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1 Introduction

1.1 Motivation

Time series are measurements of a quantity xt, taken repeatedly over a certain period of time.

• The quantity xt can be a scalar, but it can also be a vector, or a more complex object such as
an image or a network.

• The time index t can be continuous (when xt is observed continuously), discrete and equally
spaced (when xt is measured at discrete time intervals, e.g. every day or every month), or
have a more complex form (think of an experiment which needs close supervision at the
beginning, but can later be observed less frequently).

Time series arise in many sciences, or more generally in many “domains of human endeavour”.
We first look at some examples of time series, before moving on to describe the branch of statistics
called Time Series Analysis.

1.2 Examples of time series

Note that plotting the values of a scalar-valued time series is often the most natural way of visual-
ising datasets. The transformations used are explained below in section 1.3.

1. Finance. Standard & Poor’s 500 index, daily data, source: http://research.stlouisfed.
org/fred2/. Description: “The S&P 500 is regarded as a gauge of the large cap U.S.
equities market. The index includes 500 leading companies in leading industries of the U.S.
economy, which are publicly held on either the NYSE or NASDAQ, and covers 75% of U.S.
equities. Since this is a price index and not a total return index, the S&P 500 index here does
not contain dividends.”

(a) Figure 1 shows the data in “levels”, i.e. not transformed. The values do not change
much from day to day, but over time, clear trends are formed. We notice a general
upward trend but also a steep downward trend during the 2007–2008 financial crisis.
The mean of this series changes in time.

(b) Figure 2 shows the time series of the daily percentage increments of the Standard &
Poor’s 500 index, over the same time period. Contrary to the previous series, there
are no clear trends in the mean, which oscillates around zero. However, its variance
changes over time.

2. Finance. U.S. / U.K. Foreign Exchange Rate, daily data, source: http://research.
stlouisfed.org/fred2/. Compare Figures 3 and 4 with Figures 1 and 2.

3. Macroeconomy. U.S. Consumer Price Index (CPI) for all urban consumers and all items,
monthly data, source http://research.stlouisfed.org/fred2/. Description:
“The Consumer Price Index for All Urban Consumers: All Items (CPIAUCSL) is a measure
of the average monthly change in the price for goods and services paid by urban consumers
between any two time periods. It can also represent the buying habits of urban consumers.
This particular index includes roughly 88 percent of the total population, accounting for

6



500 1000 1500 2000 2500
500

1000

1500

2000

2500

t(days)

Figure 1: Daily Standard &Poor’s 500 Index, from 2004-12-23 to 2014-12-23. Not Seasonally
Adjusted
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Figure 2: Daily Standard &Poor’s 500 percentage returns, from 2004-12-23 to 2014-12-23.
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Figure 3: U.S. / U.K. Foreign Exchange Rate U.S. Dollars to One British Pound, from 1971-01-04
to 2014-12-19. Not Seasonally Adjusted

wage earners, clerical workers, technical workers, self-employed, short-term workers, un-
employed, retirees, and those not in the labor force...The CPI can be used to recognize
periods of inflation and deflation. Significant increases in the CPI within a short time frame
might indicate a period of inflation, and significant decreases in CPI within a short time
frame might indicate a period of deflation. ”
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Figure 4: U.S. / U.K. Foreign Exchange Rate percentage returns, from 1971-01-04 to 2014-12-19.
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Figure 5: CPI, from 1947-01-01 to 2014-11-01. Index 1982-84=100. Seasonally Adjusted.
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Figure 6: CPI yearly percentage changes, from 1947-01-01 to 2014-11-01.

(a) Figure 5 shows data in “levels”, i.e. not transformed. The series is shorter than the
previous one (monthly vs. daily), the values oscillate around an increasing trend.

(b) Figure 6 shows the yearly percentage changes in CPI, i.e. the yearly inflation rate.
Over the whole period, the data oscillates around an almost flat trend, but in shorter
periods we notice increasing and decreasing trends. High inflation in the 1970s and
early 1980s, low inflation in the 1990s and 2000s. A sudden drop (deflation) in recent
years. Variance changes in time.

(c) Figure 7 shows changes in the yearly percentage changes in CPI, i.e. changes in infla-
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Figure 7: CPI changes of yearly percentage changes, from 1947-01-01 to 2014-11-01.
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Figure 8: GDP, Billions of Chained 2009 Dollars, from 1947-01-01 to 2014-07-01. Seasonally
Adjusted.
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Figure 9: GDP yearly percentage changes, 1947-01-01 to 2014-07-01.

tion. Now data are more stable around a constant (flat) trend.

4. Macroeconomy. U.S. Real Gross Domestic Product (GDP), quarterly data, source http:
//research.stlouisfed.org/fred2/. Compare Figures 8 and 9 with Figures 5
and 6.

5. Weather. Mean maximum temperatures, recorded in Heathrow, monthly data, source http:
//www.metoffice.gov.uk/climate/uk/stationdata/index.html. See Fig-
ure 10. The yearly periodicity is very pronounced, as expected. Might there be a slight
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Figure 10: Mean maximum temperatures, recorded in Heathrow, 1948-01-01 to 2014-11-01.
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Figure 11: CO2 emissions from fossil-fuels, metric tons, from 1751-01-01 to 2011-12-01.

upward trend towards the end of the series? Anything to do with the “global warming”?

6. Environment. CO2 emissions from fossil-fuels, yearly, source http://www.gapminder.
org/data/.

(a) Figure 11 shows data in “levels”, i.e. not transformed. The data oscillates around an
increasing non-linear trend, maybe quadratic.

(b) Figure 12 shows yearly differences of data. The data oscillates around an increasing
trend which is more linear than before. At the end of the sample the trend is decreasing.

(c) Figure 13 shows yearly differences of yearly differences (2nd differences). The data
now oscillates around a flat trend.

7. Health. Infant mortality rate in Sweden, yearly, source http://www.gapminder.
org/data/.

(a) Figure 14 shows data in “levels”, i.e. not transformed. The data oscillates around a
decreasing non-linear trend, maybe quadratic.

(b) Figure 15 shows yearly differences of data. The data oscillates around a flat trend with
decreasing variance until the variance goes to zero.

8. Engineering. Speech signal (digitised acoustic sound wave) representing the word “Matteo”
(my first name) recorded using the audiorecorder command in Matlab. Plot in Figure

10
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Figure 12: CO2 emissions yearly changes, from 1751-01-01 to 2011-12-01.
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Figure 13: CO2 emissions yearly changes of yearly changes, from 1751-01-01 to 2011-12-01.
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Figure 14: Infant mortality rate, from 1800-01-01 to 2012-12-01.

16. Both the amplitude and the frequency (number of oscillations per second) of the signal
change over time.
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Figure 15: Infant mortality rate yearly changes, from 1800-01-01 to 2012-12-01.
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Figure 16: The word “Matteo”.
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1.3 Transformation of data

When dealing with a signal xt sometimes it is useful to transform it (see the examples before) to
another signal yt. We use the symbol ∆ to indicate differences, i.e. ∆xt = xt − xt−1.

1. data in levels, just take the data as it is yt = xt;

2. data in logs, take logs of the data, yt = log xt, this transformation reduces the variance of
the signal;

3. first differences, or changes, yt = xt − xt−1 = ∆xt;

4. second differences yt = (xt − xt−1) − (xt−1 − xt−2) = ∆∆xt not to be confused with
yt = xt − xt−2;

5. growth rates, there are two possibilities:

(a) yt = xt−xt−1

xt−1
;

(b) yt = log xt
xt−1

= log xt − log xt−1 = ∆ log xt;

the two are equivalent for small changes indeed:

d log xt
dt

=
1

xt

dxt
dt

or, using Taylor approximation in a neighbourhood of xt−1,

log xt = log xt−1 +
1

xt−1
(xt − xt−1) + o((xt − xt−1)),

where the last term goes to zero faster than (xt−xt−1) when xt−xt−1 → 0. Transformation
(b) is usually preferred, then 100∆ log xt is the percentage change from time t − 1 to time
t. This is the way in which we computed the returns of Figure 2 and the percentage changes
of other series.

More on the need for these transformations later.

1.4 Statistical time series analysis

Scientists and analysts are interested in a variety of different questions/issues when faced with
time series data.

There are at least three kind of questions that can be answered by analysing time series.

1. Forecasting future values in finance and economics/econometrics. For example, for the
purpose of potential gain (e.g. in hedge funds or investment banks) or planning for the
future (e.g. when should I buy a house?) or for policy makers in setting future interest rates
hoping to the improve the state of the economy.

13



2. Summarise time series data. For example, in the analysis of Electroencephalography (EEG)
recordings, how can we decide whether the subject is “healthy” or not? Or how can we
decide if the economy in US (see the examples above) has been evolving “significantly
differently” from that, say, in China? Or, more generally, given a time series, how can we
describe and summarise its evolution?

3. Control the evolution of a time series. This is not quite the same as forecasting, where we
do not intervene in the process in any way. As an example of the control problem, consider
the global temperature data: is “global warming” really happening, and if so, what impacts
the temperature and how can we eliminate or suppress those factors?

As expected, there are often a variety of ways in which those questions can be answered, and many
of them do not formally involve statistics at all: for example, people often debate expected trends
in house prices and investment opportunities, express their informal views about global warming,
or use techniques originating from computer science (e.g. pattern recognition) to aid medical di-
agnosis in neuroscience. So do we need statistics in time series analysis?

The answer is not necessarily, but there are good arguments why the statistical approach may
often be very useful.

1. Firstly, even those informal approaches to time series analysis are in fact often statistical in
nature, sometimes in a “hidden” way: for example, people’s subjective views about time se-
ries can often be formally formulated as priors in Bayesian statistics, and informal forecasts
which we often encounter in the media are in fact often instances of simple statistical fore-
casting procedures, such as trend extrapolation. Also, frequently, techniques originating in
computer science (such as: neural networks, machine learning, pattern recognition, artificial
intelligence) often have their counterparts in statistics, which do exactly the same thing but
are named differently.

2. The above-mentioned tasks: forecasting, understanding the structure of time series, and time
series control, have inherent uncertainty about them, which makes probability and statistics
a natural tool for describing them.

(a) Accurate forecasting is impossible. For example, rather than saying “tomorrow’s value
will be exactly 2.745” it often makes more sense to say “tomorrow’s value will be
around 2.745”, but then there is a chance that we will still be wrong, so our forecasts,
even those informal ones, will often be of the form “tomorrow’s value will probably
be around 2.745”, which is already in the territory of probability, since it contains a
natural statement of uncertainty.

(b) It is often impossible to build exact deterministic models describing their structure.
Indeed, if we had a correct deterministic model, we would be able to predict the evolu-
tion of the time series exactly, but since we are not able to do that, it means that we do
not have the exact model. Often, probabilistic models make more sense: for example,
“tomorrow’s value is about a half of today’s value plus a term which is best described
as random, i.e. there is no clear pattern in its values from one day to another”.

(c) In the issue of time series control, one natural task that often needs to be performed is to
understand what factors affect the evolution of the series. But this is often impossible
to specify exactly: it is unlikely that any one factor (out of the ones we are considering),
or indeed their combination, is fully responsible for the evolution of the time series.

14



Therefore, again, a statistical approach, where we permit uncertainty by building a
statistical model, might be of use. For example, if we suspect that there is a link
between pollution and global warming, it might be helpful to build a statistical model
in which we will be able to test this hypothesis, and answer questions like: “how sure
are we that there is correspondence between pollution and global warming?”, or “what
is the strength of this relationship?”.

We will find that probability and statistics provide a natural and simple language to express fore-
casts and their associated uncertainty. In this way, we have a simple model for the evolution of the
time series, but in the territory of randomness, i.e. probability and statistics.

1.5 Definition of a stochastic process

A stochastic process is:

1. a correspondence associating a random variable with each integer t:

X : t 7→ Xt

2. for any integer s and t1 ≤ t2 ≤ . . . ≤ ts, the joint probability distribution function

Ft1,t2,...,ts(a1, a2, . . . , as) = P (Xt1 ≤ a1, Xt2 ≤ a2, . . . , Xts ≤ as)

Saying that a stochastic process is given means that not only the random variables Xt are given,
but also the joint probability measure, for all s-tuples Xt1 , Xt2 , . . . , Xts .

We use the notation {Xt, t ∈ Z} for the stochastic process.

A specification of the process {Xt} based on its joint probability distribution function is far
too complicated as in general it will depend on too many parameters to be estimated from data.
We will specify only the second order moments of the joint distribution, i.e.

E[Xt], E[XtXt+h] for t, h ∈ Z.

These are enough to specify the whole distribution if the data were Gaussian, otherwise some
information is lost but all the theory that is developed later in this course is based only on second
moments.

In principle there can be infinite realisations of a stochastic process {Xt}. Typically, we
observe only one realization which we denote as the sequence {xt, t ∈ Z}. In particular, xt is the
realization of the stochastic variable Xt associated with t. We also use, for short, xt, meaning the
process, instead of {Xt, t ∈ Z}.

1.6 Examples of stochastic processes

1. xt = A for any t is a constant and deterministic process (all its realisations are identical);

2. xt = (−1)tA is also a deterministic process;

3. {Xt} are i.i.d. zero mean and Gaussian random variables, two possible realisations are in
Figure 17;
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Figure 17: Two realisations of an i.i.d. Gaussian process.
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Figure 18: Two realisations of a binary process.

4. {Xt} is a binary process, i.e. such that

P (Xt = 1) = p, P (Xt = −1) = 1− p,

two possible realisations are in Figure 18;

5. {Xt} is a random walk with zero mean and starting in zero

x0 = 0, xt = u1 + u2 + . . .+ ut =
t∑

s=1

us,

where ut are realisations of an i.i.d. Gaussian process as in example 3, four possible reali-
sations are in Figure 19;

6. {Xt} is a random walk with drift and starting in zero

x0 = 0, xt = t+ u1 + u2 + . . .+ ut = t+

t∑
s=1

us,

where ut are realisations of an i.i.d. Gaussian process as in example 3, four possible reali-
sations are in Figure 20.
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Figure 19: Four realisations of a random walk.
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Figure 20: Four realisations of a random walk with drift.

Notice that while in the other cases the process reverts to its mean (which is zero) in the random
walk cases this does not happen, and the more the time goes by the more likely the process is to
be away from zero. More precisely the uncertainty (variance) increases with time in both cases,
while in the case with drift also the mean changes with time (it follows a linear trend).

1.7 Trend and seasonality - part 1

From the examples above it is clear that many time series are made of different components. In
general, a process {Xt} is made of three components:

Xt = Tt + St + Ct

where Tt is the so called trend, St is the seasonal component, and Ct is called cycle and represents
fluctuations around the other two components.

Time series analysis proceeds as follows:

1. Check for trends, these can be deterministic functions of time (linear, quadratic...) or also
due to some properties of the second order moments of the process. In all cases trends result
in time varying mean and/or variance.

2. Remove trends, for example:
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(a) if the fluctuations grow linearly with the level of the series, take logs (data must be
positive!);

(b) if there are deterministic trends these can be eliminated by means of linear regressions
or first differences;

(c) if the are non-deterministic trends (as time varying variances) then first differences
should be computed;

(d) taking growth rates accommodates most cases.

in all cases the aim is to obtain a process which is mean reverting (i.e. it is stationary as
defined in the next Chapter).

3. Detect and remove seasonal components, as for example by taking other differences of the
data or by regressing data on periodic deterministic components.

4. Fit linear models based on the second moments of the residuals of the two steps above.
These models are used for forecasting and the results are then combined with the inverse of
the above transformations in order to have forecasts of {Xt}.

Moreover, data can have breaks, i.e. sharp changes in the behaviour of the series, and outliers, i.e.
anomalous data points. Both aspects should be taken into account before the analysis.

In the following we will start with models for data with no trend, no seasonality, no breaks,
and no outliers. Some of these other aspects will be treated later in the course.

1.8 Autocorrelation

One of the main characteristics of time series data is dependence between observations at different
lags: i.e. often, there is a relationship between observations separated by a lag k. Thus given a time
series xt it is natural to study how the signal today depends on its past values. As we said above,
classical analysis of time series is based on second order moments and therefore the dependence
we consider is only the linear dependence which is measured by means of correlation coefficients.

Suppose then that a linear relationship holds approximately between xt+k and xt for all inte-
gers k, i.e.,

xt+k = αk + βkxt + εt+k (1)

where εt+k is an error term (cfr this model with linear regressions).

The Pearson product moment correlation coefficient is a summary statistic which measures the
strength of the linear relationship between two variables {yt} and {zt} say,

ρ̂ =

∑T
t=1(yt − ȳ)(zt − z̄)√∑T
t=1(yt − ȳ)2(zt − z̄)2

where T is the number of observations we have and ȳ and z̄ are sample means, thus ȳ = 1
T

∑T
t=1 yt.

(The asymptotic properties of ρ̂ are considered later.)

Then for model (1) we have (set yt = xt+k and zt = xt) the lag k sample autocorrelation for
a time series:

ρ̂k =

∑T−k
t=1 (xt+k − x̄)(xt − x̄)√∑T−k
t=1 t(xt+k − x̄)2(xt − x̄)2
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Figure 21: Scatter plot of xt+6 against xt.
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Figure 22: Sample autocorrelation ρ̂k for xt.

and ρ̂0 = 1. The sequence {ρ̂k} is called the sample autocorrelation sequence (sample acs) of the
time series.

Denote by xt the Heathrow temperature series from section 1.2. For data, we can illustrate
dependence using scatter plots. As an example, consider a scatter plot of xt+6 against xt, as t
varies from 1 to T − 6, where T is the length of xt (see Figure 21). As expected, there is a clear
negative dependence between temperatures separated by 6 months, due to seasonality and ρ̂6 is the
slope of a regression line estimated for this cloud of points. Similar scatter plots could be created
for k = 1, 2, 3, 4, 5, 7, ...,.

In Figure 22 we show the sequence ρ̂k for the Heathrow temperature series. This is the way
to show autocorrelations for a time series. Notice e.g., that xt and xt+6 are negatively corre-
lated, while xt and xt+12 are positively correlated (consistent with the yearly temperature cycle).
When we regard x1, . . . , xT as a realization of the corresponding random variables X1, . . . , XT .
The quantity ρ̂k is an estimate of a corresponding population quantity called the lag k theoretical
autocorrelation, defined as

ρk =
E[(Xt − µ)(Xt+k − µ)]

σ2

where µ = E[Xt] is the population mean, and σ2 = E[(Xt − µ)2] is the corresponding population
variance. (Note that ρk, µ and σ2 do not depend on t here. As we shall see soon, models for which
this is true play a central role in time series analysis and are called stationary).
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2 Stationary stochastic processes

We have seen that a process {Xt, t ∈ Z}, is a collection of random variables, i.e. for fixed t,
Xt is a random variable (r.v.), and hence there is an associated cumulative probability distribution
function (cdf):

Ft(a) = P (Xt ≤ a)

and we can define its mean and variance

E[Xt] =

∫ ∞
−∞

xdFt(x) ≡ µt Var(Xt) =

∫ ∞
−∞

(x− µt)2dFt(x) ≡ σ2t

But in time series analysis we are interested in the relationships between the various r.v.s that form
the process. For example, for any t1 and t2 ∈ Z,

Ft1,t2(a1, a2) = P (Xt1 ≤ a1, Xt2 ≤ a2).

gives the bivariate cdf.

More generally for any integer s ≥ 1 and t1 ≤ t2 ≤ . . . ≤ ts, the joint probability distribution
function is

Ft1,t2,...,ts(a1, a2, . . . , as) = P (Xt1 ≤ a1, Xt2 ≤ a2, . . . , Xts ≤ as).

Notice that in this course we consider only discrete time stochastic processes, i.e. processes for
which the time index t is an integer number. In general we can consider cases where t ∈ T for
some set of indexes T ⊂ R.

The class of all stochastic processes is too large to work with in practice. In the rest of the
course we consider only the subclass of stationary processes (later we will discuss also some
subclasses of non-stationary processes). We have seen that in practice we will use only second
moments to describe a stochastic process and these are related with the notion of weak station-
arity. However, we start with a more general definition of stationarity, i.e. strong stationarity.
The distinction between strong and weakly stationary processes will be useful when considering
models for financial time series.

2.1 Strong stationarity

The process {Xt} is said to be strongly stationary if, for any s ≥ 1, and t1 ≤ t2 ≤ . . . ≤ ts, and all
integers k the joint cdf of {Xt1 , Xt2 , . . . , Xts} is the same as that of {Xt1+k, Xt2+k, . . . , Xts+k}
i.e.,

Ft1,t2,...,ts(a1, a2, . . . , as) = Ft1+k,t2+k,...,ts+k(a1, a2, . . . , as),

or
Ft1,t2,...,ts(a1, a2, . . . , as) = Fτ1,τ2,...,τs(a1, a2, . . . , as),

with τj = tj + k.

For example, the probability thatX1 lies between 1 and 2, ANDX2 lies between -3 and 3, and
the probability that X11 lies between 1 and 2, AND X12 lies between -3 and 3, are the same. So
that the probabilistic structure of a completely stationary process is invariant under a shift in time.

A strongly stationary process is also said to be completely or strictly stationary.
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2.2 Weak stationarity

The process {Xt} is said to be weakly stationary if, for any integer s ≥ 1, and t1 ≤ t2 ≤ . . . ≤ ts,
and all integers k, all the joint moments of orders 1 and 2 of {Xt1 , Xt2 , . . . , Xts} exist, are finite,
and equal to the corresponding joint moments of {Xt1+k, Xt2+k, . . . , Xts+k}, i.e. for any t such
that t1 ≤ t ≤ ts,

E[Xt] ≡ µ
is a constant independent of t, and for any ti and tj such that t1 ≤ ti, tj ≤ ts

E[XtiXtj ] = E[Xti+kXtj+k].

Hence, if we take ti = tj = t, we have that

Var(Xt) = E[X2
t ]− µ2 ≡ σ2

is a constant independent of t.

Moreover, if we let k = −t1,

E[Xt1Xt2 ] = E[Xt1+kXt2+k] = E[X0Xt2−t1 ]

and with k = −t2,
E[Xt1Xt2 ] = E[Xt1+kXt2+k] = E[Xt1−t2X0]

Hence, E[Xt1Xt2 ] is a function of the absolute difference |t2 − t1| only. Similarly, for the covari-
ance between Xt1 and Xt2 we have

Cov(Xt1 , Xt2) = E[(Xt1 − µ)(Xt2 − µ)] = E[Xt1Xt2 ]− µ2,

and therefore is a function of the absolute difference |t2 − t1| only.

For a discrete time weakly stationary process {Xt} we define the autocovariance sequence
(acvs) by

γk ≡ Cov(Xt, Xt+k) = Cov(X0, Xk),

where

1. k is called the lag;

2. γ0 = σ2 and γ−k = γk;

3. the autocorrelation sequence (acs) is given by

ρk =
γk
γ0

=
Cov(Xt, Xt+k)

σ2
;

4. by Cauchy-Schwarz inequality, |γk| ≤ γ0 and |ρk| ≤ 1;

5. the variance-covariance matrix of the vector of equispaced X’s, (X1, X2, . . . , XT )T

V =



γ0 γ1 γ2 . . . γT−2 γT−1
γ1 γ0 γ1 . . . γT−3 γT−2
γ2 γ1 γ0 . . . γT−4 γT−3
...

...
...

. . .
...

