var(Sn/n − µ) = 1/n, a
scaling with factor

√
n, i.e.

√
n(Sn/n − µ) seems promising. This is the subject of the

next section.

38 Central Limit Theorem

In this section we state and prove the fundamental result in probability and statistics,
namely that the normalised sample mean from an i.i.d. sample (with finite variance)
converges to a standard normal distribution. We shall make use of moment generating
functions and the following result from the theory of so-called Laplace transforms.
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Convergence of mgfs (Theorem 2.3.12 in Casella Berger) If Xn is a sequence of ran-
dom varaibles with a moment generating functions satisfying

lim
n→∞

MXn(t) = MX(t)

for all t in a neighbourhood of 0 and if MX(t) is a moment generating function of a
random variable X , then Xn

d→ X .

Assumptions: given an i.i.d. sequence of random variables X1, X2, . . . with finite vari-
ance σ2 > 0, define Sn =

∑n
i=1Xi.

Central Limit Theorem: if the mgfMX(t) ofXi exists in some neighborhood of 0, then,
as n→ +∞, and for Z ∼ N(0, 1),

√
n
Sn/n− µ

σ
=
Sn − nµ√

nσ

d→ Z.

We can state the convergence in distribution as

P

(√
n
Sn/n− µ

σ
≤ α

)
→
∫ α

−∞

e−z
2/2

√
2π

dz, ∀α ∈ R.

Notice that both µ and σ2 exist and are finite since the mgf exists in a neighbourhood of
0.

Proof: Define Yi = (Xi − µ)/σ, then

√
n
Sn/n− µ

σ
=

1√
n

n∑
i=1

Yi

therefore the mgf of Yi exists for t in some neighbourhood of 0 (and we shall take t
sufficiently small from now on), given that Yi are i.i.d.

M√nσ−1(Sn/n−µ)(t) = Mn−1/2
∑n
i=1 Yi

(t) =

=
(
E
[
exp

(
tYi/
√
n
)])n

=

=

(
MYi

(
t√
n

))n
.

By expanding in Taylor series around t = 0, we have

MYi

(
t√
n

)
=
∞∑
k=0

E[Y k
i ]

(t/
√
n)k

k!
.

Now notice that E[Yi] = 0 and Var[Yi] = 1 for any i, thus

MYi

(
t√
n

)
= 1 +

(t/
√
n)2

2
+ o

[(
t√
n

)2
]
,
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where the last term is the remainder term in the Taylor expansion such that

lim
n→∞

o[(t/
√
n)2]

(t/
√
n)2

= 0.

Since t is fixed we also have

lim
n→∞

o[(t/
√
n)2]

(1/
√
n)2

= lim
n→∞

n o

[(
t√
n

)2
]

= 0,

thus

lim
n→∞

M√nσ−1(Sn/n−µ)(t) = lim
n→∞

[
MYi

(
t√
n

)]n
=

= lim
n→∞

{
1 +

1

n

(
t2

2
+ n o

[(
t√
n

)2
])}n

= et
2/2,

which is the mgf of a standard normal random variable. Therefore, by uniqueness of the
moment generating function,

√
n(Sn/n − µ)/σ converges in distribution to a standard

normal random variable.

On the assumptions:

1. we can relax the assumption of finite variances, it is enough to haveXi that are small
with respect to Sn; this can be assured by imposing two conditions by Lyapunov
and Lindeberg of asymptotic negligibility;

2. Independence can also be relaxed by asking for asymptotic independence.

3. The assumption on the existence on moment generating functions can be dropped
and a similar proof can be given in terms of the so-called characteristic function.
This is defined similarly to the moment generating function by

Φ(t) := E[eitX ] for t ∈ R.

Here i =
√
−1 and eix = cos(x) + i sin(x) for x ∈ R. The advantage of the

characteristic function over the moment generating function is that the former al-
ways exists. This is due to the property that |eix| = cos2(x) + sin2(x) = 1 and
hence Φ(t) ≤ 1. Characteristic functions also uniquely determine distributions and
there is a convergence result equivalent to the one above for moment generating
functions. Once you have calculated the moment generating functions, it is usually
straightforward to find the characteristic function. For example, if X is standard
normal, then

ΦX(t) = E[eitX ] = e(it)2/2 = e−t
2/2.

Reading

Casella and Berger, Sections 5.5
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