...
γT−2 γT−3 γT−4 . . . γ0 γ1
γT−1 γT−2 γT−3 . . . γ1 γ0


has the form which is known as a symmetric Toeplitz matrix - all elements on a diagonal are
the same and the matrix has only T unique elements, γ0, γ1, . . . , γT−1;
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6. the generic i, j-th element of V is Cov(Xti , Xtj ) = γ|ti−tj |;

7. The sequence {γk} is positive semidefinite, i.e., for all integers s ≥ 1, for any t1 ≤ t2 ≤
, . . . ,≤ ts and for any set of nonzero real numbers a1, a2, . . . , as

s∑
i=1

s∑
j=1

γ|ti−tj |aiaj ≥ 0. (2)

Let a = (a1, a2, . . . , as)
T , X = (Xt1 , Xt2 , . . . , Xts)

T and let V be the covariance matrix
of X with i, j-th element given by γ|ti−tj |. Define

w =

s∑
i=1

aiXti = aTX,

then

0 ≤ Var(w) = Var(aTX) = aTVar(X)a = aTVa =
s∑
i=1

s∑
j=1

γ|ti−tj |aiaj ,

which proves (2) and implies that the matrix V is positive semidefinite.

Other important remarks on stationarity:

1. If {Xt} is strongly stationary and has finite second moments, then {Xt} is weakly stationary.
Of course a weakly stationary process is not necessarily strongly stationary. As an example,
let γk = 0 for k 6= 0 and γ0 = 1 then {Xt} is weakly stationary. Moreover, assume that
{Xt} is Gaussian for t 6= 0 and uniform for t = 0, then {Xt} is not strictly stationary.

2. A stochastic process {Xt} is called Gaussian if, for all integers s ≥ 1 and for any t1 ≤
t2 ≤ . . . ≤ ts, the joint cdf of Xt1 , Xt2 , . . . , Xts is multivariate Gaussian. If {Xt} is
weakly stationary and Gaussian then it is strongly stationary (since a multivariate Gaussian
distribution is completely characterized by 1st and 2nd moments). In this case, the vector
X = (X1, X2, . . . , XT )T has joint pdf which reads

fX(x) =
1√

(2π)T det V
exp

(
−1

2
(x− µ)TV−1(x− µ)

)
where x = (x1, . . . , xT )T are the realizations of X, the matrix V is defined above (notice
that it must be positive definite as we need its determinant and its inverse), and the vector µ
is the vector of means with all entries equal to µ = E[Xi] by stationarity.

3. A nonlinear function of a strict stationary variable is still strict stationary, but this is not true
for weak stationary. For example, the square of a covariance stationary process may not
have finite variance (see the ARCH case below and in Chapter 7).

Unless explicitly stated, stationary processes will be weakly stationary. A weakly stationary
process is also said to be second-order or covariance stationary.
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Figure 23: Gaussian white noise.
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Figure 24: Exponential white noise.

2.3 Examples of stationary processes

In the next examples we will notice that for the weakly stationary processes we have seen the acs
decrease quickly (at an exponential rate). In this case we say the process has short memory: a
shock to the process has an effect which lasts few periods, in other words we see mean reversion.

1. White noise process.
Also known as a purely random process. Let {Xt} be a sequence of uncorrelated r.v.s such
that

E[Xt] = µ Var(Xt) = σ2 ∀t

and

γk =

{
σ2 if k = 0
0 if k 6= 0

This process is a basic building block in time series analysis. An i.i.d. process is of course a
white noise. A short way to write that {Xt} is white noise is Xt ∼ w.n.(µ, σ2). This nota-
tion does not tell us which is the distribution of {Xt} and indeed very different realizations
of white noise can be obtained for different distributions of {Xt}. Examples are given in
Figures 23 and 24 with their acs.

2. Moving Average of order q, MA(q).
{Xt} has realisations given in the form

xt = µ+ θ0ut + θ1ut−1 + . . .+ θqut−q = µ+

q∑
j=0

θjut−j

where µ and θj’s are constants (usually we set θ0 ≡ 1 and θq 6= 0), and {ut} is a zero-
mean white noise process with variance σ2u. Without loss of generality we can assume
E[Xt] = µ = 0. Then Cov(Xt, Xt+k) = E[XtXt+k].
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Figure 25: MA(9) with coefficients θj = 1, j = 1, . . . , 9.
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Figure 26: MA(9) with coefficients θj = (−1)j , j = 1, . . . , 9.

Since E[utut+k] = 0 for all k 6= 0 we have for k ≥ 0

γxk = Cov(Xt, Xt+k) =

q∑
i=0

q∑
j=0

θiθjE[ut−iut+k−j ] = σ2u

q−k∑
i=0

θiθi+k

as the only nonzero terms are when j = i + k. Therefore, γxk does not depend on t. Since
the above must hold also for k < 0, that is γxk = γx−k, then we must use |k| and {Xt} is a
stationary process with acvs given by

γxk =

{
σ2u
∑q−|k|

i=0 θiθi+|k| if |k| ≤ q
0 if |k| > q

Notice that no restrictions are placed on the θj’s to ensure stationarity except obviously,
|θj | <∞ for all j. Examples are given in Figures 25 and 26 with their acs.

Consider an MA(1)
xt = ut + θ1ut−1

the acvs are

γxk = σ2u

1−|k|∑
j=0

θjθj+|k| |k| ≤ 1

and (notice that we usually set θ0 = 1)

γx0 = σ2u(θ20 + θ21) = σ2u(1 + θ21)

γx1 = σ2uθ0θ1 = σ2uθ1

while the acs are
ρx0 = 1 ρx1 =

θ1
1 + θ21
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a) if θ1 = 1 and σ2u = 1 we have

γx0 = 2 γx1 = 1 γx2 = γx3 = . . . = 0

ρx0 = 1 ρx1 = 0.5 ρx2 = ρx3 = . . . = 0

b) if θ1 = −1 and σ2u = 1 we have

γx0 = 2 γx1 = −1 γx2 = γx3 = . . . = 0

ρx0 = 1 ρx1 = −0.5 ρx2 = ρx3 = . . . = 0

Finally, notice that if we replace θ1 by θ−11 the model becomes

xt = ut +
1

θ1
ut−1

and the acs is

ρx1 =
1
θ1

1 + 1
θ21

=
θ1

1 + θ21

hence it is unchanged. We cannot identify an MA(1) from its acs.

We can construct a moving average with any process {Xt}:

yt =

q∑
j=0

θjxt−j .

If {Xt} is stationary then {Yt} is stationary. Indeed, E[Yt] = E[Xt]
∑q

j=0 θj , moreover the
acvs of {Yt} can be computed from the Toepliz matrix of the acvs of {Xt}

γyk = E[YtYt+k] = θT



γxk γxk−1 γxk−2 . . . γxk−q+1 γxk−q
γxk+1 γxk γxk−1 . . . γxk−q+2 γxk−q+1

γxk+2 γxk+1 γxk . . . γxk−q+3 γxk−q+2
...

...
...

. . .
...

...
γxk−q+1 γxk−q+2 γxk−q+3 . . . γxk γxk−1
γxk−q γxk−q+1 γxk−q+2 . . . γxk+1 γxk


θ

which holds for |k| ≤ q and θ = (θ0, θ1, . . . , θq)
T .

3. AutoRegression of order p, AR(p).
{Xt} has realisations given in the form

xt = φ1xt−1 + φ2xt−2 + . . .+ φpxt−p + ut =

p∑
j=1

φjxt−j + ut

where φj’s are constants (φp 6= 0), and {ut} is a zero-mean white noise process with vari-
ance σ2u. In contrast to the parameters of an MA(q) process, the {φj}s must satisfy certain
conditions for {Xt} to be a stationary process, i.e., not all AR(p) processes are stationary.
We discuss later the conditions for stationarity and the general form of acvs while here we
consider one example. Examples of a stationary AR(2) are given in Figures 13 and 28 with
their acs.
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Figure 27: AR(2) with coefficients φ1 = 0.5 and φ2 = 0.2.
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Figure 28: AR(2) with coefficients φ1 = 0.5 and φ2 = −0.2.

Consider an AR(1)

xt = φ1xt−1 + ut

= φ1(φ1xt−2 + ut−1) + ut

= φ21xt−2 + φ1ut−1 + ut

= φ31xt−3 + φ21ut−2 + φ1ut−1 + ut
...

=
∞∑
k=0

φk1ut−k

with initial condition x−T = 0 and we let T → ∞. If we find conditions under which this
process is stationary then it is an MA(∞) (MA process are always stationary).

We have (recall that ut is white noise)

E[Xt] = 0

Var(Xt) = Var

( ∞∑
k=0

φk1ut−k

)
=

∞∑
k=0

Var
(
φk1ut−k

)
= σ2u

∞∑
k=0

φ2k1

In order to have Var(Xt) < ∞ we must have φ21 < 1 or, equivalently, |φ1| < 1, in which
case (see the geometric series)

Var(Xt) =
σ2u

1− φ21
and the process is then stationary and can be written as an MA(∞).1

To find the form of the acvs, we notice that for k > 0, Xt−k is a linear function of
ut−k, ut−k−1, . . . therefore it is uncorrelated with ut (white noise):

E[Xt−kut] = 0,

1We can ask ourselves if an MA(1) can be written as an AR(∞). The answer is yes provided that the MA parameter
θ1 is such that |θ1| < 1. This is the condition for invertibility of an MA(1), if violated the MA(1) is still stationary but
it cannot be written as an AR model. The proof is shown in Chapter 4.
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Figure 29: AR(1) with coefficient φ1 = 0.5.
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Figure 30: AR(1) with coefficient φ1 = −0.5.

so, assuming stationarity, multiplying by Xt−k and taking expectations we have

E[XtXt−k] = φ1E[Xt−1Xt−k] + E[utXt−k] = φ1E[Xt−1Xt−k]

i.e.
γxk = φ1γ

x
k−1 = φ21γ

x
k−2 = . . . = φk1γ

x
0

and the acs is
ρxk = φk1.

But ρxk must be an even function of k, i.e. the above must hold also for k < 0, so

ρxk = φ
|k|
1 k = 0,±1,±2,±3, . . .

it has an exponential decay (see Figures 12 and 30).

4. AutoRegression Moving Average of orders p, q, ARMA(p, q).
{Xt} has realisations given in the form

xt = φ1xt−1 + φ2xt−2 + . . .+ φpxt−p + ut + θ1ut−1 + θ2ut−2 + . . .+ θqut−q

where the φj’s and the θj’s are all constants (φp 6= 0, θq 6= 0) and {ut} is a zero-mean white
noise process with variance σ2u. Once again we usually set θ0 = 1.

The ARMA class is important as many data sets may be approximated in a more parsimo-
nious way (meaning fewer parameters are needed) by a mixed ARMA model than by a pure
AR or MA process. In brief, time series analysts like MA and AR models for different
reasons. MA models are appealing because they are easy to manipulate mathematically,
e.g. as we saw, no restrictions on parameter values are needed to ensure stationarity. On
the other hand, AR models are more convenient for forecasting, as we will see later. Obvi-
ously, the main criterion for whether a model is or isn’t useful is whether it performs well
at our desired task, which will often be: modelling (or understanding) the data, forecasting,
or control. The ARMA model shares the best, and the worst, features of the AR and MA
classes and will be the subject of next Chapters.

27



5. Moving Average of infinite order, MA(∞).
We can in principle consider a moving average of a white noise with an infinite number of
terms involving both future and past values:

xt = . . .+ a−2ut+2 + a−1ut+1 + a0ut + a1ut−1 + a2ut−2 + . . . =

∞∑
j=−∞

ajut−j

which has finite variance and acvs provided that

∞∑
j=−∞

a2j <∞. (3)

Indeed, for an MA we have

γx0 = σ2u

∞∑
j=−∞

a2j

which is finite if condition (3) holds and the lag k acvs is

γxk = σ2u

∞∑
j=−∞

ajaj−k.

By Cauchy Schwarz inequality2

|γxk | ≤ γx0
which is finite if condition (3) holds.

If for example we take

a0 = 1

aj = 0 j < 0

a−∞ = 0

aj = φj1 j > 0

Then
xt = ut + φ1ut−1 + φ21ut−2 + . . .

which is the MA(∞) representation of an AR(1) seen above. Condition (3) for stationarity
becomes

∞∑
j=0

φ2j1 <∞

which implies |φ1| < 1 as expected for an AR(1) process.

6. AutoRegressive Conditionally Heteroscedastic model of order p, ARCH(p).
Assume we have a time series {Yt} that is (approximately) uncorrelated (as a white noise),
is stationary, but has a multiplicative component σt that changes through time,

yt = σtut (4)
2The Cauchy Schwarz inequality is∣∣∣∣∣∑

j

cjdj

∣∣∣∣∣ ≤
√∑

j

c2j

√∑
j

d2j


then choose cj = aj and dj = aj−k and we have the result.
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Figure 31: ARCH(1) with coefficient α1 = 0.8.
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Figure 32: Squares of ARCH(1) with coefficient α1 = 0.8.

where {ut} is a white noise sequence with zero-mean and unit variance. Here, σt represents
the local conditional standard deviation of the process and is called volatility and denotes
changes in the scale of the process at time t. Note that σt is not observable directly.

{Yt} is ARCH(p) if its realisations satisfy equation (4) and

σ2t = ω + α1y
2
t−1 + . . .+ αpy

2
t−p (5)

where ω > 0 and αj ≥ 0 (to ensure the variance remains positive), and yt−1 is the observed
value of the time series at time (t− 1).

Notice that:

(a) there is no error term in equation (5);

(b) unconstrained estimation often leads to violation of the non-negativity constraints that
are needed to ensure positive variance;

(c) quadratic form (i.e. modelling σ2t ) prevents modelling of asymmetry in volatility (i.e.
volatility tends to be higher after a decrease than after an equal increase of yt and
ARCH cannot account for this).

Consider an ARCH(1)
σ2t = ω + α1y

2
t−1

define vt = y2t − σ2t then σ2t = y2t − vt. Then the model can also be written:

y2t = ω + α1y
2
t−1 + vt

i.e. an AR(1) model for {Y 2
t } where the errors, {vt}, have zero-mean, but since vt =

σ2t (u
2
t − 1) the errors are heteroscedastic (changing variance). An example of an ARCH(1)

is in Figures 31 and 32 for {Yt} and {Y 2
t } with their acs. This shows that {Yt} is a white

noise with observations which are uncorrelated but not independent since their squares are
autocorrelated, i.e. in general E[Y 2

t Y
2
t−k] 6= 0.
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Figure 33: GARCH(1,1) with coefficients α1 = 0.1 and β1 = 0.89.
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Figure 34: Squares of GARCH(1,1) with coefficients α1 = 0.1 and β1 = 0.89.

7. Generalised AutoRegressive Conditionally Heteroscedastic model of orders p, q, GARCH(p, q).
{Yt} has realizations satisfying

yt = σtut

σ2t = ω + α1y
2
t−1 + . . .+ αpy

2
t−p + β1σ

2
t−1 + . . .+ βqσ

2
t−q

where the parameters are chosen to ensure positive variance, that is ω > 0, αj + βj < 1,
and αj ≥ 0, βj ≥ 0, and {ut} is a zero-mean white noise with unit variance and therefore
also {Yt} is white noise.

GARCH models were introduced because it was observed that the ARCH class does not
account sufficiently well for the persistence of volatility in financial time series data; i.e.
according to the ARCH model, the process {Y 2

t } often has less (theoretical) autocorrelation
than real data tend to have in practice.

Consider a GARCH(1,1)

yt = σtut, σ2t = ω + α1y
2
t−1 + σ2t−1

An important measure in this model is the persistence which is given by α1+β1. A GARCH
with high persistence might seem a non-stationary process, but in fact it is a weakly station-
ary process, indeed its variance is (we will prove this later)

Var(Yt) =
ω

1− α1 − β1
which is positive and finite if and only if α + β < 1. An example of an GARCH(1,1) is in
Figures 33 and 34 for {Yt} and {Y 2

t } with their acs.

2.4 The Lag or Backshift operator

If {Xt} is a stochastic process, we define the lag operator, denoted by L, by

Lxt = xt−1
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Sometimes it is used also the notation Bxt = xt−1.

Moreover, for k > 1,
Lkxt = L(Lk−1xt) = xt−k

for example L2xt = xt−2. Moreover, L0 = 1 where 1 here means the identity operator: 1xt =
xt.

Lastly define F ≡ L−1 then
Fxt = L−1xt = xt+1.

indeed FLxt = xt.

We also define polynomials of L,

a(L) = a−mL
−m + . . .+ a−1L

−1 + a0 + a1L+ . . .+ amL
m =

m∑
j=−m

ajL
j

Moving averages can then be rewritten as:

xt = a(L)ut =

 m∑
j=−m

ajL
j

ut = a−mut+m+. . .+a−1ut+1+a0ut+a1ut−1+. . .+amut−m.

An ARMA can be written as having realizations which solve the stochastic difference equation

Φ(L)xt = Θ(L)ut,

Where

Φ(L) = 1− φ1L− φ2L2 − . . .− φpLp

Θ(L) = 1 + θ1L+ θ2L
2 − . . .− θqLq

are known as the associated or characteristic polynomials.

Notice also that first differences can be written using this notation:

∆xt = xt − xt−1 = (1− L)xt

therefore ∆ ≡ (1− L). Second differences are then easily computed

∆∆xt = ∆2xt = (1−L)2xt = (1+L2−2L)xt = xt+xt−2−2xt−1 = (xt−xt−1)−(xt−1−xt−2).

Notice that this is different from the difference among two non consecutive periods as e.g. when
computing quarterly differences which are given by (if the frequency of the data is monthly)

∆4xt = (1− L4)xt = xt − xt−4.

Further, we can generalize the class of ARMA models to include differencing to account for
certain types of non-stationarity (see below), namely, {Xt} is called ARIMA(p, d, q) if it has
realizations such that

Φ(L)(1− L)dxt = Θ(L)ut,

Φ(L)∆dxt = Θ(L)ut.
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2.5 Trend removal and seasonal adjustment - part 2

We have seen that, in general, a process {Xt} is made of three components:

Xt = Tt + St + Ct

the trend is a tendency to increase or decrease slowly steadily over time while seasonaity is given
by periodic fluctuations due to seasonal effects (e.g. sales in turistic cities are higher during holi-
days). The trend Tt is a non-stationary component and can usually be due to mean and/or variance
which change over time (higher moments are of less interest for us).

The simplest case which we consider here is the case of a trend which results in changing
mean, then

Xt = µt + Yt

where Tt ≡ µt is the time dependent mean and Yt ≡ St + Ct is a zero-mean stationary process.
In this case the process {Xt} is called Trend Stationary. Later we will consider another type of
non-stationarity where {Xt} is Difference Stationary, i.e. it is stationary once we take its first
differences. Such processes have also time varying variance (see the example of the random walk
in Chapter 1).

As an example consider the temperature data, last 30 years. The data are plotted in Chapter
1 Figure 10 and the model suggested by plot is: Xt = α + βt + Yt, where Yt has a seasonal
component of period 12 months.

2.5.1 Trend adjustment

Consider the case of a linear trend plus a seasonal component

Xt = α+ βt+ St + Ct

where Ct is a Gaussian white noise with zero-mean and unit variance, and St = A cos(πt/2), with
A ∼ N(0, 1). The simulated data is in Figure 35.

There are at least two possible approaches for controlling for the trend.

1. Estimate α and β by least squares, and work with the residuals

Ŷt = Xt − α̂− β̂t.

For the simulated data these are shown in Figure 36 left.

2. Take first differences:

∆Xt = Xt −Xt−1 = α+ βt+ Yt − (α+ β(t− 1) + Yt−1) = β + Yt − Yt−1.

Notice that if {Yt} is stationary so is {∆Xt}. As the name suggests this approach controls
also for the other kind of non-stationarity we will consider later, i.e. the case of Difference
Stationary processes. Indeed, it is enough to have {∆Yt} stationary for having {∆Xt}
stationary, so even if {Yt} is non-stationary we might obtain a stationary process by taking
first differences. In the case of a linear trend, first differences leave the constant β, there are
two ways to remove it.
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Figure 35: Simulated data from the model Xt = 2+ 0.03t+A cos(πt/2)+Ct, with A ∼ N(0, 1)
and Ct ∼ w.n.N(0, 1).

(a) If we difference twice:

(1−L)2Xt = (Xt−Xt−1)−(Xt−1−Xt−2) = (β+Yt−Yt−1)−(β+Yt−1−Yt−2) = (1−L)2Yt

so that the effect of µt has been completely removed. In general, if µt is a polynomial
of degree (d− 1) in t, then d-th differences of µt will be zero (d = 2 for linear trend).
Then,

(1− L)dXt = ∆dXt = ∆dYt.

(b) Alternatively, β can be removed by demeaning {∆Xt}, i.e. by subtracting its mean

∆Xt − E[∆Xt] = β + Yt − Yt−1 − β − E[Yt] + E[Yt−1] = Yt − Yt−1 = ∆Yt,

since {Yt} is stationary and therefore its mean does not change over time. In practice,
we have to remove the sample mean of {∆Xt}

∆Xt −∆Xt = β + Yt − Yt−1 − β − Y t + Y t−1 = ∆̂Y t.

It can be proved that asymptotically, this approach is a consistent one, that is {∆̂Y t}
is close to {∆Yt} provided that we have a sample large enough. For the simulated data
{∆̂Y t} is shown in Figure 36 right.

Taking first differences and then demeaning using the sample mean or taking second differ-
ences or detrending via OLS are all equivalent ways for removing completely the effects of a
linear trend. However, these methods are not equivalent in terms of the process we are left with,
as when detrending with OLS we are left with the process {Ŷt}, when taking first differences and
then demeaning we are left with {∆̂Y t}, while when taking second differences we are left with
{∆2Yt}. The latter approach has the advantage that no estimation is required, however the more
“differences” we take the more information we lose. Notice also that by comparing the acs of {Ŷt}
and {∆̂Y t} (see bottom panel of Figure 36) we see that in the second case autocorrelation at lag 1
is induced.

If we are sure that the process is Trend Stationary then OLS should be preferred. On the other
hand as we will see later it might be hard to determine if a process is Trend Stationary or Difference
Stationary, in which case taking first differences is the right thing to do. Once first differences are
taken, taking second differences is in general not a good idea (unless what we are left with is still
Difference Stationary) and it is preferable to demean the differenced process {∆Xt}.

In particular, if we use OLS we immediately have the detrended component of {Xt} as Ŷt,
while if we detrended via first differences and demeaning such component cannot be recovered.
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Figure 36: Detrended simulated data. Top left: OLS detrending. Top right: first differences
demeaned. Bottom panel: corresponding acs.

Indeed, if we try to cumulate first differences (as integration is the inverse of differentiation)

Ỹt =

t∑
s=1

∆̂Y s

we are artificially introducing a new linear trend in the process {Ỹt}, i.e. a line connecting the
last to the first observation of {Yt}, therefore {Ỹt} will have a time varying mean due to the linear
trend and it is more similar to {Xt} rather than to {Ŷt}. A similar reasoning applies if we used
second differences to detrend and then cumulate twice

Y̌t =
t∑

s=1

s∑
τ=1

∆2Yτ .

2.5.2 Seasonal adjustment

Once the trend is removed the model is modified to

Yt = St + Ct,

where Yt can be obtained by means of OLS detrending, St is the seasonal component, Ct is the
zero-mean stationary process (sometime called cycle). If we use first differences the model to be
considered after detrending is

∆Xt = β + ∆Yt = β + ∆St + ∆Ct,

where β is nothing else but the mean of ∆Xt. From the acs in the bottom panel of Figure 36 we
see that in both cases we have a seasonal component with period 4.3 Notice that after removing the

3Clearly, if we used second differences to detrend then the model to consider is

∆2Xt = ∆2Yt = ∆2St + ∆2Ct.
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Figure 37: Detrended and deseasonlized simulated data. Top: OLS detrending. Bottom: first
differences demeaned.

trend {Yt} is already stationary if St is stationary (as in our simulated model) but if St is a purely
deterministic function of time then it has a time varying mean (it can also be seen that in any case
the acvs of St do not decrease to zero, therefore they are not summable, a condition needed for
estimation, see Chapter 3).

Presuming that the seasonal component maintains a constant pattern over time with period s,
i.e. St = St−s, there are again several approaches for removing St. A popular approach is to use
the operator (1− Ls):

(1− Ls)Yt = ∆sYt = Yt − Yt−s = (St + Ct)− (St−s + Ct−s) = Ct − Ct−s.

This holds if we use OLS to detrend. If we opt for first differences then we remove trend and
seasonality by applying the transformation

(1− Ls)(1− L)Xt = (1− Ls)(β + ∆St + ∆Ct) = ∆Ct −∆Ct−s.

Notice that this removes the effect of the linear trend without the need of second differences.

An example with the simulated data for both ways of detrending and s = 4 is in Figure 37.
Notice that the model was simulated in such a way that Ct is a white noise. However, even when
we use OLS for detrending we do not recover {Ct} but {∆4Ct} which is autocorrelated at lag 4
by construction. This is clear from inspection of the top left panel in Figure 37.

An alternative way to deseasonalize that allows to recover a white noise is by means of OLS
once again. We can regress the process {Ŷt} on dummy variables d1t, d2t, d3t, d4t such that dit =
dit+4 = 1 and

∑4
i=1 dit = 1 for any t.

Ŷt = γ1d1t + γ2d2t + γ3d3t + γ4d4t + et

since {Dt = (d1t d2t d3t d4t)} has the same periodicity as St then the residual {et} is highly cor-
related with the non-periodic component {Ct}. The residual process obtained from this regression
is then white noise as shown in Figure 38. This approach is valid also if we start from {∆Yt} but
of course we should not get a white noise as result, since {∆Ct} is not a white noise.
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Figure 38: Detrended and deseasonlized simulated data. OLS detrending and dummy deseasonal-
ization.

3 The theory of linear processes

We have seen stationary processes, in particular weakly stationary processes and the MA(q) pro-
cess

xt = ut + θ1ut−1 + . . .+ θqut−q

where ut is a zero mean white noise process with variance σ2u. We know that {Xt} is stationary
and that its acvs γxk is zero whenever |k| > q. The converse is also true, i.e. if {Xt} is a process
with γxq 6= 0 but with γxk = 0 if |k| > q, then {Xt} is stationary and can be represented as an
MA(q) process.

We now generalise and prove this result for generic stationary processes and the MA(∞) case.
We say that the process {Xt} is a linear process if it can be written as

xt =

∞∑
j=−∞

ψjut−j = Ψ(L)ut

where ut is a zero mean white noise process with variance σ2u and
∑∞

j=−∞ ψ
2
j < ∞. Thus {Xt}

is written as an MA(∞), and Ψ(L) is a linear filter.4

In particular, we require square-summability for two reasons

1. The infinite sum converges with probability 1 to {Xt}. Indeed, we can always write

xt =

h∑
j=−h

ψjut−j +

h−1∑
j=−∞

ψjut−j +

∞∑
j=h+1

ψjut−j

Moreover, a necessary condition for square-summability is ψj → 0 as j →∞. Then,

lim
h→∞

E

Xt −
h∑

j=−h
ψjut−j

2 = lim
h→∞

2
∞∑

j=h+1

ψ2
jσ

2
u = 0.

Therefore, we have convergence in mean-square which implies convergence in probability
by Chebychev’s inequality.

4A linear filter is an operator like Ψ(L) that transforms linearly a given time series into a new (filtered) one. Then
in the definition above the realizations xt are obtained by filtering ut.
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2. For any k the acvs are

|γxk | ≤ γx0 = σ2u

∞∑
i=−∞

ψ2
i <∞,

which ensures stationarity.

Thus linear processes are stationary. Indeed, a linear filter when applied to any stationary time
series produces a stationary time series (see the case of moving averages of stationary processes
in Section 2.3).

In this Chapter, we will prove that every weakly stationary process is either a linear process or
can be transformed to a linear process by subtracting a deterministic component. This is the Wold
representation theorem proved below.

3.1 ARMA as linear processes

First, let us consider stationary ARMA. The following hold.

1. They can always be written as MA(∞)

xt =
∞∑
j=0

ψjut−j = Ψ(L)ut

with
∑∞

j=0 |ψj | < ∞ (for the MA(q) this is trivial while for the AR(p) it requires more
calculations, an example is the AR(1) case with parameter φ such that |φ| < 1, then ψj =
φj , see also the next chapter for the general ARMA).

2. Since to have absolute summability a necessary condition is ψj → 0 as j →∞, then

∞∑
j=−∞

ψ2
j <

∞∑
j=−∞

|ψj | <∞,

i.e. absolute summability implies also square summability of the coefficients.

3. We can prove again that the infinite sum converges with probability 1 to {Xt} but without
using square summability. Indeed, since5 E[|ut|] ≤ σu

E[|Xt|] = E

∣∣∣∣∣∣
∞∑

j=−∞
ψjut−j

∣∣∣∣∣∣
 ≤ ∞∑

j=−∞
|ψj |E[|ut−j |] ≤

 ∞∑
j=−∞

|ψj |

σu <∞

then by Markov’s inequality, for any finite constant M > 0 we have

Prob(|Xt| > M) ≤ E[|Xt|]
M

<∞.

Therefore with probability 1 the series does not diverge.
5Use the Cauchy-Schwarz inequality

E[|XY |] ≤ (E[X2])1/2(E[Y 2])1/2
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Because of the previous two properties, stationary ARMA processes are a subclass of linear pro-
cesses.6 In particular in ARMA we use only past values of ut and the coefficients decrease at a
faster rate (exponential) than a generic linear process.

By comparing the properties of stationary ARMA with those of a generic linear process, we
see that while square-summability is necessary and sufficient for stationarity, absolute summability
is just sufficient but not necessary.

3.2 Linear prediction

A prediction is formulated as a rule, i.e. function, that associates a predicted value with observed
values of the of a process, e.g. temperature. In general a predictor of xt is7

x̂ft = f(xt−1, xt−2, . . .)

that is x̂ft is a stochastic process which is a function of the past values of the process xt.

Thus in principle we have as many predictors of xt as many functions. Our task is to select a
predictor that is optimal. But to define optimality we need a criterion. For example:

1. minimise the expected value of the absolute prediction error

E[|x̂ft − xt|]

2. minimise the expected value of the squared prediction error

E[(x̂ft − xt)2]

Our criterion will be the second:
min
f

E[(x̂ft − xt)2]

which being a convex and differentiable function is easier to minimise than the absolute deviation.8

So we are seeking an element in the set of all functions, such that the expected squared error is
minimum. This is a huge set to explore!

Since we limit ourselves to considering only second moments then we are interested in linear
dependences only. Thus, we simplify the problem by restricting the set of functions to linear
functions:

f(xt−1, xt−2, . . .) = a0 + a1xt−1 + a2xt−2 + . . .

Now the minimisation problem becomes

min
a0,a1,a2...

E[(xt − (a0 + a1xt−1 + a2xt−2 + . . .)2]

This can be restated like this:

xt = [a0 + a1xt−1 + a2xt−2 + . . .] + et

6There are processes as long memory processes which might be stationary hence linear (because of Wold) but with
coefficients that are square summable but not absolute summable (see section 3.3).

7Hereafter to simplify notation we denote both the random variables and their realisations as xt.
8Minimising absolute deviations gives results that are more robust to large errors, indeed for large x (actually for

x > 1) we always have |x| < x2.
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We look for the coefficients aj such that E[e2t ] is minimum and this looks very much like a linear
regression of xt on its lags.

If we simplify to the s lags specifications we have

xt = [a0 + a1xt−1 + a2xt−2 + . . .+ asxt−s] + et

Define the vectors

a = (a0, a1, a2, . . . , as)
′ zt = (1, xt−1, xt−2, . . . , xt−s)

′.

then the linear model becomes
xt = a′zt + et

and the coefficients a∗ that minimise E[e2t ] are given by the s+ 1-dimensional vector 9

a∗ = (E[ztz
′
t])
−1E[ztxt] (6)

these coefficients satisfy the condition E[e∗txt−k] = 0 for any k 6= 0, and also E[e∗t 1] = E[et] = 0,
where

e∗t = xt − (a∗)′zt

Notice that definition (6) makes sense only if xt is a stationary process.

To see that minimising the squared distance between regressors and xt is equivalent to require
orthogonality of the regressors and the residuals consider the case of two stochastic variables y
and z and the two related problems.

1. We want the best linear approximation of y by means of z, that is

y = az + e

where according to our optimality criterion a is such that E[e2] = E[(y−az)2] is minimum.
Set to zero the derivative with respect to a we have

d

da
E[(y − az)2] = 2aE[z2]− 2E[yz] = 0

and you obtain a = E[yz]/E[z2].

2. We want to find the number b such that e = y−bz is orthogonal to z, orthogonality between
the stochastic variables w1 and w2 meaning that the moment E[w1w2] is equal to zero.10

Then we have E[ez] = E[yz]− bE[z2] = 0, which implies b = E[yz]/E[z2], which is equal
to a above.

Thus in the best linear approximation of xt with its past the errors are orthogonal to the regressors
and

P st−1xt = (a∗)′zt

is the linear projection of xt onto the space spanned by its lagged values. The notation P st−1 tells
us that the projector is computed using s lags and that use observations up to time t− 1.

9Try to solve to using just a1 and by taking the value that sets to zero the first derivative of E[e2t ] with respect to a1.
10This is because we are working in a Hilbert space of functions on a probability space (random variables) which are

square integrable (finite variance). Such space has a natural inner product given by the covariance operator. Hence two
elements are orthogonal if and only if their inner product is zero, that is their covariance is zero.
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As seen from (6) in order to compute the coefficients we need sample acvs and once we replace
expectations with these quantities we have

âT =

(
1

T

T−s∑
t=1

ztz
′
t

)−1(
1

T

T−s∑
t=1

ztxt

)
.

For example if we have
xt = a1xt−1 + et

we obtain the usual OLS estimator

â1,T =

∑T−1
t=1 xtxt−1∑T−1
t=1 x

2
t−1

Note that we are using coefficients that are independent of t. But the coefficients depend on
the acvs. Thus, assuming that the coefficients are time-invariant requires that the covariances are
time-invariant, i.e. that xt is weakly stationary. Estimation is discussed in detail in Chapter 5.

Back to the general case with infinite lags we have

xt = [a0 + a1xt−1 + a2xt−2 + . . .] + et

The best linear predictor (obtained with s lags) is then11

P st−1xt = a0 + a1xt−1 + a2xt−2 + . . .+ asxt−s.

In the most general case we have to consider the predictor based on infinitely many past observa-
tions

Pt−1xt = a0 + a1xt−1 + a2xt−2 + . . . .

Then, it is possible to prove that

Pt−1xt = lim
s→∞

P st−1xt.

Of course in empirical situations, in which only a sample for t = 1, 2, . . . , T is available, we will
estimate a regression on a finite number s of lags, with s determined by some information criterion
(see later for more).

The best linear predictor of xt, based on its past, is then the projection Pt−1xt such that:

xt = Pt−1xt + et,

this is the prediction equation for xt and notice that if E[et|xt−1, xt−2, . . .] = 0 then the best linear
predictor is also the conditional expectation of xt given its past. This assumption is the condi-
tional mean independence assumption. It can be shown that it is automatically satisfied if et is an
independent process (or if et is Gaussian) since then et is independent of (xt−1, xt−2, . . .) because
each xt−k can be written as an infinite sum of lagged values of et (see the Wold representation
below). Notice that independence is not strictly necessary to have conditional mean independence,
which is indeed a weaker requirement. All the following derivation does not require conditional
mean independence, since it is based only on linear predictors (projections).

11Hereafter, we assume to be working to the true model, i.e. with coefficients such that they minimise the mean
squared error. Therefore, we set aj ≡ a∗j and we denote the resulting error as et and not as e∗t for simplicity of
notation.
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The process et, is the one step ahead prediction error, is also called the innovation of the
process xt. Looking at the projection equation, the term innovation seems quite appropriate. The
only reason why the process xt is not completely determined by its past values is the presence of
the term et.

A very important result is that the process et is a white noise. Indeed, we have

et = xt − [a0 + a1xt−1 + a2xt−2 + . . .]

thus et is weakly stationary because is a function of a weakly stationary process. Moreover,
E[etxt−h] = 0 for any h > 0 and E[et] = 0 and

et−1 = xt−1 − [a0 + a1xt−2 + a2xt−3 + . . .]

so that E[etet−1] = 0 etc. Suppose that et were not a white noise. For example, the autocovariance
γe1 6= 0. Then in the projection

et = αet−1 + εt,

the coefficient α is not zero, this implying that

E[e2t ] = α2E[e2t−1] + E[ε2t ] > E[ε2t ]

(recall that in a projection we have E[εtet−1] = 0). Now

xt = Pt−1xt + et

= [a0 + a1xt−1 + a2xt−2 + . . .] + αet−1 + εt

= [a0(1− α) + (a1 + α)xt−1 + (a2 − αa1)xt−2 + . . .] + εt

But this contradicts the assumption that et is the residual of the projection of xt on its past. So et
is a white noise. This result provides the foundation for defining the AR models as models where
xt is driven by its lags plus a white noise process.

On the other hand, it is also possible to prove that xt = et if and only if xt is a white noise.
Therefore a white noise is unpredictable. Better, we can say that stationary processes are pre-
dictable because their pattern of autocorrelation is constant through time. A white noise is the least
predictable among stationary processes. Processes whose autocorrelation is not regular through
time are also unpredictable.

To conclude this part notice that an empirical rule emerges for choosing the number of lags s
to include in a linear model. In order to have the best linear predictor we must add as many lags as
necessary to make the error et a white noise, in this case we can then use least squares to estimate
the model (see Chapter 5 on estimation for details).

Examples.

1. xt = A, where A is a constant. In this case the projection equation is

xt = xt−1 + 0,

but also xt = xt−2 + 0, etc. Thus the innovation is zero.

2. xt = (−1)tA. Same as in the previous case, only that here the projection is xt = −xt−1 +
0 = xt−2 + 0, etc. The innovation is zero.
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3. The AR(1) process,
xt = φ1xt−1 + ut, |φ1| < 1

This means that the best linear prediction of xt is φ1xt−1.

4. The MA(1) process
xt = ut + θ1ut−1

then using ut = xt − θ1ut−1 and ut−1 = xt−1 − θ1ut−2

xt = ut + θ1ut−1

= ut + θ1xt−1 − θ21ut−2

= ut +
∞∑
k=1

(−1)k−1θk1xt−k

which requires |θ1| < 1 in order to converge. Thus with the constraint |θ1| < 1 an MA(1)
can be written as an AR(∞) and the best linear prediction of xt is θ1[xt−1 − θ1xt−2 + . . .].

3.3 Wold representation theorem

Based on the recursive arguments used in the AR(1) and MA(1) cases of previous section we can
rewrite the projection equation as an MA. We have

xt = [a0 + a1xt−1 + a2xt−2 + . . .] + et

xt−1 = [a0 + a1xt−2 + a2xt−3 + . . .] + et−1

by substituting the second into the first we have

xt = a0 + a1([a0 + a1xt−2 + a2xt−3 + . . .] + et−1) + a2xt−2 + et

= et + a1et−1 + (a0 + a1a0) + (a21 + a2)xt−2 + . . .

= et + bet−1 + [c0 + c1xt−2 + c2xt−3 + . . .]

We may hope that iterating the procedure we obtain a result like the one obtained in the AR(1)
case:

xt = b+ et + b1et−1 + b2et−2 + . . . (7)

This is not true in general, as the example xt = A shows, indeed A is deterministic while (7) is
stochastic. Therefore, an AR(∞) cannot be written as a purely MA(∞).

We define a deterministic process as a process such that Pt−1xt = xt which means that it has
zero innovations (see the examples above). Notice that according to this definition also the case
xt = Z with Z being a random variable not depending on time can be considered as deterministic.
Then we have the following representation result.

WOLD REPRESENTATION THEOREM
If {Xt} is a non-deterministic stationary process, then

xt =

∞∑
j=0

bjet−j + dt,

where
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1. b0 = 1 and
∑∞

j=0 b
2
j <∞;

2. et is a white noise with zero mean and variance σ2e and et = Ptet for all t;

3. dt is deterministic and dt = Psdt for all s, t;

4. Cov(es, dt) = 0 for all s, t;

and the decomposition is unique. Moreover we have

et = xt − Pt−1xt

bj =
E[xtet−j ]

E[e2t ]

dt = xt −
∞∑
j=0

bjet−j .

Note that the expression for bj is the result of orthogonal projection of {Xt} onto the lags of
{et} but is not a definition which can be used in practice for estimation since {et} is unknown.
When dt = 0 then we say that {Xt} is purely non-deterministic. ARMA processes are purely
non-deterministic.

In conclusion, a weakly stationary process is the sum of a linear process which has the form
of an infinite backward moving average of the innovation, which is a white noise, plus a linearly
deterministic process. The two components are orthogonal at all leads and lags. Therefore, we
have shown that a weakly stationary process is either a linear process or it can be transformed to a
linear process by subtracting a deterministic process.

Notice that we have in general only square summability of the coefficients {bj} and that is
a necessary and sufficient condition enough to ensure stationarity as seen at the beginning of the
Chapter. We also know that square summable coefficients constitute a broader class than the class
of absolutely summable coefficients.12 In ARMA models we always have geometric (exponential)
decay of coefficients of the MA(∞) (think of the AR(1) case where bj = φj for a given |φ| < 1),
then both kind of convergence hold. Hence the Wold theorem contains ARMA as special cases
but it is more general since it includes all stationary processes with square summable coefficients.
ARMA can be seen as particular stationary processes with memory shorter than the one given by
the theorem. Fractionally integrated ARMA have instead coefficients decaying as bj ∼ 1/j1−d

which are not absolutely summable but are square summable as long as 0 ≤ d < 1/2, these are
called long memory processes.

In practice, given a sample of a weakly stationary time series, finding the Wold representation
requires the estimation of an infinite number of parameters (b1, b2, ...) using the data, which is
clearly not possible as said above. In practice, one typically has to make some assumptions about
(b1, b2, ...). A common approach is to assume that

∞∑
j=0

bjL
j =

Θ(L)

Φ(L)
=

1 +
∑p

m=1 θmL
m

1−
∑q

m=1 φmL
m
,

where p, q <∞, namely one approximates an unfeasible infinite polynomial by the ratio of finite-
order polynomials. This again takes us to the definition of an ARMA(p, q) process.

12We have the sequence spaces inclusion `1 ⊂ `2, so for example 1/j is a sequence which is square summable but
not absolutely summable.
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Finally, in many cases it is reasonable to assume also conditional mean independence, i.e.
that E[et|xt−1, xt−2, . . .] = 0, in which case we say that et is a martingale difference sequence
with respect to xt.13 For example if we restrict ourselves to linear dependencies and we are not
interested in any other dependence, then E[et|xt−1, xt−2, . . .] = 0 might be reasonable since we
already know that being a white noise et is not correlated with (xt−1, xt−2, . . .) . Gaussian inno-
vations are also independent and therefore satisfy conditional mean independence. As said above
conditional mean independence of the innovations with respect to the past tells us the the best
linear predictor Pt−1xt is actually also the best predictor which is always given by the conditional
mean E[Xt|Xt−1, Xt−1, . . .].

3.4 Forecasting

If we assume to have observations only until time T we can use the same approach as before to
define h steps ahead forecasts of a time series. We can write the forecast at T + h as

xT+h = [a0 + a1xT + a2xT−1 + . . .+ amxT−m] + eT+h h > 0.

where m can be any positive number (depending how far in the past we go). The best linear
predictor (obtained with m lags) is then

PmT xT+h = a0 + a1xT + a2xT−1 + . . .+ amxT−m.

If we consider the predictor based on infinitely many past observations

PTxT+h = a0 + a1xT + a2xT−1 + . . . .

it is possible to prove that
PTxT+h = lim

m→∞
PmT xT+h.

Of course in empirical situations, in which only a sample for t = 1, 2, . . . , T is available, we
will estimate a regression on a finite number m of lags, with m determined by some information
criterion (see later for more) and we must have m < T .

Both for prediction (which is in sample and for forecasting which is out of sample), the choice
of the projector to be used of course depends on the model chosen for the time series we are
studying. The class of model we will consider in the next Chapter are ARMA processes.

3.5 Sample mean and sample autocorrelation

A stationary process is characterised by its mean µ and its acvs γk. Therefore given observations
x1, x2, . . . , xT , we should be able to estimate these moments if we want to analyse data and make
inference on order to build the most appropriate model for the data. The estimators we build are
called sample mean, denoted as x̄T and sample acs, denoted as ρ̂k,T .14

13A martingale sequence is instead such that E[xt|xt−1] = xt−1 so a random walk with i.i.d. errors or with errors,
that are a martingale difference sequence, is a martingale.

14Only in this section we highlight the role of T in estimation by using it as an index.
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3.5.1 Ergodicity

Methods we shall look at for estimating quantities such as the mean and the acvs will use observa-
tions from a single realisation of the process. Such methods are based on the strategy of re-placing
ensemble averages by their corresponding time averages and if this is possible the process is called
ergodic. More precisely, if we have N i.i.d. realisations of a stochastic process {Xt} denoted as
{xkt }, with k = 1, . . . , N , then for any fixed point in time t0 we define the ensemble average as

x̄Nt0 =
1

N

N∑
k=1

xkt0

Since each realisation of the process is independent of the others, then the above can be seen as
a sum of i.i.d. random variables and therefore we know that the Weak Law of Large Numbers
applies (for any fixed t0)

x̄Nt0
p→ E[Xt0 ].

If we could use the ensemble average then we would not need to require stationarity.

Consider instead the time average based on T observations

x̄T =
1

T

T∑
t=1

xt,

this quantity does not depend on time. We say that {Xt} is ergodic for the mean, if, asN,T →∞,
the ensemble average tends to the same limit as the sample average of one given realisation, that
is, for any t0,

p lim
T→∞

x̄T = p lim
N→∞

x̄Nt0 .

Now since the left hand side does not depend on time we must have that the sample mean converges
to the mean which must then be independent of time (and of the realisation observed)

x̄T
p→ E[Xt].

Using an analogous definition of sample covariances (see below) we can define ergodicity also
for the second (and higher) moments. The interpretation of this property is that a long series of
observations yields enough information to conduct inference on the moments of the process itself.

The general definition of ergodicity is related to the whole distribution of {Xt} and it is highly
technical. We know that ergodicity implies strong stationarity and therefore also weak stationarity.
Loosely speaking, a stochastic process {Xt} is ergodic if any two collections of random variables
partitioned far apart in the sequence are almost independently distributed.15

For us stationarity and ergodicity will always be considered jointly. However, notice that in
general stationary processes are not necessarily ergodic. For example consider a process {Yt}
which has mean µ and variance σ2y and is i.i.d. and a r.v. X ∼ N(0, 1) independent of {Yt}. Then

Zt = Yt +X

15Asymptotic independence (as the distance in time increases) is captured also by other stronger properties not
considered here such as mixing. Notice that: (1) mixing does not imply stationarity; (2) a mixing and strongly stationary
process is ergodic.
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is stationary as it has mean E[Zt] = µ and acvs γz0 = σ2y + 1 and γzh = 1 for h 6= 0 since γxh = 1
for any h. However, it is not ergodic since

1

T

T∑
t=1

Zt
p→ µ+X

which is not the mean of Zt and it will be different for any different realisation of the process.
Intuitively, the reason why we don’t have ergodicity is because Zt and Zt+h will never become
independent as their distance increases, because γzh = 1 even as h → ∞. With the language of
previous section the component X represents the deterministic part in the Wold decomposition of
Zt. This is the reason why stationary process might not be ergodic. An example might be given
by a seasonal component which is periodic in time, but deterministic.

If we restrict ourselves to stationary processes with summable acvs, then we can prove that we
have ergodicity for the mean. Notice that in the example before the acvs are not summable. This
is what we do next.

3.5.2 Mean estimation

Consider a stationary process and its sample mean which is defined as

x̄T =
1

T
(x1 + x2 + . . .+ xT ) =

1

T

T∑
t=1

xt.

Let us study the properties of this estimator.

It is unbiased

E[x̄T ] =
1

T

T∑
t=1

E[xt] =
1

T
Tµ = µ

Its variance is

Var(x̄T ) =
1

T 2
Var

(
T∑
t=1

xt

)

=
1

T 2

T∑
t=1

Var(xt) +
1

T 2

T∑
t=1

T∑
s=1;s 6=t

Cov(xt, xs)

=
1

T 2

T∑
t=1

T∑
s=1

γxt−s (8)

We then make a change of variable from s, t to s and h = (t−s). Notice that the double summation
above extends over the entries of the the Toepliz matrix seen in Chapter 2. If we use t as an index
for rows and s as the index for columns we have

V =



Cov(x1, x1) Cov(x1, x2) Cov(x1, x3) . . . Cov(x1, xT−1) Cov(x1, xT )
Cov(x2, x1) Cov(x2, x2) Cov(x2, x3) . . . Cov(x2, xT−1) Cov(x2, xT )
Cov(x3, x1) Cov(x3, x2) Cov(x3, x3) . . . Cov(x3, xT−1) Cov(x3, xT )

...
...

...
. . .

...
...

Cov(xT−1, x1) Cov(xT−1, x2) Cov(xT−1, x3) . . . Cov(xT−1, xT−1) Cov(xT−1, xT )
Cov(xT , x1) Cov(xT , x2) Cov(xT , x3) . . . Cov(xT , xT−1) Cov(xT , xT )


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While in (8) we sum first over rows and then we add the row sums, we can now sum over diagonals
and add the diagonal sums together. To see how h, t, and s are related consider again V as a
function of h

V =



γ0 γ−1 γ−2 . . . γ−(T−2) γ−(T−1)
γ1 γ0 γ−1 . . . γ−(T−3) γ−(T−2)
γ2 γ1 γ0 . . . γ−(T−4) γ−(T−3)
...

...
...

. . .
...

...
γT−2 γT−3 γT−4 . . . γ0 γ−1
γT−1 γT−2 γT−3 . . . γ1 γ0


The sum over the diagonals are indexed by h which goes from −(T − 1) to (T − 1) (this is
because the observations must be at a distance less than T − 1 to have non zero covariance). Then
for h > 0 (diagonals below the main diagonal), the index s goes from 1 to (T − h), while for
h < 0 (diagonals above the main diagonal), s goes from −h + 1 to T . Since the summand in (8)
depends only on h we have that the sum on s gives always T − |h| hence

Var(x̄T ) =
1

T 2

T−1∑
h=−(T−1)

(T − |h|) γxh

=
1

T 2

T−1∑
h=−(T−1)

T

(
1− |h|

T

)
γxh

=
1

T

T−1∑
h=−(T−1)

(
1− |h|

T

)
γxh

Compare this result with the case of i.i.d. r.v. where all covariances are zero. We make the
assumption that

∑∞
h=−∞ |γxh | <∞. Then, by the Cesáro summability theorem, if

∑T−1
h=−(T−1) γ

x
h

converges to a limit as T →∞16 then, also
∑T−1

h=−(T−1)

(
1− |h|T

)
γxh converges to the same limit.

We can thus conclude that,

lim
T→∞

T Var(x̄T ) = lim
T→∞

T−1∑
h=−(T−1)

(
1− |h|

T

)
γxh =

∞∑
h=−∞

γxh <∞

Therefore as long as
∑∞

h=−∞ |γxh | < ∞ we have Var(x̄T ) → 0 when T → ∞. Thus we have
convergence in mean square

E[(x̄T − µ)2] = Var(x̄T )→ 0, as T →∞,

and by Chebychev’s inequality also convergence in probability

P(|x̄T − µ| > ε)→ 0 ∀ε > 0, as T →∞,

or
x̄T

p→ µ, as T →∞.
16It must since ∣∣∣∣∣∣

T−1∑
h=−(T−1)

γx
h

∣∣∣∣∣∣ ≤
T−1∑

h=−(T−1)

|γx
h | <∞ ∀T.
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This is the Weak Law of Large Numbers for stationary time series also known as Ergodic Theorem,
since if this result holds then the process is ergodic.17 Therefore, if the process is stationary and∑∞

h=−∞ |γxh | < ∞ then it is ergodic for the mean. Moreover, it can be proved that if the process
is ergodic and stationary then x̄T

p→ µ, as T →∞.

Consider the Wold decomposition of a purely non-deterministic stationary process, that is the
linear process, or MA(∞),

xt =
∞∑
j=0

ψjut−j , ut ∼ w.n.(0, σ2u),

but with absolute summability of the coefficients
∑∞

j=0 |ψj | < ∞ such are the ARMA models.
Then this condition implies absolute summability of the covariances

∞∑
h=−∞

|γxh | = 2

{ ∞∑
h=0

|γxh |

}
− γx0

≤ 2σ2u

∞∑
h=0

∣∣∣∣∣∣
∞∑
j=0

ψjψj+h

∣∣∣∣∣∣
≤ 2σ2u

∞∑
j=0

|ψj |
∞∑
h=0

|ψj+h|

≤ 2σ2u

∞∑
j=0

|ψj |
∞∑
h=0

|ψh|

≤ 2σ2u

 ∞∑
j=0

|ψj |

2

<∞.

Therefore, any purely non-deterministic stationary process as ARMA (which then has absolutely
summable coefficients) satisfy the necessary condition for the Law of Large Numbers to hold.
Actually it is enough to have γh → 0 as h→∞ to have ergodicity, so a purely non-deterministic
stationary process (which then has an MA(∞) representation with square summable coefficients,
is ergodic.

Convergence in probability implies also convergence in distribution, and more precisely from
the results above we have seen that TVar(x̄T ) must be a finite number as T →∞, thus we have a
Central Limit Theorem for the sample average of time series that states

√
T (x̄T − µ)

d→ N

(
0,

∞∑
h=−∞

γxh

)
, as T →∞.

Using this result we can build asymptotic confidence intervals for µ. Thus an approximate (i.e. for
T →∞) 95% confidence interval is(

x̄T − 1.96
v1/2√
T
, x̄T + 1.96

v1/2√
T

)

where v =
∑∞

h=−∞ γ
x
h .

17Indeed, as seen above the ensemble average converges to the same limit.
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Now, v is unknown and must be in turn estimated. Usually we use

v̂T =

√
T∑

h=−
√
T

(
1− |h|

T

)
γ̂xh,T ,

where γ̂xh,T is the sample acvs which we now introduce.

3.5.3 Estimation of the autocovariance function

The lag h acvs is defined as
γxh = E[(xt+|h| − µ)(xt − µ)].

Thus a natural estimator is

γ̃xh,T =
1

T − |h|

T−|h|∑
t=1

(xt+|h| − x̄T )(xt − x̄T ), |h| < T − 1

If we replace x̄T with µ we have

E[γ̃xh,T ] =
1

T − |h|

T−|h|∑
t=1

E[(xt+|h| − µ)(xt − µ)] =
1

T − |h|

T−|h|∑
t=1

γxh = γxh ,

therefore, γ̃xh,T is unbiased if we know µ. Most texts refer to γ̃xh,T as unbiased, however, if µ is
estimated by x̄T , γ̃xh,T is typically a biased estimator of γxh .

Another possible and preferred estimator is

γ̂xh,T =
1

T

T−|h|∑
t=1

(xt+|h| − x̄T )(xt − x̄T ), |h| < T − 1

If we replace x̄T with µ we have

E[γ̂xh,T ] =
1

T

T−|h|∑
t=1

E[(xt+|h| − µ)(xt − µ)] =
1

T

T−|h|∑
t=1

γxh =

(
1− |h|

T

)
γxh ,

is a biased estimator, and the magnitude of its bias increases as |h| increases. Most texts refer to
γ̂xh,T as biased.

Why should we prefer the “biased” estimator γ̂xh,T to the “unbiased” estimator γ̃xh,T ?

1. For many stationary processes of practical interest we have

MSE(γ̂xh,T ) < MSE(γ̃xh,T ),

where MSE is the Mean Squared Error defined as

MSE(γ̂xh,T ) = E[(γ̂xh,T − γxh)2]

= E[(γ̂xh,T )2]− 2γxhE[γ̂xh,T ] + (γxh)2

=
(
E[(γ̂xh,T )2]− E[γ̂xh,T ]2

)
+ E[γ̂xh,T ]2 − 2γxhE[γ̂xh,T ] + (γxh)2

= Var(γ̂xh,T ) +
(
γ̂xh,T − E[γ̂xh,T ]

)2
= variance + (bias)2
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2. We know that the acvs must be positive semidefinite and the sequence {γ̂xh,T } has this prop-
erty, whereas the sequence {γ̃xh,T } may not. That is to say that the the sample variance-
covariance matrix of the equispaced vector (x1, x2, . . . , xT )′ is non-negative definite. This
is the estimated Toepliz matrix V in Section 2.2 where are all acvs are replaced by the
sample ones.

Once we choose an estimator of the acvs, the sample acs is then

ρ̂xh,T =
γ̂xh,T
γ̂x0,T

Notice that given T observations we can in principle compute acvs only up to lag T −1. However,
in practice we have to stop well before T − 1 as for large h estimates of acvs are computed using
too few values (just one if h = T − 1). A useful rule of thumb is to compute acvs only up to lag
h ≤ T/4 when T > 50.

The sample acvs is needed for

1. computing confidence intervals for the mean;

2. finding which are the relevant acvs for a given process, in order to select the best model to
forecast and analyse the data;

3. estimating the parameters of a given model.

In order to challenge part 2 we need a distribution for sample acvs and acs. This is given again by
a Central Limit Theorem and it is then valid only when T is large

√
T
(
ρ̂xh,T − ρxh

) d→ N (0, w) , as T →∞,

where w has a long formula (called Bartlett’s formula) which we don’t give here for the general
case but it is the one used to plot confidence intervals of acvs in all the figures of these notes. A
further approximation is given by setting w = 1.

4 ARMA processes

4.1 MA(1) and AR(1)

We have already seen the MA(1) and the AR(1) processes. Recall that an MA(1) is defined as

xt = ut + θut−1 = (1 + θL)ut, ut ∼ wn(0, σ2)

This process is always stationary and depends only on past values of the white noise (below we
will say that is causal), thus this is already the Wold representation of xt. We can write an MA(1)
as an AR(∞):

xt = (1 + θL)ut = ut +
∞∑
k=1

(−1)k−1θkxt−k.

For the above series to converge we need |θ| < 1 and then we can use an MA(1) to make predic-
tions, since by definition here ut is the innovation of xt (see Chapter 3). Summing up:
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1. if |θ| < 1 the MA(1) process is invertible using past values of xt, i.e. allows us to write an
MA(1) as an AR(∞), and is stationary;

2. if |θ| > 1 the MA(1) process is invertible using future values of xt and we will have an
MA(1) with parameter 1/θ, clearly the process is still stationary (see below the examples in
section 4.2);

3. if |θ| = 1 the MA(1) process is never invertible, but still stationary.

An AR(1) is defined as

xt − φxt−1 = (1− φL)xt = ut, ut ∼ wn(0, σ2).

This equation is already in the form of a linear prediction equation since ut is the innovation of xt
(see Chapter 3). We can write an AR(1) as an MA(∞):

xt = φxt−1 + ut =
∞∑
k=0

φkut−k.

Then, in order for the above series to converge we need |φ| < 1 and then the process is stationary
and depends only on past values of ut.18 Thus, we say that is also causal and the above is also the
Wold representation of xt. Summing up:

1. if |φ| < 1 the AR(1) process is stationary and causal, i.e. allows us to write an AR(1) as an
MA(∞) using past values of ut (see Chapter 2);

2. if |φ| > 1 the AR(1) process is stationary but not causal, i.e. can be written as

xt = − 1

φ
ut+1 +

1

φ
xt+1 = −

∞∑
k=0

1

φk
ut+k,

which is a stationary process (using the same argument as in the previous case) but here
xt is correlated with future values of ut this is a feasible representation but it is unnatural,
moreover it is unstable as the initial condition should now be set into the future as for
example xT = 0 as T →∞ which is not likely to be the case;

3. if |φ| = 1 we have a non-stationary process (called random walk when φ = 1) and we say
that this process has a unit root. Unit root processes are non-stationary not because of the
presence of a linear deterministic trend but because they are driven by a stochastic trend
which makes their variance time dependent and are called Difference Stationary processes
as opposed to Trend Stationary processes and will be considered later.

18To prove convergence in mean square, consider

xt =

h−1∑
k=0

φkut−k + φhxt−h,

then

lim
h→∞

E

(xt − h−1∑
k=0

φkut−k

)2
 = lim

h→∞
|φ|2hE[x2t−h] = 0,

if and only if |φ| < 1 and xt has finite variance, which is again the case only for |φ| < 1. A similar reasoning applies
for the MA(1) case.
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In both examples above we have an AR representation which is what we need for prediction,
and we say that xt is a solution of the difference equation implied by the AR if it can be written as
an MA, i.e. it has a Wold representation, thus it has to be (i) stationary and causal with (ii) square
summable MA coefficients. In the MA case this is trivial (it’s already an MA with a finite number
of coefficients), but in the AR case we need |φ| < 1 for stationarity and causality which implies
that

∑∞
k=0 |φk| <∞ and therefore we have also square summability of the MA coefficients which

is a more general condition.

4.2 The AR(p) process

4.2.1 Stationary solutions

An AR(p) has realisations which follow the equation

(1− φ1L− φ2L2 − . . .− φpLp)xt = ut, ut ∼ wn(0, σ2u).

This can be seen as a stochastic difference equation (compare it with the stochastic differential
equations in continuos time), hence we look for a solution of this equation, which means looking
for a linear process (i.e. a moving average of ut) that solves the equation. For p = 1 we know that
if |φ1| < 1 the solution is

xt = ut + φ1ut−1 + φ21ut−2 + . . .

A quick way to derive it is by computing the inverse of (1− φ1L) as: 19 20

1

(1− φ1z)
= (1− φ1z)−1 = 1 + φ1z + φ21z

2 + . . .

for any z ∈ C and then write

xt = (1− φ1L)−1ut = (1 + φ1L+ φ21L
2 + . . .)ut.

The above expression converges if and only if |φ1| < 1, in which case we have a stationary
solution. We know that if |φ1| > 1 there is also another stationary solution but we need future
values of ut, while no stationary solution exists if |φ1| = 1 since in that case the variance will not
exist. We know want to generalise this result to p > 1.

We solve the equation of the AR(p) by factorizing the polynomial into first order factors.
Hereafter, when considering polynomials we write it as a function of a generic complex number z,
i.e. z ∈ C since we know that roots of polynomial are complex numbers. The AR polynomial of

19The Taylor expansion we are using is

1

1− x = 1 + x+ x2 + . . .

which converges only if |x| < 1. In order to see that this applies also to the operator L applied to a stationary process
{Xt} one has to recognise that since E[LXtXt] = E[XtL

−1Xt] (because of stationarity γx
−1 = γx

1 ) then the adjoint
of L is L∗ = L−1 and therefore L is a unitary operator and has spectrum on the unit circle and modulus the identity
|L| = (LL∗)1/2 = I , thus in the AR polynomial |φkL

k| ≤ |φk|.
20Notice that this is indeed the inverse since

(1−φ1z)(1−φ1z)
−1 = (1−φ1z)(1 +φ1z+φ2

1z
2 +φ3

1z
3 + . . .) = (1−φ2

1z
2 +φ2

1z
2−φ3

1z
3 +φ3

1z
3 + . . .) = 1
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order p has coefficients φj ∈ R and can always be written as (this is known as the “characteristic”
polynomial)

Φ(z) = 1− φ1z − φ2z2 − . . .− φpzp = (1− β1z)(1− β2z) . . . (1− βpz) (9)

for some coefficient βj ∈ C. Then if we denote the p roots as α1 . . . αp (not necessarily distinct)
we have

Φ(z) = 1− φ1z − φ2z2 − . . .− φpzp = (1− β1z)(1− β2z) . . . (1− βpz)

= (−1)p
(z − α1)(z − α2) . . . (z − αp)

α1α2 . . . αp
, (10)

this guarantees that the coefficient of order zero is equal to one also on the right hand side. There-
fore, by comparing (9) with (10) we have βj = 1/αj .

We can then invert the AR(p) polynomial by inverting each (1− βjz) polynomial. Now recall
that, if |βj | < 1 we can write

1

(1− βjL)
=
∞∑
k=0

βkj L
k. (11)

And we have seen in the AR(1) case that this series converges if and only if |βj | < 1 which is
equivalent to ask for the roots of the polynomial Φ(z), that is the α’s, to be such that |αj | > 1.
This is our condition for stationarity and causality for an AR(p).

In general the roots might be complex numbers.21 Thus we require the roots to be outside the
unit circle. So we require the polynomial Φ(z) to have roots in the complex plane and such that
|z| > 1, i.e. such that Φ(z) = 0 only if |z| > 1. If some of the roots αj are in modulus smaller
than 1 then Φ(z) can still be inverted but not using only the past, so that xt in this case will be a
two-sided moving average of ut.

But if at least one of the roots αj has unit modulus, in that case we say that the AR(p) polyno-
mial has unit roots, then the autoregressive equation has no stationary solution.

Hereafter, we assume that the AR(p) polynomial has no root inside or on the unit circle, that
is |αj | > 1 for all j or that |βj | < 1 for all j. In this case we say that the causality and stationarity
condition is fulfilled.

Finally, notice that we can either find the roots of the characteristic AR polynomial Φ(z) = 0
and have them outside the unit circle or we can consider roots of the reciprocal polynomial defined
as (basically this means inverting the order of the coefficients)

Φ∗(z) = zpΦ(z−1) = zp − φ1zp−1 − . . .− φp.

Then from (10) we have

Φ∗(z) = zpΦ(z−1) = zp(1−β1z−1)(1−β2z−1) . . . (1−βpz−1) = (z−β1)(z−β2) . . . (z−βp)

which shows that now the roots are |βj | < 1, hence the condition for stationarity becomes that the
roots of the reciprocal of the characteristic polynomial are inside the unit circle.

21A polynomial of order p has p roots in the complex plane and if z ∈ C \ R then z̄ is also a root.
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Take as an example an AR(2), then the MA(∞) representation reads

xt = (1− φ1L− φ2L2)−1ut = (1− β1L)−1(1− β2L)−1ut

= (1 + β1L+ β21L
2 + . . .)(1 + β2L+ β22L

2 + . . .)ut

=
(
1 + (β1 + β2)L+ (β21 + β1β2 + β22)L2 + . . .

)
ut

=
∞∑
k=0

 k∑
j=0

βj1β
k−j
2


︸ ︷︷ ︸

ψk

Lkut

which is stationary if and only if the coefficients ψk are square summable. In particular, we have

ψ1 = β1 + β2, ψ2 = β21 + β22 + β1β2, ψ3 = β31 + β32 + β21β2 + β1β
2
2

and in general we have |ψk| ≤ (|β1| + |β2|)k. Then, the condition |β1| + |β2| < 1 is sufficient
to have a stationary and causal process since the MA(∞) decay exponentially and are therefore
absolute summable which implies they are also square summable. Similarly for any AR(p) the
condition

∑p
j=1 |φj | < 1 is sufficient for stationary.

Still about the AR(2) we can write

Φ(z) = 1− φ1z − φ2z2 = (1− β1z)(1− β2z) = 1− (β1 + β2)z + β1β2z
2

which shows that φ1 = β1 + β2 and φ2 = −β1β2 and therefore we have the necessary conditions
for stationarity and causality |φ2| ≤ |β1| |β2| < 1. Moreover, consider the reciprocal of the
characteristic polynomial in this case,

Φ∗(z) = z2Φ(z) = z2 − φ1z − φ2

then the solutions are

z1,2 =
φ1 ±

√
φ21 + 4φ2
2

Now if the roots are real φ21 + 4φ2 ≥ 0 and to have stationarity we must have

z1 =
φ1 +

√
φ21 + 4φ2
2

< 1⇒ φ1 + φ2 < 1

z2 =
φ1 −

√
φ21 + 4φ2
2

> −1⇒ φ2 − φ1 < 1

which are other two necessary conditions for stationarity.22

4.2.2 Autocovariance function

The autocovariance function of an AR(p) process can be obtained similarly to the AR(1) case.
Assume that p = 2:

xt = φ1xt−1 + φ2xt−2 + ut, ut ∼ wn(0, σ2u), (12)
22If the roots are complex then z1 = z̄2 and we must have

|z1|2 = z1z̄1 =
φ1 + i

√
φ2
1 + 4φ2

2

φ1 − i
√
φ2
1 + 4φ2

2
=
φ2
1

2
+ φ2 < 1
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or
xt = ut + ψ1ut−1 + ψ2ut−2 + . . . , ut ∼ wn(0, σ2u). (13)

Multiplying both sides of (12) by xt−h = ut−h +ψ1ut−h−1 + . . ., for h ≥ 1, taking expectations,
using (13) and the fact that ut is a white noise (thus E[utxt−h] = 0 for h ≥ 1), we obtain

γxh = φ1γ
x
h−1 + φ2γ

x
h−2

which are the Yule-Walker equations and look like (12). The first two equations, for h = 1 and
h = 2, are

γx1 = φ1γ
x
0 + φ2γ

x
−1 = φ1γ

x
0 + φ2γ

x
1

γx2 = φ1γ
x
1 + φ2γ

x
0

Moreover, multiplying both sides of (12) by xt, taking expectations, and using (13), we have (we
have E[utxt] = σ2u)

γx0 = φ1γ
x
1 + φ2γ

x
2 + σ2u

Then we have a system of three equations and three unknowns which can be used to determine
γx0 , γ

x
1 , γ

x
2 (see next Chapter). We can also continue to compute acvs for h ≥ 3:

γx3 = φ1γ
x
2 + φ2γ

x
1

and so on.

For an AR(1) we have (see Chapter 2)

γx0 = φ1γ
x
1 + σ2u

γx1 = φ1γ
x
0

γxh = φh1γ
x
0

which gives

γx0 =
σ2u

1− φ21
, γxh =

φh1σ
2
u

1− φ21
which shows that the acvs decay exponentially. This is always the case even when we have an
AR(p). Compare it with the acvs of an MA(q) which is exactly zero at lags |h| > q.

There is an easy way to compute acvs of stationary AR processes. Let’s consider an example
with an AR(2). Consider

xt = 1.3xt−1 − 0.4xt−2 + ut

which in L notation is
(1− 1.3L+ 0.4L2)xt = ut

the roots of the polynomial are both outside the unite circle and are equal to z = 2 and z = 5/4
(see example 2 at the end of next section) and we can factorize it as

(1− 1.3L+ 0.4L2)xt =

(
1− L

2

)(
1− 4

5
L

)
xt = ut

and we can invert to write
xt =

1(
1− L

2

) (
1− 4

5L
)ut
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which gives

xt =

( ∞∑
k=0

Lk

2k

)( ∞∑
k=0

4k

5k
Lk

)
ut

Collecting the terms, we get

xt =

(
1 +

13

10
L+

129

100
L2 + . . .

)
ut

= ut +
13

10
ut−1 +

129

100
ut−2 + . . .

Truncating this expansion at a sufficiently large lag, we then proceed in the same way as in calcu-
lating the acvs of an MA process.

4.3 The ARMA(p, q) process

Let

Φ(L) = 1− φ1L− φ2L2 − . . .− φpLp

Θ(L) = 1 + θ1L+ θ2L
2 + . . .+ θqL

q

then an ARMA(p, q) process has realisations such that

Φ(L)xt = Θ(L)ut, ut ∼ w.n.(0, σ2u).

We assume without loss of generality that the polynomials Φ(z) and Θ(z) have no common
roots.23

Moreover, if Φ(z) has no roots inside the unit circle, we know that we can invert the AR
polynomial

xt = Φ(L)−1Θ(L)ut =
[
Φ(L)−1 + θ1Φ(L)−1L+ θ2Φ(L)−1L2 + . . .+ θqΦ(L)−1Lq

]
ut

which is MA of infinite order since in general Φ(L)−1 has an infinite order (cfr with the AR(p)
case). Thus, we have a MA representation which is stationary when the AR polynomial has no
roots inside the unit circle, which is then the condition also for stationarity and causality, we then
say that the ARMA is causal. With this definition it should be clear that E[Xt] = 0. If instead
E[Xt] = µ then we write

xt = Φ(L)−1Θ(L)ut + µ.

Everything we say about ARMA is for the zero mean case, otherwise everything hold for the
process {Xt − µ}.

Notice that no requirement is made for the roots of the MA polynomial. Take for example the
two models

xt = (1 + 0.5L)ut xt = (1 + 2L)ut

23Assume that there is a common root in say 1/δ, then we can write Φ(L) = (1 − δL)Φ∗(L) where Φ∗(L) has
degree p− 1, and similarly Θ(L) = (1− δL)Θ∗(L) where Θ∗(L) has degree q − 1. The ARMA model then reads

(1− δL)Φ∗(L)xt = (1− δL)Θ∗(L)ut

and the terms (1− δL) cancel out, so we in fact have an ARMA(p− 1, q − 1).
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These two polynomials have roots in -2 and -0.5 respectively, but both are stationary and we know
that have the same acvs. In general if all the roots of Θ(z) are outside the unit circle we say that
the MA satisfies the invertibility condition, i.e there exists the inverse polynomial Θ(z)−1 such
that

Θ(L)−1Φ(L)xt = ut

which is the infinite AR representation. We then say that the ARMA is invertible. To be more
precise we say that the MA is invertible in the past as the polynomial Θ(L) will have only positive
power of L. When the roots of Θ(z) are inside the unit circle an inverse exists but will involve
negative powers of L thus we have invertibility but in the future a case which we will not consider
as we usually do not consider stationary but non-causal processes. When Θ(z) has a root on the
unit circle the MA is never invertible.

Summing up we have the following.

AR(p) MA(q) ARMA(p, q)

Stationarity roots of Φ(z) always roots of Φ(z)
and causality outside |z| ≤ 1 outside |z| ≤ 1

Invertibility always roots of Θ(z) roots of Θ(z)
in the past outside |z| ≤ 1 outside |z| ≤ 1

Why are stationarity and invertibility desirable?

1. Stationarity — because it assumes that the joint distribution of xt (or second–order prop-
erties) does not change over time. Therefore, we can average over time to obtain better
estimates of the characteristics of the process.

2. Invertibility — because it permits us to represent our process as AR, and AR processes are
often “easy” to estimate and forecast.

From the ARMA(p, q) if it is causal we can write

xt = Φ(L)−1Θ(L)ut = Ψ(L)ut, ut ∼ wn(0, σ2u), (14)

where Ψ(L) =
∑∞

j=0 ψjL
j and it can be proved that since the ARMA is causal then

∑∞
j=0 |ψj | <

∞. This is because the coefficients have a geometric decrease (think of the AR(1) case where
ψj = φj1 and see also the ARMA(1,1) below). Moreover, if the ARMA is invertible then ut is the
innovation of {Xt} and the MA(∞) is the Wold decomposition of an ARMA.

The coefficients ψj can be computed as follows. Start from Ψ(z) = Φ(z)−1Θ(z) then

(1− φ1z − . . .− φpzp)(ψ0 + ψ1z + . . .) = (1 + θ1z + . . .+ θqz
q)
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which shows that

1 = ψ0

θ1 = ψ1 − ψ0φ1

θ2 = ψ2 − ψ1φ1 − ψ0φ2

. . .

or equivalently

θj = ψj −
p∑

k=1

φkψj−k j = 0, 1, . . .

where θ0 = 1, θj = 0 if j > q and ψj = 0 if j < 0. Thus, we have written a causal ARMA(p, q)
as an MA(∞).

For an ARMA(1,1) we have

(1− φ1z)(ψ0 + ψ1z + . . .) = (1 + θ1z)

which shows that24

ψ0 = 1

ψ1 = φ1 + θ1

ψ2 = (φ1 + θ1)φ1

. . .

ψj = (φ1 + θ1)φ
j−1
1

(15)

which implies

xt = ut + (φ1 + θ1)

∞∑
j=1

φj−11 ut−j (16)

In this case causality implies |φ1| < 1 and therefore
∑∞

j=0 |ψj | <∞.

Below are some examples to study invertibility and stationarity of ARMA

1. Consider the following process

xt = ut − 1.3ut−1 + 0.4ut−2

this is an MA(2) thus it is stationary. Writing this in L notation:

xt = (1− 1.3L+ 0.4L2)ut = Θ(L)ut

to check if invertible, find roots of Θ(z) = 1− 1.3z + 0.4z2,

1− 1.3z + 0.4z2 = 0

4z2 − 13z + 10 = 0

(4z − 5)(z − 2) = 0

24Use the fact that (1− φ1z)
−1 = 1 + φ1z + φ2

1z
2 + . . .
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the roots of Θ(z) are z = 2 and z = 5/4, which are both outside the unit circle hence the
process is invertible.25

2. Determine whether the following model is stationary and/or invertible,

xt = 1.3xt−1 − 0.4xt−2 + ut − 1.5ut−1.

Writing in L notation

(1− 1.3L+ 0.4L2)xt = (1− 1.5L)ut

we have
Φ(z) = 1− 1.3z + 0.4z2

with roots z = 2 and 5/4 (from previous example), so the roots of Φ(z) = 0 both lie outside
the unit circle, therefore model is stationary, and

Θ(z) = 1− 1.5z = 1− 3

2
z,

so the root of Θ(z) = 0 is given by z = 2/3 which lies inside the unit circle and the model
is not invertible (at least in the past). Notice that there is an inverse of Θ(z) also in this case

Θ(z)−1 =
1

1− 3
2z

=
−2

3z
−1

1− 2
3z
−1 = −2

3
z−1

(
1 +

2

3
z−1 +

(
2

3

)2

z−2 + . . .

)

and when applied to xt (assume for simplicity that the AR part is not present) we have
(substitute z with L)

Θ(L)−1xt = −2

3
L−1

(
1 +

2

3
L−1 +

(
2

3

)2

L−2 + . . .

)
xt = −2

3

(
xt+1 +

2

3
xt+2 +

(
2

3

)2

xt+3 + . . .

)

the inverse of an MA exists but requires future values of xt.

4.3.1 Autocovariance function

The following are three ways of computing acvs of an ARMA(p, q).

1. Start from the MA(∞) representation (14). Then, using the formula for acvs of MA we have

γxh = E[Xt+hXt] = σ2u

∞∑
j=0

ψjψj+|h|

Consider an ARMA(1,1)

xt − φ1xt−1 = ut + θ1ut−1, ut ∼ wn(0, σ2u),

25The roots of a polynomial of order 2 as az2 + bz + c are given by

z =
−b±

√
b2 − 4ac

2a
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with |φ1| < 1. Then, using (16),

γx0 = σ2u

∞∑
j=0

ψ2
j

= σ2u

1 +

∞∑
j=1

[
(φ1 + θ1)φ

j−1
1

]2
= σ2u

1 + (φ1 + θ1)
2
∞∑
j=1

φ2j−21


= σ2u

1 + (φ1 + θ1)
2
∞∑
j=0

φ2j1


= σ2u

{
1 +

(φ1 + θ1)
2

1− φ21

}

γx1 = σ2u

∞∑
j=0

ψjψj+1

= σ2u

ψ1 +
∞∑
j=1

ψjψj+1


= σ2u

φ1 + θ1 +
∞∑
j=1

(φ1 + θ1)
2φj−11 φj1


= σ2u

{
φ1 + θ1 + (φ1 + θ1)

2(φ1 + φ1φ
2
1 + φ21φ

3
1 + . . .)

}
= σ2u

φ1 + θ1 + (φ1 + θ1)
2φ1

∞∑
j=0

φ2j1


= σ2u

{
φ1 + θ1 +

(φ1 + θ1)
2φ1

1− φ21

}
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γx2 = σ2u

∞∑
j=0

ψjψj+2

= σ2u

ψ2 +
∞∑
j=1

ψjψj+2


= σ2u

(φ1 + θ1)φ1 +
∞∑
j=1

(φ1 + θ1)
2φj+1

1 φj1


= σ2u

{
(φ1 + θ1)φ1 + (φ1 + θ1)

2(φ21φ1 + φ31φ
2
1 + φ41φ

3
1 + . . .)

}
= σ2u

(φ1 + θ1)φ1 + (φ1 + θ1)
2φ21

∞∑
j=0

φ2j1


= σ2u

{
(φ1 + θ1)φ1 +

(φ1 + θ1)
2φ21

1− φ21

}
= φ1γ

x
1

and in general γxh = φh−11 γx1 for h ≥ 2.

2. Multiply each side of the ARMA equation by xt−h and take expectations. For an ARMA(1,1)
we have

E[xt−h(xt − φ1xt−1)] = E[xt−h(ut + θ1ut−1)]

which implies

γx0 − φ1γx1 = E[Ψ(L)ut(ut + θ1ut−1)]

= E[(ut + ψ1ut−1 + . . .)(ut + θ1ut−1)]

= σ2u + σ2uψ1θ1

= σ2u(1 + (θ1 + φ1)θ1)

and

γx1 − φ1γx0 = E[Ψ(L)ut−1(ut + θ1ut−1)]

= E[(ut−1 + ψ1ut−2 + . . .)(ut + θ1ut−1)]

= σ2uθ1

The previous expression are found using these two relations.

Consider as an example the ARMA(2,1)

xt = φxt−2 + θut−1 + ut, ut ∼ w.n.(0, σ2)

Then we can compute the acvs by multiplying each side of the ARMA equation by xt−h
and taking expectations. Notice that

E[xtut] = σ2, E[xtut−1] = θσ2, E[xt−hut] = 0 for h 6= 0.

Therefore we have the equations

E[xtxt] = γ0 = φγ2 + θ2σ2 + σ2

E[xtxt−1] = γ1 = φγ1 + θσ2

E[xtxt−2] = γ2 = φγ0

E[xtxt−3] = γ3 = φγ1
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Then by using the first three equations we obtain

γ0 = σ2
1 + θ2

1− φ2

γ1 = σ2
θσ2

1− φ
γ2 = φγ0,

and the acs are ρ0 = 1, ρ1 = θ(1+φ)
1+θ2

, ρ2 = φ, and ρ3 = φρ1 and so on.

3. The third way uses the roots of the AR polynomial. Let us consider the example with AR(2)
before and let’s add also an invertible MA component

xt = 1.3xt−1 − 0.4xt−2 + ut − 0.25ut−1.

The AR part is stationary with roots in z = 2 and z = 5/4 and the MA part is invertible
with root in z = 4 then

xt =

(
1− L

4

)(
1− L

2

) (
1− 4

5L
)ut

and using Taylor expansion and collecting terms we have

xt =

(
1 +

13

10
L+

129

100
L2 + . . .

)(
1− L

4

)
ut

=

[
1 +

(
13

10
− 1

4

)
L+

(
129

100
− 13

40
L2 + . . .

)]
ut

Truncating this expansion at a sufficiently large lag, we then proceed in the same way as in
calculating the acvs of an MA process.

4.4 Partial autocorrelation

In the section on MA processes, we saw that the acvs sequence cuts off after some lag h. Also, we
saw that for an AR(1) process, it never cut off to zero, but decayed exponentially. The same result
can be proved for a general AR process. For purposes of model identification, it would be useful
to have a quantity which did cut off to zero for a general autoregressive process AR(p). One such
quantity is the partial autocorrelation function (or sequence), pacf. For a process xt, it is defined
by

πx1 = Corr(X2, X1)

πx2 = Corr(X3 − E[X3|X2], X1 − E[X1|X2])

πx3 = Corr(X4 − E[X4|X3, X2], X1 − E[X1|X3, X2])

. . .

The interpretation is that E[X4|X3, X2] is the part of X4 that is explained by X3, X2 (or more
formally, it is the prediction of X4 based on X3, X2). Thus X4 − E[X4|X3, X2] is the part of X4

that is unexplained (un–predicted) by X2, X3. Thus the partial autocorrelation at lag h

πxh = Corr(Xt+h−E[Xt+h|Xt+h−1, Xt+h−2, . . . , Xt+1], Xt−E[Xt|Xt+h−1, Xt+h−2, . . . , Xt+1])

is the correlation of those portions of Xt, Xt+h which are unexplained by the intermediate vari-
ables Xt+1, . . . , Xt+h−1.
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In a non time series setting, a partial correlation can be seen in a linear regression framework.
Assume to have n random variables variables X1 . . . Xn all with the same variance and zero mean
and to have m observations for each. Consider the regression

x1i = β2x2i + β3x3i + . . .+ βnxni + v1i, i = 1, . . . ,m

where we also assume conditional mean independence E[v1|Xk] = 0 for k 6= 1. Then the partial
correlation ofX1 withXn given all the other variables is βn. Indeed, take the case n = 3, we have

X1 − E[X1|X2] = X1 − β2X2 − β3E[X3|X2] = β3(X3 − E[X3|X2]) + v1,

then using the fact that E[v1|X2] = E[v1|X3] = 0, the partial correlation of X1 with X3 is given
by

Corr(X1 − E[X1|X2], X3 − E[X3|X2]) = β3Corr(X3 − E[X3|X2], X3 − E[X3|X2]) = β3.

In a time series the pacf sequence is defined as πx0 = 1 and πxh = φhh, for h ≥ 1, where φhh
is the last coefficient in the regression

xt = φh1xt−1 + φh2xt−2 + . . .+ φhhxt−h + et. (17)

Therefore, for an AR(p)

xt = φ1xt−1 + . . .+ φpxt−p + ut, ut ∼ w.n.(0, σ2u),

from (19) we have πxp = φp. And we immediately see that for h > p the pacf is πxh = 0. However,
at lags h < p in general πph 6= φh. If however, the u’s are i.i.d. Gaussian, then it can be shown that
πxh = φh for any h ≤ p.

Usually in AR(p) models we say that the error is white noise, therefore we always have
Cov(ut, Xt−h) = 0 for h > 0. However, in the above definition of pacf we are implicitly assuming
that for ARMA processes we have E[ut|Xt−1, Xt−2 . . .] = 0 which a stronger requirement than
no-correlation but weaker than independence. Intuitively this is a reasonable assumption since ut
is the innovation so it should not contain relevant information about xt (at least from a linear point
of view).

If the process is an MA or an ARMA and we want an analytical formula for the pacfs, it is not
an easy task in general. A simple case is an MA(1) for which we have

xt = ut + θxt−1, ut ∼ wn(0, σ2u),

we find

πxh =
−(−θ)h

1 + θ2 + . . .+ θ2h
.

See the next Chapter for a proof.

5 Estimation of ARMA processes

We have seen in Chapter 3 the sample acvs estimator. Now we will use these to estimate the
coefficients of a generic ARMA(p, q) model. Before however we focus on the AR(p) model which
is easier to estimate and general enough to cover most cases:

xt = φ1xt−1 + φ2xt−2 + . . .+ φpxt−p + ut, ut ∼ wn(0, σ2u)
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It is possible to prove using spectral theory that any time series sufficiently regular can be approx-
imated well by an AR(p) model if p is large enough. Later we use the estimator of an AR as a
pre-estimator for an ARMA.

We always suppose that E[Xt] = 0 unless stated otherwise. If E[Xt] = µ 6= 0 then everything
that follows applies to {Xt−µ} or if we deal with estimated quantities estimation must be applied
to {Xt − x̄} where x̄ is the sample mean studied in Chapter 3.

We also assume to observe a time series for T periods thus we observe (x1, x2, . . . , xT ).

5.1 Yule Walker estimator

We start by multiplying the defining equation of an AR(p) by xt−h

xtxt−h =

p∑
j=1

φjxt−jxt−h + utxt−h

Taking expectations, for h > 0 and recalling E[utXt−h] = 0:

γxh =

p∑
j=1

φjγ
x
h−j

Let h = 1, 2, . . . , p and remember that γx−h = γxh then

γx1 = φ1γ
x
0 + φ2γ

x
1 + . . .+ φpγ

x
p−1

γx2 = φ1γ
x
1 + φ2γ

x
0 + . . .+ φpγ

x
p−2

...

γxp = φ1γ
x
p−1 + φ2γ

x
p−2 + . . .+ φpγ

x
0

these are the Yule Walker equations and in matrix notation they read

γxp = Γxpφ

where γxp = (γx1 γ
x
2 . . . γ

x
p )′, φ = (φ1 φ2 . . . φp)

′ and

Γxp =


γx0 γx1 . . . γxp−1
γx1 γx0 . . . γxp−2
...

...
. . .

...
γxp−1 γxp−2 . . . γx0


Notice that this is a symmetric Toeplitz matrix which we have met already (see Chapter 2). All
elements on a given diagonal are the same.

Given that xt has zero mean we have the estimated acvs, for h = 0, 1, . . . , p

γ̂xh =
1

T

T−|h|∑
t=1

xtxt+|h| (18)

and substitute these for the γxh , γxp and Γxp to obtain γ̂xp and Γ̂xp from which we estimate φ as

φ̂ =
(
Γ̂xp

)−1
γ̂xp
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Notice that existence of the inverse matrix is crucial therefore we must define an estimator of acvs
such that Γ̂xp is positive definite, which is indeed the case for the one used here (see the discussion
in Chapter 3). If we estimate the Yule Walker equations for any time series and we truncate at
lag h we are actually estimating the pacf at lag h (see Chapter 4). So in the AR(p) case we have
φ̂p = π̂xp .

We have the following central limit theorem for φ̂
√
T (φ̂− φ)

d→ N(0, σ2u(Γxp)−1), as T →∞.

So for example, for an AR(1) we have just one parameter and
√
T (φ̂1 − φ1)

d→ N(0, σ2u(γx0 )−1), as T →∞,

which gives the asymptotic variance of φ̂1 as

AVar(φ̂1) =
σ2u(γx0 )−1

T
=
σ2u(1− φ21)

σ2uT
=

(1− φ21)
T

.

A 95% confidence interval for the AR(1) parameter is then given by

φ̂1 ± 1.96

√
(1− φ21)

T
.

In general, however, in order to compute confidence intervals we then need to estimate the asymp-
totic variance in particular (Γxp)−1 (see (18) above) and the variance of the innovations σ2u. To
estimate the latter, we multiply the defining equation by xt and take expectations to obtain

γx0 =

p∑
j=1

φjγ
x
j + E[utXt] =

p∑
j=1

φjγ
x
j + σ2u

so that as an estimator for σ2u we take

σ̂2u = γ̂x0 −
p∑
j=1

φ̂j γ̂
x
j

The estimators φ̂ and σ̂2u are called Yule Walker estimators.26

5.1.1 Yule Walker estimator for partial autocorrelation functions

From the previous Chapter we know that, for a stationary process, given the linear predictor

xt = φh1xt−1 + φh2xt−2 + . . .+ φhhxt−h + et, (19)

the partial autocorrelation at lag h is πxh = φhh. Since (19) looks like an AR(h) model it can be
estimated by solving the Yule Walker equations up to lag h to get the estimated φ̂hh which is the
last entry of the vector φ̂h solution of the equation

φ̂h =
(
Γ̂xh

)−1
γ̂xh . (20)

Thus once we estimate an AR(p) via Yule Waker equations the last estimated coefficient is also the
lag p estimated pacf: π̂xp = φ̂p. However, unless xt is Gaussian, at lags h < p in general πxh 6= φh
and we have to solve (20) for every lag.27

26Alternative methods to estimate the coefficients of an AR are given by the Durbin Levinson algorithm which is a
recursion bypassing the inversion of a Toeplitz matrix and the Burg algorithm which estimates the pacf from which the
AR coefficients can be computed (see below).

27For pacf sometimes the equation (20) is written using acs, i.e. by multiplying and dividing the right hand side by
the variance γx

0 .
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If we have to estimate pacf for a generic ARMA, we still have to solve equation (20) for any
h using the acvs of the process written as functions of the parameters of the model and then we
express the solutions, i.e. the pacf, as function of the parameters. Given estimates of the ARMA
coefficients (obtained using the methods outlined below), we have estimates of the pacf. In the
last Chapter we saw a formula for the MA(1) case. As an example let us compute the pacf of an
MA(1) at lag 3. We have γx0 = σ2u(1 + θ2) and γ1 = σ2uθ. Then we have to solve (no need to
invert the matrix)

Γx3φ3 = γx3

which is equivalent to

σ2u

 1 + θ2 θ 0
θ 1 + θ2 θ
0 θ 1 + θ2

 φ31
φ32
φ33

 = σ2u

 θ
0
0


this is a system of three equations with three unknowns and by solving it we get

πx3 = φ33 =
θ

1 + θ2 + θ4 + θ6

But notice that for the pacf at lag 2 πx2 6= φ32 and we have to solve another system of equations.

5.2 Least Squares estimator

Start from the defining equation

xt = φ1xt−1 + φ2xt−2 + . . .+ φpxt−p + ut, ut ∼ wn(0, σ2u)

then we can formulate an appropriate least squares model in terms of data x1, x2, . . . , xT as fol-
lows:

x = Fφ+ u,

where x = (xp+1 xp+2 . . . xT )′, φ = (φ1 φ2 . . . φp)
′, u = (up+1 up+2 . . . uT )′ and

F =


xp xp−1 . . . x1
xp+1 xp . . . x2

...
...

. . .
...

xT−1 xT−2 . . . xT−p


which is a (T − p)× p matrix, thus we use T − p observations and p regressors, so once again we
need p << T . Notice that if E[Xt] = µ 6= 0 we have to add a constant to the regression, thus we
add one parameter and a regressor equal to 1, i.e. we add a column of ones to the matrix F.

We can then estimate φ by finding that φ such that it minimises (least squares estimation)

SS(φ) =

T∑
t=p+1

xt − p∑
j=1

φjxt−j

2

= (x− Fφ)′(x− Fφ).

Notice that SS(φ) =
∑T

t=p+1 u
2
t is the sum of squared residuals. If we denote the vector that

minimizes SS(φ) as φ̂, standard least squares theory tells us that it is given by

φ̂ =
(
F′F

)−1
F′x.
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As an example in the AR(1) case, i.e. p = 1, if we make explicit the matrix products above
we have

φ̂1 =

(
T∑
t=2

x2t−1

)−1( T∑
t=2

xt−1xt

)
and by rewriting as

φ̂1 =

(
1

T

T∑
t=2

x2t−1

)−1(
1

T

T∑
t=2

xt−1xt

)
=
γ̂x1
γ̂x0

so once again to compute estimators we need to estimate acvs. We also see that as T →∞ by the
Law of Large Numbers we have

φ̂1
p→ γx1
γx0
.

Notice however that φ̂1 is biased. Indeed,

φ̂1 =

(
1

T

T∑
t=2

x2t−1

)−1(
1

T

T∑
t=2

xt−1xt

)
=

(
1

T

T∑
t=2

x2t−1

)−1(
1

T

T∑
t=2

xt−1(φ1xt−1 + ut)

)

= φ1 +

(
1

T

T∑
t=2

x2t−1

)−1(
1

T

T∑
t=2

xt−1ut

)

= φ1 +

T∑
t=2

xt−1∑T
t=2 x

2
t−1

ut.

Now, while ut is not correlated to xt−1 because it is a white noise and therefore E[xt−1ut] = 0,
in general ut is not uncorrelated with

∑T
t=2 x

2
t−1 since this term contains (x1 . . . xT−1) which is

correlated with ut for t = 2, . . . , T .28 Indeed, if φ1 is positive, then a positive shock to ut raises
current and future values of xt , all of which are in the

∑T
t=2 x

2
t−1. This means there is a negative

correlation between ut and
∑T

t=2
xt−1∑T
t=2 x

2
t−1

so E[φ̂1] < φ1.

The estimated coefficients are also asymptotically normal, and in order to show this we need to
use a particular Central Limit Theorem for martingale difference sequences and we must assume
that ut is a martingale difference sequence: E[ut|xt−1, xt−2, . . .] = 0.29 For example, in the AR(1)
case zt = utxt−1 is such that

E[zt|xt−1] = E[utxt−1|xt−1] = xt−1E[ut|xt−1] = 0.

Then, it is possible to prove that

1

T

T∑
t=2

x2t−1
p→ E[x2t−1] = Ω, as T →∞,

28For proving unbiasedness we should compute

E[φ̂1 − φ1] = E

[
T∑

t=2

xt−1∑T
t=2 x

2
t−1

ut

]
= E

[
T∑

t=2

E

[
xt−1∑T
t=2 x

2
t−1

ut

∣∣∣∣∣xT−1 . . . x1

]]

= E

[
T∑

t=2

xt−1E[ut|xT−1 . . . x1]∑T
t=2 x

2
t−1

]
6= 0 (21)

since E[ut|xT−1 . . . x1] 6= 0 in an AR model. To have the condition E[ut|xT−1 . . . x1] = 0 we would need strong
exogeneity of the regressors, which is impossible in time series. Notice that strong exogeneity is stronger than asking
for the martingale difference property E[ut|xt−1 . . . x1] = 0 which is called weak exogeneity and could be assumed.

29If this is true then we are actually estimating the conditional mean of xt as E[xt|xt−1] = φ1xt−1.
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because xt is ergodic since its MA(∞) representation has summable coefficients, and that

1√
T

T∑
t=2

xt−1ut
p→ N(0, V ) as T →∞,

with V = E[x2t−1u
2
t ], because of a Central Limit Theorem for martingale difference sequences

and since
1

T

T∑
t=2

xt−1ut
p→ 0, as T →∞,

again because of ergodicity and since E[xt−1ut] = 0. For these results we also need E[x4t ] < ∞
to use the ergodic theorem for the squares.

Therefore, √
T (φ̂1 − φ1)

d→ N(0,Ω−2V ), as T →∞,

by Slutsky’s theorem.30 Consistency follows since for any Z ∼ N(0, 1), we can apply Slutsky’s
theorem again and

(φ̂1 − φ1) =
1√

TΩ−2V

√
TΩ−2V (φ̂1 − φ1)

d→ lim
T→∞

1√
TΩ−2V

Z = 0,

and convergence in distribution to a point is equivalent to convergence in probability.

Moreover, if we also assume independence of ut and xt−1 then V = E[x2t−1u
2
t ] = E[x2t−1]E[u2t ] =

Ωσ2 and we have that the asymptotic variance is the usual Gauss-Markov lower bound found in
OLS, i.e. AVar(φ̂1) = σ2u/(ΩT ). Everything can be generalised to an AR(p).

Summing up, the OLS estimator of AR models is biased, but consistent, is asymptotically
normal only if the errors are a martingale difference sequence and is efficient (lowest possible
variance) if the errors are an independent sequence. We can estimate σ2u using the sample variance
of the residuals of the regression

σ̂2u =
(x− Fφ̂)′(x− Fφ̂)

T − 2p
=

u′u

T − 2p
=

1

T − 2p

T∑
t=p+1

û2t ,

where for t = p+ 1, . . . , T the residuals are given by

ût = xt − φ̂1xt−1 − φ̂2xt−2 − . . .− φ̂pxt−p.

Notice the degrees of freedom correction at the denominator which is given by the number of
observations T − p minus the number of estimated parameters p. However, as T → ∞ also
dividing by T yields consistency.

The estimator of φ obtained by Least Squares is the Maximum Likelihood estimator of an
AR(p) process when the innovations ut are Normally distributed.

If we have an ARMA process the Least Squares estimator can still be used if we have a
preliminary estimate of the innovations. The following is the Hannan Rissanen algorithm for
estimating an ARMA(p, q) by Least Squares.

1. Fit a high order AR(m) with m > max(p, q) using Yule Walker method and obtain the
estimated vector φ̂m = (φ̂1m . . . φ̂mm)′.

30If Xn
d→ X and Yn

p→ a as n→∞ then XnYn
d→ aX .
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2. Compute the residuals of the AR(m) model estimated

v̂t = xt − φ̂1mxt−1 − . . .− φ̂mmxt−m, t = m+ 1, . . . , T.

3. The vector of all parameters of the ARMA(p, q) is estimated by Least Squares regression

xt = φ1xt−1 + . . .+ φpxt−p + θ1v̂t−1 + . . .+ θqv̂t−q + ut

this is done in the way described above but now we have p + q regressors. Call these
parameters (φ̂, θ̂).

4. The residuals of the regression are

ût = xt − φ̂1xt−1 − . . .− φ̂pxt−p − θ̂1v̂t−1 − . . .− θ̂qv̂t−q

and their variance is estimated as

σ̂2u =
1

T −m− q

T∑
t=m+1+q

û2t .

Notice that it can shown that while for Yule-Walker the resulting estimated AR polynomial Φ̂(z)
with coefficients φ̂ is stable in the sense that all its roots are outside the unit circle, this is general
not guaranteed for OLS estimates. However the Yule-Walker estimator is also biased and typically
performs worse than the OLS.

5.3 Maximum Likelihood estimator

Consider an ARMA(p, q) model

Φ(L)xt = Θ(L)ut, ut ∼ wn(0, σ2u)

and suppose the vector xT = (x1 . . . xT )′ is a multivariate Gaussian vector with zero mean and
variance covariance matrix given by the Toepliz matrix ΓxT ≡ E[XTX′T ] which is T × T and
contain in each diagonal the same elements which are the acvs. If the data generating process is
an ARMA(p, q) then the matrix is function of the parameters φ = (φ1 . . . φp)

′, θ = (θ1 . . . θq)
′,

i.e.
ΓxT = ΓxT (φ,θ).

Under Gaussianity the likelihood of the data is

f(xT ;φ,θ, σ2u) =
1√

det(ΓxT (φ,θ))(2π)T/2
exp

[
−1

2
x′TΓxT (φ,θ)−1xT

]
.

Once a sample xT = (x1 . . . xT )′ is observed this function depends only on the parameters φ and
θ. Typically we work with the log-likelihood

LT (xT ;φ,θ, σ2u) = log f(xT ;φ,θ, σ2u) (22)

and the Maximum Likelihood estimator of the parameters is the value of the parameters that max-
imizes this function:

(φ̂, θ̂, σ̂2u) = arg maxLT (xT ;φ,θ, σ2u).

69



It can be proved that the estimator is consistent

(φ̂, θ̂)
p→ (φ,θ), as T →∞

and is asymptotically Normal
√
T
[
(φ̂, θ̂)− (φ,θ)

]
d→ N(0,Σ), as T →∞,

where the form of Σ is complex and depends on the derivatives of LT and on the parameters too.

Such maximisation is in general not easy (unless we have an AR model (q = 0) in which
case the solution is the Least Squares estimator). The first order conditions are non-linear in the
parameters and they have no analytical solutions. Second when T is large writing the T × T
matrix ΓxT as function of the parameters is not easy (and we need also its inverse an its determi-
nant). Moreover, the maximisation often depends on the starting values of the parameters used as
starting point for the maximisation algorithm. For this reason we need preliminary estimators of
the parameters. We have seen the Yule Walker as an example for φ (and we mentioned other).31

For the MA part there are also preliminary estimators which are given for example by the Innova-
tion algorithm which starts from the Wold representation of the process. Or the Hannan Rissanen
algorithm which provides preliminary estimates for all parameters.

Any preliminary estimator is in general less efficient than the Maximum Likelihood estimator,
therefore once we have an initial estimate of the parameters we can plug it into the maximisation
of the log-likelihood to obtain a more efficient estimator. Saying that an estimator is more efficient
means that its asymptotic variance is smaller.

The most efficient estimator is the Maximum Likelihood estimator if the data are Gaussian.
But if data are not Gaussian is Maximum Likelihood still a “good” estimator?

It can be proved that if xt is distributed according to a distribution of the Exponential family32

and the ARMA(p, q) is the true underlying model then the Maximum Likelihood estimator is still
consistent and asymptotically Normal, but it will have a larger variance, i.e. is no more the most
efficient estimator.

5.4 The relation between OLS and ML

For an AR(p) model there is a clear relation between OLS and ML estimation. This can be seen by
rewriting the likelhood of (x1 . . . xT ) as a product of conditional likelihoods, where at each point
in time we condition on the past:33

f(xT ) =

T∏
t=1

fXt|X1...Xt−1
(xt|x1, . . . , xt−1). (23)

31It can be generalised for ARMA models too as the Hannan Rissanen generalises the Least Squares procedure.
32Distributions of this family are the Gaussian, Exponential, Gamma, Chi-squared, and even Binomial or Poisson,

but for example the Student-t does not belong to this family.
33For a pdf of two random variables we have

fXY (x, y) = fY |X(y|x)fX(x) = fX|Y (x|y)fY (y)

and for three random variables we have

fXY Z(x, y, z) = fX|Y Z(x|y, z)fY Z(y, z) = fY |XZ(y|x, z)fXZ(x, z) = fZ|XY (z|x, y)fXY (x, y).
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Now for any ARMA model with errors that are also Gaussian we can write the linear prediction
equation as (see Chapter 3)

xt = Pt−1xt + et = E[xt|xt−1 . . . x1] + et

therefore the conditional distribution of xt given (x1 . . . xt−1) is the same as the distribution of
the one-step-ahead prediction error et (notice that due to Gaussianity et do not depend on the past
values and therefore we can use their unconditional distribution). In particular, for an AR(p) we
have

xt = c+ φ1xt−1 + . . .+ φpxt−p + ut,

where we assume ut to be a Gaussian zero mean white noise with variance σ2u, then

xt|x1 . . . xt−1 ∼ N(c+ φ1xt−1 + . . .+ φpxt−p, σ
2
u).

Notice that actually the conditioning set is just given by xt−p . . . xt−1. Now consider an AR(1),
then the parameters are c, φ1 and σ2u. Using (23) we can write the joint log-likelihood (22) as

LT (xT ; c, φ1, σ
2
u) = log fX1(x1) +

T∑
t=2

log fXt|Xt−1
(xt|xt−1)

= log fX1(x1) +
T∑
t=1

log fut(ut)

= log fX1(x1)−
1

2

T∑
t=1

[
log(2π) + log σ2u +

(xt − c− φ1xt−1)2

σ2u

]

= log fX1(x1)−
1

2

T∑
t=1

[
log(2π) + log σ2u +

u2t
σ2u

]
.

Notice that we cannot write the first term as function of X0 since we don’t have any realisation at
t = 0. If the first term were zero then the above would be a Gaussian log-likelihood for a linear
model with dependent variable xt and explanatory variable xt−1 plus an intercept and residual
ut. We know that for those models the ML estimator coincides with the OLS, therefore we could
simply use OLS to estimate the parameters if it were not for the first term. However, for large T the
weight of the first term become negligible. Then OLS estimates tend to ML estimates as T →∞
and they inherit the asymptotic properties.34 The same reasoning applies for AR(p) models where
the first term will be log fX1...Xp(x1 . . . xp).

If we have an invertible MA process we still know that the white noise leading the model ut
can be expressed as xt − Pt−1xt, i.e. it is also the one-step-ahead prediction error. Thus if we
assume that xt|x1 . . . xt−1 has a Gaussian distribution, then at each point in time we can compute
the prediction of xt given its past and compute the prediction error as ut = xt − Pt−1xt given
by the model (see also next Chapter for forecasting MA models). Then the log-likelihood can be
written using the sequence of prediction errors computed in this way.

5.5 Order selection

Once we have transformed a given process to a stationary one, how do we determine the AR and
MA orders?

34Moreover, if ut is a martingale difference sequence, the OLS estimator is consistent even if the residual ut is not
Gaussian and in this case it is not correct to see the OLS as asymptotically equivalent to the Gaussian ML estimator.
We can of course specify other distributions and the maximising the corresponding likelihood.
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It might seem that adding more lags can approximate better the AR(∞) or MA(∞) representa-
tions, thus reducing the variance of the white noise. However, the more parameters we include in
the model the more likely we are to make estimation errors. Moreover, we know that the number
of parameters p+ q must be smaller than the number of observations used which is T − p− q (cfr.
the linear regression case).

There are two main approaches.

1. Information criteria. The original one was proposed by Akaike. The basic idea is to compare
the true likelihood of the model (which is unknown) with the likelihood of the data. We
should use a the distance between these two distributions and minimise it. As a result we
have to select p and q such that they minimise the Akaike Information Criterion

AIC(p, q) = −2LT (xT ;φ,θ, σ2u) + 2(p+ q + 1) =

T∑
t=1

û2t + 2(p+ q + 1).

The first term decreases as p, q increase, but the second term is the one that avoids over-
parametrization as indeed it grows when p, q increase, for this reason this term is called
penalty. Alternatively we can minimise the Bayes (or Schwarz) Information Criterion

BIC(p, q) = −2LT (xT ;φ,θ, σ2u) + 2(p+ q + 1) log T =

T∑
t=1

û2t + 2(p+ q + 1) log T.

Thus for each choice of p and q we have to estimate the model, compute the log-likelihood
and then choose the couple (p, q) that minimises AIC or BIC. The BIC is a consistent cri-
terion in the sense that if the data were truly generated by an ARMA(p, q) the estimated
orders that minimise BIC will converge with probability 1 to the true orders as T →∞. On
the other hand minimising AIC for AR processes selects a model with the smallest one step
ahead prediction error among all possible AR models. In general BIC is more parsimonious
than AIC.

2. Box and Jenkins methodology. By inspection of the autocorrelation (acs) and partial auto-
correlation (pacs) we can make assumptions of the AR and MA orders. The acs of an MA(q)
is zero at lags h > q. For an AR(1) the acs is exponentially decreasing, but for an AR(p)
the acs decreases in a less regular way. However, the pacs of an AR(p) is zero at lags h > p.
With real data the acs and pacs will not become exactly zero but we can plot them together
with their confidence intervals (see Chapter 3 for acs). Approximately the 95% confidence
interval for acs and pacs is ±1.96/

√
T (cfr the acs plots in Chapter 2).

5.6 Diagnostics

The main steps of model building for a time series are four:

1. check for trends and seasonality and remove them by means of suitable differences;

2. model specification: formulate an ARMA(p, q) with suitable lags;

3. estimation: find values and standard errors for the parameters of the model;

4. checking: verify that the specified model provides an adequate description of the data.

The first three steps have been already considered. Here we focus on model checking or diagnostic
checking. This is done by analysing the residuals of an estimated ARMA(p, q).
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5.6.1 Residuals of an AR process

We know that from the Wold representation (which is an MA(∞)) we can always write an AR(∞)
model and that we can approximate it as an ARMA(p, q). Here we simplify the model to an
AR(p) as indeed AR models are the most useful for forecasting which is our ultimate aim. After
estimating an AR(p) (via Yule Walker or Least Squares) we can use the estimated parameters to
build the predicted value

x̂t = φ̂1xt−1 + φ̂2xt−2 + . . .+ φ̂pxt−p. (24)

We then define the residuals of the model as

ût = xt − (φ̂1xt−1 + φ̂2xt−2 + . . .+ φ̂pxt−p).

Using the notation of Chapter 3 we can write

x̂t = P̂ pt−1xt, ût = x̂t − P̂ pt−1xt,

where P̂ pt−1 is the estimated predictor (or projector) of xt when using estimated coefficients, p
lags, and data up to time t−1. In the same way we can write the innovations of the AR(p) process
as

ut = xt − (φ1xt−1 + φ2xt−2 + . . .+ φpxt−p) = xt − P pt−1xt.

Because of consistency of the estimated coefficients we have

E[(P̂ pt−1xt − P
p
t−1xt)

2]→ 0, T →∞

and therefore
P̂ pt−1xt

p→ P pt−1xt, T →∞.

If model (24) is well specified, the residuals ût should approximate the errors of an AR(p) which
by definition are white noise, or more rigorously we would like to have

E[(ût − ut)2]→ 0, T →∞.

This, is a goodness of fit measure which however we cannot compute since we do not know ut.
So a good measure is the Root Mean Squared Prediction Error (RMSPE)

RMSPE(p) =

√√√√ 1

T

T∑
t=p+1

û2t

which can be computed for any AR(p) model and the smaller it is the better is the fit of the model.
Notice however, that by definition the model with the largest p has the smallest RMSPE thus a
penalization as in the Information criteria above is necessary and this is the rationale behind those
criteria.

5.6.2 Testing for white noise

Depending on the hypothesis we made on ut before estimation, we might need to check for

1. uncorrelated residuals, if ut ∼ wn(0, σ2u);
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2. independent residuals, if ut ∼ iid(0, σ2u);

3. normality of residuals, if ut ∼ N(0, σ2u).

Notice that if 1 and 3 hold then 2 is automatically satisfied. For a general AR model to be correctly
specified 1 is enough, but if we are using Maximum Likelihood with a Gaussian distribution then
we might want to check also for 3. Here, we discuss only testing for white noise.

In order to test for white noise we can do three things.

1. Plot the residuals and check for outliers which deviate from a purely random behaviour (this
is done also in regression analysis);

2. Compute the sample acs of ût and verify that they are zero. We denote the acs as ρ̂ ûh . Here
we have the errors coming from the estimation of the model, i.e. of ût, and the estimation
of the acs that play an important role. Indeed, while the true acs of the true ARMA error
would be exactly zero, ρ̂ ûh is not exactly zero even if the model were correctly specified.
We then need to compute confidence intervals for ρ̂ ûh . A general rule (which is exact for
h > p where p is the AR order) is that the 95% confidence interval is given by ±1.96/

√
T .

Although for h < p the interval is smaller, it is often approximated using the same value. If
we find values of ρ̂ ûh which are outside the above interval then we reject at 5% level the null
hypothesis that the acs is zero and we say that the model is misspecified.35

3. We can also test for all acs being jointly zero up to a given lagK. This is done by computing
the portmanteau-test statistics

Q = T

K∑
h=1

(ρ̂ ûh )2

where we typically choose K between 15 and 30. If the model is correctly specified, i.e. all
acs are zero, then Q ∼ χ2

K−p. A corrected version for small T is the Ljung Box statistics

Q = T (T + 2)

K∑
h=1

(ρ̂ ûh )2

T − h
.

Another possible test is the one by Durbin and Watson

d =

∑T
t=2(ût − ût−1)2∑T

t=1 û
2
t

' 2(1− ρ̂ û1 )

which tests only for the first acs to be zero, and if this is the case we expect to have d ' 2.

5.6.3 Residuals and innovations

If we compare the above expression for the predicted value P̂ pt−1xt with the AR(∞) given for the
general linear predictor in Chapter 2 and we recall that if p is large enough the predictor with p
lags is a good approximation of the one with infinite lags, then

E[(P̂ pt−1xt − Pt−1xt)
2]→ 0, T, p→∞.

35Equivalently we reject the null hypothesis if {0} /∈ {ρ̂ û
h ± 1.96/

√
T}.
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and this implies that for p large enough ut is the innovation of xt which we denoted as et and the
residuals ût should approximate in mean square the innovations. Now from Chapter 3 we have

et = xt − Pt−1xt,

where et is the innovation of xt, which is the unpredictable part of xt and it is a white noise. Thus,
once again we would like to have the residuals ût to be white noise. That is to say that if the model
is correctly specified then the prediction of xt is the best we can do (among all linear models)
since what is left is a white noise, thus it is unpredictable as it contains no useful information
about future values of xt.

In general for ARMA a similar reasoning can be followed once we notice that ut is the inno-
vation of xt also in this case. Indeed, consider a stationary causal and invertible ARMA(p, q)

Φ(L)xt = Θ(L)ut, ut ∼ wn(0, σ2u)

then we can write it as MA(∞)

xt = Φ(L)−1Θ(L)ut = ut + ψ1ut−1 + ψ2ut−2 + . . .

so that xt is a linear combination of ut, ut−1, . . .. This implies that for k ≥ 1, E[utXt−k] = 0
because ut is a white noise. Under invertibility we have

ut = Θ(L)−1Φ(L)xt

so that ut is a linear combination of xt, xt−1, . . .. Thus both ut and its past and xt and its past are
in the same space. In that case the projection equation defined in Chapter 3 is

xt = Pt−1xt + et = [φ1xt−1 + . . .+ φpxt−p + θ1ut−1 + . . .+ θqut−q] + ut.

In conclusion, if the stationarity and invertibility conditions are satisfied, ut is the innovation of
the ARMA process as it is white noise and uncorrelated with all predictors.

6 Forecasting of ARMA processes

6.1 One-step-ahead forecast

In Chapter 3, we have seen the general definition of linear predictor Pt−1xt (now we set a0 = 0
for simplicity, i.e. E[Xt] = 0)

xt = a1xt−1 + . . .+ et = Pt−1xt + et (25)

where et is a zero mean white noise and it is called innovation of xt. If we forecast a series at time
T + 1 and we have just T observations we have the prediction equation

xT+1 = PTxT+1 + eT+1.

We have seen that for a stationary and invertible ARMA(p, q) process we have

xt = Pt−1xt + et = [φ1xt−1 + . . .+ φpxt−p + θ1ut−1 + . . .+ θqut−q] + ut,
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and then ut is the innovation of xt and we can write a forecast equation also in this case

xT+1 = PTxT+1︸ ︷︷ ︸
forecast

+ uT+1︸ ︷︷ ︸
forecast error

= φ1xT + . . .+φpxT−p+1 + θ1uT + . . .+ θquT−q+1 +uT+1, (26)

where we see that in practice only a finite number of lags p and q can be used as we must ensure
that T − p + 1 > 0 and T − q + 1 > 0 since we have a finite number of observations. The first
term on the right hand side of (26) is the one-step-ahead forecast and we denote it as

xT+1|T ≡ PTxT+1.

The second term on the right hand side of (26) is the one-step-ahead forecast error defined as

εT+1|T ≡ uT+1 = xT − PTxT+1,

which is a white noise process by construction. In other words the best linear predictor is such
that the one-step-ahead forecast error (or prediction error) is a white noise (see the derivation in
Chapter 3). Both for the forecast and its error we denote in the index the fact that they are obtained
when using information up to time T .

6.2 Two-step-ahead forecast

If in (26) we replace xT with its definition we have an equation for xT+1 given observations only
until T − 1:

xT+1 = φ1(φ1xT−1 + . . .+ φpxT−p + uT + θ1uT−1 + . . .+ θquT−q) + . . .+ φpxT−p+1

+θ1uT + . . .+ θquT−q+1 + uT+1

= (φ21 + φ2)xT−1 + . . . φ1φpxT−p + (φ1θ1 + θ2)uT−1 + . . .+ φ1θquT−q+1

+(uT+1 + (φ1 + θ1)uT ).

Since the forecast is made using only data until xT−1 the last term is the two-step-ahead forecast
error

εT+1|T−1 = uT+1 + (φ1 + θ1)uT .

By shifting one step ahead the previous two equations we get

εT+2|T = uT+2 + (φ1 + θ1)uT+1,

where it is clear that this part is unpredictable if we have observations only up to time T . We can
then write

xT+2 = xT+2|T + εT+2|T .

Notice that the two-step-ahead forecast error is no longer a white noise, indeed for example its lag
1 autocovariance is

E[εT+2|T εT+1|T ] = E[(uT+2 + (φ1 + θ1)uT+1)uT+1] = σ2u(φ1 + θ1).
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6.3 The h-step-ahead forecast

By iterating the previous reasoning we can compute a generic h-step-ahead forecast error defined
as εT+h|T and in general for the h-step-ahead case we have

xT+h = xT+h|T + εT+h|T .

How do we derive the properties of the forecast and the forecast error in this case?

Let us consider the MA(∞) representation, which is valid for a stationary and invertible
ARMA (it is the Wold representation in this case as there are no deterministic components)

xt =

∞∑
k=0

ψkut−k = Ψ(L)ut, ψ0 = 1.

Then,

xT+h =
∞∑
k=0

ψkuT+h−k = Ψ(L)uT+h. (27)

Now from (27) we have a decomposition of the observation at time T + h into an unpredictable
and a predictable part:

xT+h =

∞∑
k=0

ψkuT+h−k

=

h−1∑
k=0

ψkuT+h−k +

∞∑
k=h

ψkuT+h−k (28)

= εT+h|T + xT+h|T ,

where the first term on the right hand side is the h-step-ahead forecast error which is unpredictable
since it depends on observations at time after T and is not a white noise. The second term is
predictable as it depends only on information up to time T , this is the h-step-ahead forecast.

On the other hand, if we start from the AR(∞) representation (25), which in the case of a
stationary and invertible ARMA implies et ≡ ut, we have

xT+h|T =
∞∑
k=1

akxT−k+1. (29)

Therefore, from (27) and (29), the h-step-ahead forecast is given by

xT+h|T =

∞∑
k=1

akxT−k+1 =

∞∑
k=1

akΨ(L)uT−k+1 = A(L)Ψ(L)uT

= B(L)uT =

∞∑
j=0

bjuT−j , (30)

which shows again that the h-step-ahead forecast can be written as a MA(∞) using data only up
to time T . We now want to find the coefficients bj .
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As we have seen in Chapter 3, the best linear forecast is obtained by minimising the one-step-
ahead mean squared forecast error (the distance between the true value and the forecasted one).
Thus, following the same approach for the best linear h-step-ahead forecast, we have to minimise

E[(XT+h −XT+h|T )2] = E

(h−1∑
k=0

ψkuT+h−k +

∞∑
k=h

ψkuT+h−k −
∞∑
k=0

bkuT−k

)2


= E

h−1∑
k=0

ψkuT+h−k +
∞∑
j=0

(ψj+h − bj)uT−j

2
= σ2u

h−1∑
k=0

ψ2
k +

∞∑
j=0

(ψj+h − bj)2


where we used the fact that ut is a white noise. Notice that we are minimising the variance of the
forecast error. The first term is independent of the choice of the bj’s and the second term is clearly
minimised by choosing bj = ψj+h, j = 0, 1, 2, . . .. Therefore, from (30) by setting k = j+h, we
have that the forecast is

xT+h|T =
∞∑
j=0

bjuT−j =
∞∑
k=h

ψkuT+h−k =
∞∑
j=0

ψj+huT−j .

As a consequence the h-step-forecast error is

εT+h|T = xT+h − xT+h|T =

h−1∑
k=0

ψkuT+h−k,

and these are the same expressions derived in (28) for a stationary invertible ARMA. In other
words, given an ARMA the forecasts computed using the intuitive formulas (28) are such that
they minimise the variance of the forecast error.

6.4 Variance of the forecast error

Now, since E[εT+h|T ] = 0, the minimised mean squared h-step-ahead forecast error is the variance
of the h-step-ahead forecast error which we denote by σ2T+h|T . Indeed,

σ2T+h|T ≡ E[(XT+h −XT+h|T )2] = E[ε2T+h|T ] = σ2u

h−1∑
k=0

ψ2
k.

That is to say that computing the best linear forecast is equivalent to minimising the variance of the
forecast error. Of course there might be non-linear forecasts for which the variance of the forecast
error can be even smaller (see Section 6.6).

For example, when h = 1 we have bj = ψj+1 and the forecast is

xT+1|T = ψ1uT + ψ2uT−1 + . . .

while
xT+1 = ψ0uT+1 + ψ1uT + ψ2uT−1 + . . .
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and, since ψ0 = 1, the one-step-ahead forecast error is

εT+1|T = xT+1 − xT+1|T = ψ0uT+1 = uT+1,

as derived before and σ2T+1|T = Var(uT+1) = σ2u.

Recall that

xT+h =
h−1∑
k=0

ψkuT+h−k +
∞∑
k=h

ψkuT+h−k = εT+h|T + xT+h|T

and we see that as h→∞ the second term disappears while the first dominates. More rigorously,
since E[εT+h|TXT+h|T ] = 0 (because ut is white noise) we can write

E[X2
T+h] = E[X2

T+h|T ] + E[ε2T+h|T ]. (31)

By stationarity, the above result depends only on h (it holds for any t) and we can also write
(everything has zero mean)

Var(Xt) = Var(Xt+h|t) + Var(εt+h|t).

Then, as h→∞, we can prove two main results.

1. The variance of the forecast tends to zero, and therefore the forecast tends to the mean of
the process.

Indeed, from the definition of h-step-ahead forecast we have

Var(XT+h|T ) = E[X2
T+h|T ] = σ2u

∞∑
k=h

ψ2
k → 0, h→∞,

and since the mean of the forecast is zero we have also that (Chebychev inequality)

XT+h|T
p→ 0, h→∞,

i.e. in the long run the best prediction is the mean (which is zero in this case). If E[Xt] =

µ 6= 0, then we would have XT+h|T
p→ µ as h→∞.

2. The variance of the forecast error tends to the variance of the process which is its upper
bound.

Indeed, we have

σ2T+h|T ≡ E[ε2T+h|T ] = σ2u

h−1∑
k=0

ψ2
k → σ2u

∞∑
k=0

ψ2
k = Var(Xt), h→∞.

Moreover, since for any h we have

h−1∑
k=0

ψ2
k ≤

∞∑
k=0

ψ2
k

then σ2T+h|T ≤ Var(Xt), and the variance of the process is the upper bound of the variance
of the forecast error. Therefore, as h increases the variance of the forecast error increases:
the longer the forecasting horizon, the higher the uncertainty (see the examples at the end
of the Chapter).
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Finally, we have seen that the h-step-ahead forecast error is not a white noise. We can compute
its lag m acvs

γεhm = Cov(εT+h|T , εT+h+m|T ) = E[εT+h|T εT+h+m|T ]

= E

(h−1∑
k=0

ψkuT+h−k

)h+m−1∑
j=0

ψjuT+h+m−j


= σ2u

h−1∑
k=0

ψkψk+m.

For example the acvs of the one-step-ahead forecast error is

γε1m = σ2uψ0ψm = σ2uψm.

This could be quite large and should the forecast for a series wander off target, it is possible for it
to remain there in the short run since forecast errors can be quite highly correlated. Hence, when
xT+1 becomes available we should update the forecast.

6.5 Computing forecasts

Some examples.

1. AR(1)
xt = φ1xt−1 + ut, ut ∼ wn(0, σ2u), |φ1| < 1.

There are three main ways to compute the forecast.

(a) Using the MA(∞) representation

xt =
1

1− φ1L
ut = ut + φ1ut−1 + φ21ut−2 + . . .

so
Ψ(z) = 1 + φ1z + φ21z

2 + . . . = ψ0 + ψ1z + ψ2z
2 + . . .

which implies ψk = φk1 . Hence, the h-step-ahead forecast is

xT+h|T =
∞∑
k=0

bkuT−k =
∞∑
k=0

ψk+huT−k

=

∞∑
k=0

φk+h1 uT−k = φh1

∞∑
k=0

φk1uT−k

= φh1xT .

(b) We can write the h-step-ahead forecast as function of past values of the process. We
have

xT+h|T =

∞∑
j=0

ψj+huT−j = Ψ(h)(L)uT

Moreover,
xt = Ψ(L)ut
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and if the polynomial is invertible we have

ut = Ψ−1(L)xt

and thus

xT+h|T = Ψ(h)(L)uT = Ψ(h)(L)Ψ−1(L)xT = G(h)(L)xT ,

where G(h)(L) is a new polynomial. And for h fixed we have defined a new process
of all h-step-ahead forecasts xt+h|t = G(h)(L)xt.
Using the polynomial G(h)(L). From the previous approach we see that Ψ(h)(z) =∑∞

k=0 φ
k+h
1 zk. Alternatively using G(h)(L) = Ψ(h)(L)Ψ−1(L) we have

xT+h|T = G(h)(L)xT =

( ∞∑
k=0

φk+h1 Lk

)
(1− φ1L)xT = φh1xT

as before.
(c) We can consider the AR equations in the future when setting the innovations to zero

xT+1|T = φ1xT + 0

xT+2|T = φ1xT+1|T + 0

...

xT+h|T = φ1xT+h−1|T + 0

so that again xT+h|T = φh1xT .

Using the MA approach, the variance of the forecast error is then

σ2T+h|T = σ2u

h−1∑
k=0

ψ2
k = σ2u

h−1∑
k=0

φ2k1

= σ2u
1− φ2h1
1− φ21

→ σ2u
1

1− φ21
= Var(Xt), h→∞

Using the explicit expression for the forecast we have the same result

σ2T+h|T = E[(XT+h −XT+h|T )2] = E[(XT+h − φh1XT )2]

= E[X2
T+h] + φ2h1 E[X2

T ]− 2φhE[XT+hXT ]

= Var(Xt) + φ2h1 Var(Xt)− 2φhγxh → Var(Xt), h→∞.

We have demonstrated that for the AR(1) model the linear least squares predictor of xT+h|T
depends only on the most recent observation, xT , and does not involve xT−1, xT−2, . . ., in
this case we say that xt is a Markov process. An example is in Figure 39.

2. AR(p). The forecast xT+h|T depends only on the last p observed values of xt, and may
be obtained by solving the AR(p) difference equation with the future ut set to zero. For
example for an AR(p) process and h = 1,

xT+1|T = φ1xT + . . .+ φpxT−p+1.

while for an AR(2) and generic h we have the iterative formulas

xT+1|T = φ1xT + φ2xT−1

xT+2|T = φ1xT+1|T + φ2xT

xT+h|T = φ1xT+h−1|T + φ2xT+h−2|T , h > 2.
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Figure 39: Forecast of an AR(1) model with φ1 = 0.5 up to lag 10.

3. ARMA(1,1)

(1− φ1L)xt = (1− θ1L)ut, ut ∼ wn(0, σ2u) |φ1| < 1 |θ1| < 1

Once again we can compute the forecast by taking the ARMA(1,1) equation at T + h

xT+h = φxT+h−1 − θuT+h−1 − uT+h

and setting future innovations to zero, i.e. uT+h = 0 for h > 0 and replacing forecasts for
the unknown values of xt. Hence

xT+1|T = φxT − θuT
xT+2|T = φxT+1|T

...

xT+h|T = φxT+h−1|T

The MA coefficient is useful only for forecasting one-step-ahead. This is intuitive as the
MA component is responsible only for acvs up to lag 1. An example is in Figure 40.

Alternatively, take φ1 = φ and θ1 = θ then

xt =
1− θL
1− φL

ut = Ψ(L)ut

so

Ψ(z) = (1− θz)(1 + φz + φ2z2 + . . .)

= 1 + (φ− θ)z + φ(φ− θ)z2 + . . .+ φh−1(φ− θ)zh + . . .

= ψ0 + ψ1z + ψ2z
2 + . . .

so ψ0 = 1 and ψh = φh−1(φ− θ) for h ≥ 1. The variance of the forecast error is then

σ2T+h|T = σ2u

h−1∑
k=0

ψ2
k = σ2u

(
1 +

h−1∑
k=1

ψ2
k

)

= σ2u

(
1 + (φ− θ)2

h−1∑
k=1

φ2k−2

)

= σ2u

(
1 + (φ− θ)2 1− φ2h−2

1− φ2

)
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Figure 40: Forecast of an ARMA(1,1) model with φ1 = 0.5 and θ1 = −0.6 up to lag 10.

Now to find the forecast we need the polynomial G(h)(L) = Ψ(h)(L)Ψ−1(L). So

Ψ(h)(z) =

∞∑
k=0

ψk+hz
k

= φh−1(φ− θ)
∞∑
k=0

φkzk

=
φh−1(φ− θ)

1− φz

and
Ψ−1(z) =

1− φz
1− θz

which give

xT+h|T = G(h)(L)xT =
φh−1(φ− θ)

1− θL
xT

Take h = 1

xT+1|T =
(φ− θ)
1− θL

xT

= (φ− θ)(1 + θL+ θ2L2 + . . .)xT

= (φ− θ)xT + (φ− θ)θxT−1 + (φ− θ)θ2xT−2 + . . .

= φxT − θ (xT − (φ− θ)xT−1 − (φ− θ)θxT−2 − . . .)

but

uT = Ψ−1(L)xT =
1− φL
1− θL

xT = xT − (φ− θ)xT−1 − (φ− θ)θxT−2 − . . .

therefore
xT+1|T = φxT − θuT

4. MA(1)
xt = (1− θ1L)ut, ut ∼ wn(0, σ2u) |θ1| < 1
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then at T + h we have
xT+h = uT+h − θuT+h−1

and again by setting to zero future innovations we see that the only non-zero forecast is the
one-step-ahead (h = 1) when we have

xT+1|T = −θuT

So in general for an MA(q) we non zero forecast only up to h = q. Take the MA(2), we
have

xT+1|T = −θ1uT − θ2uT−1
xT+2|T = −θ2uT
xT+h|T = 0, h > 2

An example is in Figure 41.

Alternatively we have the MA(∞) representation of an MA(1)

Ψ(z) = 1− θ1z = ψ0 + ψ1z + ψ2z
2 + . . .

hence ψ0 = 1 and ψ1 = −θ1, all other coefficients being zero. The variance of the forecast
error is then

σ2T+h|T = σ2u

h−1∑
k=0

ψ2
k =

{
σ2u h = 1
σ2u
(
1 + θ21

)
h ≥ 2

The h-step-ahead forecast is

xT+h|T =
∞∑
k=0

ψk+huT−k

= ψhuT + ψh+1uT−1 + . . .

Now to find the forecast we need the polynomial G(h)(L) = Ψ(h)(L)Ψ−1(L). So

Ψ(h)(z) =

∞∑
k=0

ψk+hz
k = ψh =

{
−θ1 h = 1
0 h ≥ 2

and

G(h)(z) = Ψ(h)(z)Ψ−1(z) =

{ −θ1
1−θ1z h = 1

0 h ≥ 2

which shows that for the MA(1) the only non-zero forecast is the one-step-ahead forecast
(consistently with what we found in the ARMA case):

xT+1|T = G(1)(L)xT = −θ1(1 + θ1L+ θ21L
2 + . . .)xT = −

∞∑
k=0

θk+1
1 xT−k.
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Figure 41: Forecast of an MA(1) model with θ1 = −0.6 up to lag 10.

6.6 Forecasting and conditional expectations

In general a forecast is a function of X1 . . . XT . In particular, the function f(X1 . . . XT ) that min-
imises the variance of the forecast error or (mean squared forecast error) E[(XT+h−f(X1 . . . XT ))2]
is always the conditional expectation of XT+h given X1 . . . XT . For simplicity of notation denote
by IT the past history X1 . . . XT . Then, we have

E[(XT+h − f(IT ))2|IT ] = E[X2
T+h|IT ]− 2E[XT+h|IT ]f(IT ) + f2(IT ),

by denoting by c = f(IT ) and minimising with respect to c we find that the previous equation
attains a minimum for f(IT ) = E[XT+h|IT ]. By using the law of iterated expectations we have

E
[
E[(XT+h − f(IT ))2|IT ]

]
= E[(XT+h − f(IT ))2].

Then, also E[(XT+h − f(IT ))2] is minimised by f(IT ) = E[XT+h|IT ].36

As a consequence, the best h-step-ahead forecast is the conditional expectation of XT+h

XT+h|T = E[XT+h|X1 . . . XT ].

Thus given an observed history of the process x1 . . . xT , i.e. a realisation of {Xt, t = 1, . . . , T},
we have

xT+h|T = E[XT+h|X1 = x1 . . . XT = xT ].

When we restrict to linear functions such an AR(p) model

xT+1 = φ1xT + . . .+ φpxT−p+1 + uT ,

the the best forecast, which is the conditional mean, coincides with the best linear forecast com-
puted in the previous section only if we make the assumption that ut is a martingale difference
sequence, that is E[ut|xt−1, . . . xt−p] = 0 for any t, or alternatively if we assume Gaussian or
independent errors ut which implies E[ut|xt−1 . . . xt−p] = E[ut] = 0 for any t.

36Given the random variable c = f(IT ), then define g(c) = E[(XT+h − c)2|IT ] and we have to minimize E[g(c)]

d

dc
E[g(c)] =

d

dc

∫
g(c)dFc(c) =

∫
d

dc
g(c)dFc(c) = 0

where Fc(c) is the cdf of c and the function in the integral is zero when c = E[XT+h|IT ], then since the function
g(c)dFc(c) is always positive also the integral is minimised for c = E[XT+h|IT ].
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We can then use conditional expectations to compute forecasts, which is a useful approach for
the AR case. So for example in the AR(1) case and assuming E[uT+h|XT , . . . X1] = 0 we have

xT+h|T = E[XT+h|XT = xT , . . . X1 = x1]

= E[φ1XT+h−1 + uT+h|XT = xT , . . . X1 = x1]

= φ1E[XT+h−1|XT = xT , . . . X1 = x1]

= φ1E[φ1XT+h−2 + uT+h−1|XT = xT , . . . X1 = x1]

= φ21xT+h−2|T
...

= φh1xT |T = φh1xT .

6.7 Forecast intervals

In practice the coefficients of an ARMA model must be estimated (see previous Chapter) and so the
h-step-ahead forecast will contain also the estimation error. We denote the forecast obtained with
estimated coefficients as x̂T+h|T . So for example for an AR(1) we have an estimated coefficient
φ̂1 and the forecast is

x̂T+h|T = φ̂h1xT .

The forecast error is now defined as

ε̂T+h|T = xT+h − x̂T+h|T

and will also depend on the error made in estimating the parameters. For example in the AR(1)
case the one-step-ahead forecast error is

ε̂T+1|T = xT+1 − φ̂1xT
= φ1xT + uT+1 − φ̂1xT
= uT+1 + (φ1 − φ̂1)xT .

While the h-step-ahead forecast error of the AR(1) is

ε̂T+h|T = xT+h − φ̂h1xT
= εT+h|T + xT+h|T − φ̂h1xT
= εT+h|T + (φh1 − φ̂h1)xT .

The variance of the h-step-ahead estimated forecast error is then

σ̂2T+h|T ≡ E[ε̂2T+h|T ] = E[(xT+h − φ̂h1xT )2] (32)

= E[ε2T+h|T ] + E[(φh1 − φ̂h1)2x2T ]

= σ2T+h|T︸ ︷︷ ︸
forecast error variance

+ E[(φh1 − φ̂h1)2x2T ]︸ ︷︷ ︸
'estimation error variance

The quantity above is also called h-step-ahead Mean Squared Forecast Error (MSFE). As we see
as T → ∞ the estimation error variance (second term) tends to zero and the MSFE approaches
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the forecast error variance defined in previous sections.37 Moreover, the MSFE has the variance
of the process as its upper limit

σ̂2T+h|T → Var(Xt), T, h→∞.

The quantity
√
σ̂2T+h|T is of particular interest and it is called Root Mean Squared Forecast Error

(RMSFE).

6.7.1 Analytical formulas

For a given ARMA model, we usually have an analytical expression of the forecast error, hence,
if data are Gaussian, we can compute the 95% forecast interval defined as

x̂T+h|T ± 1.96
√
σ̂2T+h|T .

A 68% forecast interval is given by

x̂T+h|T ±
√
σ̂2T+h|T .

This is a measure of the uncertainty associated with the forecast of a given model. Some examples
follow.

1. AR(1). From (32), we have for h = 1

σ̂2T+1|T = E[ε̂2T+1|T ] = E[(xT+1 − φ̂xT )2] = E[û2T ] ' σ̂2u,

where ûT is the residual of the estimated AR(1). The last equality is not exact as we have
estimation errors, but if T is large we have

σ̂2u =
1

T

T∑
t=1

û2T
p→ E[û2T ], T →∞,

and φ̂
p→ φ, as T →∞.

For h = 2 we have the estimated model

xT+2 = φ̂xT+1 + ûT+2 = φ̂2xT + φ̂ûT+1 + ûT+2

thus the estimated forecast error is

ε̂T+2|T = φ̂uT+1 + ûT+2

which gives the MSFE

σ̂2T+2|T = E[ε̂2T+2|T ] = E[(φ̂ûT+1 + ûT+2)
2] ' (1 + φ̂2)σ̂2u,

where we assumed that ût is white noise (it should if the model is correctly specified).
37Clearly since the estimated coefficients are mean square consistent then we have (using Cauchy Schwarz inequality)

E[(x̂T+h|T − xT+h|T )2] = E[(φ̂h
1 − φh

1 )2x2T ] ≤
√

E[(φ̂h
1 − φh

1 )2]E[x2T ]→ 0, T →∞.
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Figure 42: Forecasts of an AR(1) model with φ1 = 0.9 up to lag 20 with 68% confidence intervals.
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Figure 43: Series of τ = 20 one-step-ahead forecast of an AR(1) model with φ1 = 0.9 with 68%
confidence intervals.

Iteratively we can compute σ̂2T+h|T for any h. But when h is large enough we can also
use the limit result that is we can approximate the h-step-ahead MSFE with the estimated
variance of the process

σ̂2T+h|T ' σ̂
2
x =

σ̂2u

1− φ̂2
.

One example is in Figure 42 when using the analytical formulas above. We compute one
forecast for each h = 1, . . . , 20 and the relative confidence interval. We see how the confi-
dence interval increases as h increases, as the longer is the forecasting horizon, the more the
uncertainty. Indeed, the variance of the forecast error is always smaller than the variance of
the process thus reaching its limit from below which means it increases as h increases.

We often also report a series of forecasts with relative errors, when fixing an horizon h. An
example is in Figure 43 where we fix h = 1 and we compute 20 one-step-ahead forecasts
with their confidence intervals.

2. AR(2). For h = 1 we have the estimated model

xT+1 = φ̂1xT + φ̂2xT−1 + ûT+1
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therefore the MSFE is
σ̂2T+1|T = E[û2T+1] ' σ̂2u

For h = 2 we have the estimated model

xT+2 = φ̂1xT+1 + φ̂2xT + ûT+2

= φ̂1xT + φ̂1φ̂2xT−1 + φ̂2xT + φ̂1ûT+1 + ûT+2 (33)

hence the MSFE is

σ̂2T+2|T = E[(φ̂uT+1 + ûT+2)
2] ' (1 + φ̂21)σ̂

2
u,

where we assumed that ût is white noise (it should if the model is correctly specified).

Iteratively we can compute σ̂2T+h|T for any h. But when h is large enough we can also
use the limit result that is we can approximate the h-step-ahead MSFE with the estimated
variance of the process

σ̂2T+h|T ' σ̂
2
x =

σ̂2u

1− φ̂21 − φ̂22
.

6.7.2 Numerical approach

In practice models can be evaluated according to their performance in forecasting real data rather
than by computing analytically the forecast intervals. In this case, we should have a record of
observed values xT+h to compare our forecasts with. This is typically done by not using all
available data to estimate the model and leaving the last observations as pseudo out of sample
values. For example, suppose we are able to compute a series of length τ of h-step-ahead forecasts
x̂T+t+h|T+t for t = 0 . . . τ − 1, then we define the h-step-ahead estimated MSFE as

Ŝ2(h) =
1

τ

τ−1∑
t=0

(x̂T+h+t|T+t − xT+h+t)2,

where the forecast x̂T+h+t|T+t is computed by estimating the model using all data up to time T+t.

For example, for an AR(1) we have

Ŝ2(1) =
1

τ

τ−1∑
t=0

(φ̂1xT+t − xT+1+t)
2,

Ŝ2(h) =
1

τ

τ−1∑
t=0

(φ̂h1xT+t − xT+h+t)2.

Notice that we have

Ŝ2(h)
p→ E[(x̂T+h|T − xT+h)2] = E[ε̂2T+h|T ] = σ̂2T+h|T , τ →∞.

So in this sense Ŝ2(h) is an approximated (estimated) measure of the MSFE and for large τ is
an alternative estimator of the MSFE. This measure is built using observed data and comparing
them with realised data without computing the MSFE analytically. Moreover, if also T →∞ and
h→∞ we know that σ̂2T+h|T → Var(Xt) (see previous section). Hence,

Ŝ2(h)
p→ Var(Xt), τ, h, T →∞.
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Under the assumption that the forecast error is normally distributed, and therefore the innovations
ut are also normally distributed, a 95% forecast interval is given by

x̂T+h+t|T+t ± 1.96

√
Ŝ2(h), t = 0 . . . τ − 1.

Sometimes also the 68% confidence interval is used

x̂T+h+t|T+t ±
√
Ŝ2(h), t = 0 . . . τ − 1.

Notice that for a series of forecasts, indexed by t, we have a series of upper and lower bounds for
any fixed h as in Figure 43.

7 Models for heteroscedastic time series

7.1 Financial returns

The main variable of interest in financial analysis of time series is an asset return. Since stock
prices usually exhibit trends and are therefore are non-stationary we work with first differences
which are the so-called returns. Given a price time series pt, there are two types of return defini-
tions: simple and log returns (we have seen these already in Chapter 1).

1. Simple returns

rt =
pt − pt−1
pt−1

.

In other words, rt is the gross return generated by holding the asset for one period.

2. Log returns.
εt = log pt − log pt−1 = log

pt
pt−1

= log(1 + rt).

Notice that εt ∈ (−∞,+∞), thus it is possible to have negative returns lower than −100%.

If price variations are small, then log and simple returns are very close to each other. This can be
seen via a Taylor expansion. If rt is close to 0, then

εt = log(1 + rt) ≈ log 1 +
1

1 + rt

∣∣∣∣
rt=0

rt = rt.

In both cases we are taking the first difference of a non-stationary variable and we then have a
stationary variable. In practice, it is customary to work with log returns and to express them as a
percentage:

εt = 100× (log pt − log pt−1).

7.2 Financial data

The models we are going to study here are used for the analysis of

1. (US) Common Stocks: IBM, Apple, General Motors, Goldman Sachs, ...
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2. Stock Indices: S&P 500 index, Dow Jones Industrial average, FTSE 100, CAC 40, DAX, ...

3. ETFs: Index ETFs, Commodity ETFs, ...
Exchange Traded Funds are investment fund which can be traded on an exchange. ETFs are
designed to track the performance of specific types of investment such as investing on an
index, a country, a commodity and so forth

4. ...but the models considered are also useful for: exchange rates, inflation, interest rates

Typically financial time series are recorded at high frequency as monthly, daily, or even intradaily.
In the latter case observations might not even be equally spaced.

7.3 Stylized Facts

Mandelbrot (1956) lists the following styled facts for financial time series:

1. non-stationarity of prices pt (random walk), stationarity of returns rt or εt;

2. absence of autocorrelation of returns εt, i.e. they can be modelled as a white noise process;

3. non-zero autocorrelation of ε2t or |εt|, i.e. returns are not independent;

4. volatility clustering, i.e. large returns (in absolute value) tend to be followed by large returns
(in absolute value), and vice versa;

5. fat–tailed distribution of returns with kurtosis κε > 3, i.e. non–Gaussian (leptokurtic);

6. leverage effects, i.e. negative returns (decrease in prices) tend to increase volatility by a
larger amount than positive returns.

In Figures 44, 45 and 46 we see that returns appear to have weak or no serial dependence but
squared returns appear to have strong serial dependence.

These stylised facts have been documented starting from at least the 1960’s but the first mod-
els able to capture volatility clustering were proposed starting from the 1980’s. We are going
to analyse volatility clustering and introduce non-linear dynamic models called Generalised Au-
toregressive Conditional Heteroscedastic (GARCH) models which are able to capture most of the
above facts. We will not consider here models to capture leverage effects that can be obtained by
generalising the GARCH.

7.4 Volatility Models

The strong evidence of serial dependence in absolute and square returns suggest that the scale of
returns changes in time. In other words, the variance of the process is time varying. In order to
capture volatility clustering, we need to introduce appropriate time series processes able to model
this behavior.

Consider a stationary process {Xt}, i.e. with E[Xt] = 0 and Var[Xt] = σ2x which do not
depend on time. We are interested in the conditional moments of {Xt} when we condition on the
set It−1 = (Xt−1, Xt−2, . . .). We define conditional mean µt of the process as

µt = E[Xt|It−1]
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Figure 44: Series of daily returns of S&P500.
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Figure 45: Series of daily squared returns of S&P500.
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Figure 46: Autocorrelations of returns (left) and squared returns (right) of S&P500.

and conditional variance σ2t as

σ2t = Var[yt|It−1] = E[(yt − µt)2|It−1]

Hereafter, we use the shorthand notation Et−1[·] in place of E[·|It−1] for simplicity.

Consider a stationary and causal ARMA(1,1) model (notice that now the errors are indepen-
dent not just uncorrelated)

xt = φ1xt−1 + εt + θ1εt−1, εt ∼ i.i.d.(0, σ2ε)

We then have
µt = Et−1[Xt] = φ1xt−1 + θ1εt−1
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and

σ2t = Vart−1[Xt]

= Et−1[(Xt − Et−1[Xt])
2]

= Et−1[(Xt − µt)2]
= Et−1[(Xt − (φ1xt−1 + θ1εt−1))

2]

= Et−1[ε2t ] = σ2ε

A similar result holds for a generic ARMA(p, q). Thus, while the conditional mean of an ARMA
is time varying, the conditional variance of an ARMA is constant. In general, an ARMA(p, q) is
not able to capture time varying conditional variance. This is true if the errors are i.i.d. or if they
are white noise but Normal.

Otherwise εt could in principle depend non-linearly on It−1. For example ε2t could depend on
xt−1. So a more general model could be an ARMA(1,1) but with a different specification for the
errors

xt = φ1xt−1 + εt + θ1εt−1, εt ∼ wn(0, σ2ε)

εt = σtzt, zt ∼ i.i.d.(0, 1),

where the volatility σt > 0 is a measurable function of It−1, i.e. σt = f(xt−1, xt−2, . . .) and {Zt}
is the process of innovations of {Xt} which are independent of It−1. In this model we have

Vart−1[Xt] = Et−1[ε2t ] = Et−1[σ2tZ
2
t ] = Et−1[σ2t ]E[Z2

t ] = σ2t ,

which is time varying.

Since financial returns have (nearly) zero autocorrelation we can model them as white noise,
i.e. we can assume µt = 0. Then, the general model that is able to capture a time varying
conditional variance (called conditional heteroscedastic model) is given by

xt ≡ εt = σtzt, zt ∼ i.i.d.(0, 1). (34)

The innovations are assumed to be independent (which is a stronger assumption than being
just white noise), i.e. for any h 6= 0,

E[g1(zt)g2(zt−h)] = E[g1(zt)]E[g2(zt−h)],

and are also independent of past returns, i.e. for any h > 0

E[g1(zt)g2(εt−h)] = E[g1(zt)]E[g2(εt−h)],

for any function g1, g2.

In particular, the consequences of the above assumptions on the innovations are that

E[z2t z
2
t−h] = E[z2t ]E[z2t−h], h 6= 0

E[z2t ε
2
t−h] = E[z2t ]E[ε2t−h], h > 0

E[ztεt−h] = E[zt]E[εt−h], h > 0

E[ztσt] = E[zt]E[σt],

E[z2t σ
2
t ] = E[z2t ]E[σ2t ].

Using the above assumptions, we can compute the moments of a generic conditional het-
eroskedastic model as (34).

93



1. Mean
µ = E[εt] = E[σtzt] = E[σt]E[zt] = 0.

2. Variance
σ2ε = E[ε2t ] = E[σ2t z

2
t ] = E[σ2t ]E[z2t ] = E[σ2t ].

3. Conditional mean
Et−1[εt] = Et−1[σtzt] = σtEt−1[zt] = 0.

4. Conditional variance

Et−1[ε2t ] = Et−1[σ2t z
2
t ] = Et−1[σ2t ]Et−1[z

2
t ] = σ2t

5. Autocovariance

γεh = Cov(εtεt−h) = E[εtεt−h]− E[εt]E[εt−h] = E[εtεt−h]

= E[σtztεt−h] = E[zt]E[σtεt−h] = 0,

thus εt is a white noise process. However, in general

γε
2

h = Cov(ε2t ε
2
t−h) = E[ε2t ε

2
t−h]− E[ε2t ]E[ε2t−h]

= E[σ2t z
2
t ε

2
t−h]− σ4ε = E[z2t ]E[σ2t ε

2
t−h]− σ4ε 6= 0,

thus εt is not an independent process.

6. Kurtosis

κε =
E[ε4t ]

(E[ε2t ])
2

=
E[σ4t z

4
t ]

(E[σ2t z
2
t ])2

=
E[σ4t ]E[z4t ]

(E[σ2t ])
2(E[z2t ])2

= κz
E(σ4t )

(E[σ2t ])
2

= κz

[
1 +

Var(σ2t )
(E[σ2t ])

2

]
therefore κε > κz so even if zt ∼ N(0, 1), i.e. κz = 3 we still have that εt has kurtosis
κε > 3 thus with tails that are fatter than the Gaussian case. This reflects the fact that
extreme events are more likely to happen in financial data.

In order to model volatility, the literature has proposed specific types of time series models. There
are two main approaches in modelling the conditional variance σ2t :

1. ARCH Approach: σ2t is a deterministic equation

2. Stochastic Volatility Approach: σ2t is a stochastic equation

In practice, the ARCH approach is more popular while Stochastic Volatility models are typically
harder to work with and we are not considering them here.
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7.5 The ARCH model

In order to capture volatility clustering, in 1982 Robert Engle proposed the AutoRegressive Condi-
tional Heteroskedasticity (ARCH) model. This simple model has started the literature on nonlinear
quantitative modelling of financial time series.

The ARCH(1) model is defined as

εt =
√
σ2t zt zt ∼ i.i.d.(0, 1)

σ2t = ω + αε2t−1

where ω > 0 and α ≥ 0 in order to have always σt > 0. The current conditional variance of
returns is proportional to the past squared return.

We can check for stationarity of εt. Since εt is a white noise, the process is stationary if its
variance is finite and independent of time. We have

σ2ε = Var(εt) = E[ε2t ] = E[σ2t ]

= E[ω + αε2t−1] = ω + αE[ε2t−1]

If εt is stationary then we must have E[ε2t ] = E[ε2t−1] = σ2ε and by substituting above we get

σ2ε =
ω

1− α

Since the variance must be positive this requires the constraint α < 1.

The kurtosis can be computed from the formula in previous section

κε = κz

[
1 +

Var(σ2t )
(E[σ2t ])

2

]
= κz

[
E(σ4t )

(E[σ2t ])
2

]
.

where κz = E[z4t ]/(E[z2t ])2 = E[z4t ]. Then, we have

E[σ4t ] = ω2 + α2E[ε4t−1] + 2ωαE[σ2t−1]

= ω2 + α2E[σ4t−1]κz + 2ωαE[σ2t−1]

If we assume strong stationarity of εt then E[σ4t ] = E[σ4t−1] and we have

E[σ4t ] =
ω2 + 2ωαE[σ2t−1]

1− α2κz

and

κε =
E[σ4t ]{
E[σ2t ]

}2κz =
ω2 + 2ωαE[σ2t−1]

(1− α2κz)
{

E[σ2t ]
}2κz

Using E[σ2t ] = E[ε2t ] = σ2ε = ω/(1− α) we get

κε =
1− α2

1− α2κz
κz.

If the innovations are Gaussian, zt ∼ i.i.d.N(0, 1) then κz = 3 and κε is defined only for 0 ≤
α2 < 1/3.
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More generally, we can define an ARCH(q) model as

εt =
√
σ2t zt zt ∼ i.i.d.(0, 1)

σ2t = ω + α1ε
2
t−1 + . . .+ αqε

2
t−q

where ω > 0 and αi ≥ 0 in order to have always σt > 0. Following the same reasoning as before
we can prove that the variance is

σ2ε =
ω

1− α1 − . . .− αq

and in order to have a well defined variance we need
∑q

i=1 αi < 1.

An ARCH(q) is equivalent to an AR(q) for the squared returns. Indeed (if the model is sta-
tionary) we can define the innovations of squared returns as usual as the observed series minus its
conditional expectation:

νt = ε2t − Et−1[ε2t ] = ε2t − σ2t ,

then σ2t = ε2t − νt and the ARCH(q) becomes

ε2t − νt = ω +

q∑
i=1

αiε
2
t−i,

which is an AR(q)

ε2t = ω +

q∑
i=1

αiε
2
t−i + νt.

Now νt is a white noise as we can write it as

νt = σ2t z
2
t − σ2t = (z2t − 1)σ2t ,

and its acs is

γνh = Cov(νt, νt−h) = E[νtνt−h]

= E[νt(z
2
t−h − 1)σ2t−h]

= E[νtσ
2
t−h]E[z2t−h − 1] = 0,

since zt−h is independent of σ2t−h and of νt, and E[z2t−h] = 1. However, νt is not an i.i.d. process.

The AR representation allows for computing easily the acs of ε2t . Recall that for an AR(1)

xt = φxt−1 + ut

we have ρxh = φh. An ARCH(1) is equivalent to an AR(1) for the squared returns, thus

ρε
2

h = Corr(ε2t , ε
2
t−h) = αh.

Notice that ρε
2

h > 0 for any h.

For higher order ARCH we have to solve Yule Walker difference equations

γε
2

h =

q∑
i=1

αiγ
ε2

h−i.
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So for example, for an ARCH(2) we have

ρε
2

2 = α1ρ
ε2

1 + α2ρ
ε2

0 ,

ρε
2

1 = α1ρ
ε2

0 + α2ρ
ε2

−1 = α1ρ
ε2

0 + α2ρ
ε2

1 .

Then,

ρε
2

2

ρε
2

1

= α1 + α2
ρε

2

0

ρε
2

1

= α1 +
α2

ρε
2

1

Thus in general we do not have ρε
2

2 < ρε
2

1 and the acs do not decrease to zero monotonically.

An alternative parameterization, sometimes useful for forecasting, is the exponential weighted
moving average. Using the result of the variance of the ARCH(1) we can reparameterize the
conditional variance equation as

σ2t =
(1− α)(ω + αε2t−1)

1− α

=
ω

1− α
+
−αω + (1− α)αε2t−1

1− α

=
ω

1− α
+
−αω
1− α

+ αε2t−1

= σ2ε − ασ2ε + αε2t−1

= σ2ε + α(ε2t−1 − σ2ε)
= (1− α)σ2ε + αε2t−1

Therefore, the ARCH(1) specification shows that the conditional variance is made of two compo-
nents: its mean which is E[σ2t ] = Var(εt) = σ2ε , and an error that is mean reverting since α < 1.
Equivalently we see that in the ARCH(1) model the conditional variance is a weighted average of
the unconditional variance and the squared returns.

7.5.1 Forecasting with ARCH

Using the AR representation, forecast formulas of the variance of the ARCH(1) are analogous to
those of the AR(1). Suppose to have observations ε1 . . . εT . We define the one-step-ahead forecast
of the conditional variance as the conditional expectation of future values of σ2t given its past38

σ2T+1|T = ET [σ2T+1] = ET [ω + αε2T ] = ω + αε2T .

The 2-step-ahead forecast of the conditional variance is

σ2T+2|T = ET [ω + αε2T+1] = ω + αET [ε2T+1] = ω + αET [σ2T+1]

= ω + α(ω + αε2T ) = ω(1 + α) + α2ε2T .

38Notice that here the theory of linear prediction does not apply as the model is non-linear.
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Figure 47: Forecast of an ARCH(1) model with α = 0.8 up to lag 20. The blue line is the
unconditional variance σ2ε .

The h-step-ahead forecast of the variance is

σ2T+h|T = ET [ω + αε2T+h−1]

= ω + αET [ε2T+h−1]

= ω + αET [σ2T+h−1z
2
T+h−1]

= ω + αET [σ2T+h−1]ET [z2T+h−1]

= ω + αET [σ2T+h−1]

= ω + αET [ω + αε2T+h−2]

= ω + αω + α2ET [ε2T+h−2]

...

= ω

(
h−1∑
k=0

αk

)
+ αhε2T

=
ω(1− αh)

1− α
+ αhε2T ,

where the last step comes from the sums of geometric series. Thus, the h-steps-ahead forecast of
an ARCH(1) depends only on the returns at time T which is the Markovian property of an AR(1)
model. Notice also that if ω were zero then we would have exactly the formulas we had for the
AR(1) of a zero mean process. Generalisations to the ARCH(q) case will be based on the AR(q)
forecasts.

Moreover, as h→∞, we have (recall that α < 1)

σ2T+h|T = ω

(
h−1∑
k=0

αk

)
+ αhε2T → ω

∞∑
k=0

αk =
ω

1− α
= σ2ε .

As in the ARMA case, the h-steps-ahead forecasts converges to its expected value which in the
ARCH case is the unconditional variance of the process σ2ε . An example is in Figure 47.

Now let us consider the forecast error denoted as vT+h|T and its variance. In the simple case
h = 1 we have

vT+1|T = σ2T+1 − σ2T+1|T = ω + αε2T − ω − αε2T = 0
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indeed the ARCH equation has no error in it, thus if we know the observation at time T we know
everything about the conditional variance at time T + 1. If h = 2 we have

vT+2|T = σ2T+2 − σ2T+2|T = α
(
ε2T+1 − (ω + αε2T )

)
= α

(
σ2T+1(z

2
T+1 − 1)

)
= ανT+1

which is a white noise (see above). If h → ∞ we find the same results as for ARMA, i.e. the
variance of the forecast error tends to the variance of the process we are forecasting which in this
case is Var(σ2t ). Indeed, the h-step-ahead forecast error is

vT+h|T = σ2T+h − σ2T+h|T = ω + αε2T+h−1 −

(
ω

(
h−1∑
k=0

αk

)
+ αhε2T

)

hence

E[vT+h|T ] = ω + ασ2ε −

(
ω

(
h−1∑
k=0

αk

)
+ αhσ2ε

)
.

Notice that the expectation of the forecast error is not zero. Then the variance of the forecast error
is

Var(vT+h|T ) = E
[
(vT+h|T − E[vT+h|T ])2

]
= E[(αhε2T − αhσ2ε − αε2T+h−1 + ασ2ε)

2]

= E[(αh(ε2T − σ2ε)− α(ε2T+h−1 − σ2ε))2]
= E[α2h(ε2T − σ2ε)2] + E[α2(ε2T+h−1 − σ2ε)2]
−2αh+1E[(ε2T − σ2ε)(ε2T+h−1 − σ2ε)]

= α2hVar(ε2T ) + α2Var(ε2T+h−1)− 2αh+1γε
2

h−1.

Moreover,
Var(σ2t ) = Var(ω + αε2t−1) = α2Var(ε2t ).

Therefore, if ε2t is stationary, from the expression above we have, as h→∞, and since α < 1,

Var(vT+h|T )→ α2Var(ε2t ) = Var(σ2t ).

The same results can be derived using the exponential weighted average parametrisation of previ-
ous Section.

7.5.2 Detecting ARCH effects

We can use a simple test to detect the presence of ARCH effects using the AR representation.
First, estimate the coefficients of the following autoregression by Least Squares

ε2t = α0 + α1ε
2
t−1 + . . .+ αqε

2
t−q + νt,

Then the null hypothesis of no ARCH effects is formulated as H0 : α1 = 0, α2 = 0, . . . , αq = 0.
The test statistic for H0 is then39

LM = T ·R2

whereR2 is the usual “R-squared” coefficient of the linear regression. Under the null of no ARCH
effects the test statistic LM is asymptotically distributed as a χ2

q .

39This is an example of Lagrange Multiplier LM test.
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7.6 GARCH

In practice, only rather rich ARCH(q) parameterizations, i.e. with large q, are able to fit financial
series adequately. However, largely parameterised models can be unstable in forecasting and hard
to estimate because we need to estimate many parameters. In order to overcome the shortcomings
of the ARCH, Bollerslev (1986) proposed the generalised ARCH model called GARCH. The
model allows to fit financial returns adequately while keeping the number of parameters small.
The GARCH model is indeed one of the most successfully employed volatility models.

The GARCH(1,1) model is defined as

εt =
√
σ2t zt, zt ∼ i.i.d.(0, 1)

σ2t = ω + αε2t−1 + βσ2t−1,

where ω > 0, α ≥ 0 and β > 0 in order to have a positive variance. If we compute the variance
of the process (as for the ARCH case) we have

σ2ε = Var(εt) = E[ε2t ] = E[σ2t ]

= E[ω + αε2t−1 + βσ2t−1] = ω + αE[ε2t−1] + βE[σ2t−1]

= ω + αE[ε2t−1] + βE[ε2t−1]

where the last step is because E[ε2t ] = E[σ2t ] = σ2ε . If εt is stationary then we must have E[ε2t ] =
E[ε2t−1] = σ2ε and by substituting above we get

σ2ε =
ω

1− α− β
.

Since the variance must be positive this requires the constraint α+ β < 1.

The GARCH(p, q) model is40

εt =
√
σ2t zt, zt ∼ i.i.d.(0, 1)

σ2t = ω + α1ε
2
t−1 + . . .+ αqε

2
t−q + β1σ

2
t−1 + . . .+ βpσ

2
t−p,

where ω > 0, αi ≥ 0 and βi > 0 and by competing the variance and following the same reasoning
as before we have the constraint

q∑
i=1

αi +

p∑
j=1

βj < 1.

This condition is necessary and sufficient for having weak stationarity of εt.41 Therefore, for a
GARCH(p, q) the variance is given by

σ2ε =
ω

1−
∑q

i=1 αi −
∑p

j=1 βj
.

The sum of all GARCH coefficients αis and βis is called persistence of the volatility process.
Typically, we get very high values for this measure, i.e. very close to one, which implies high
variance.

40Notice that an ARCH(q) is a GARCH(0, q) but a GARCH(p, 0) does not make sense as the equation of the condi-
tional variance will not depend on any observed variable.

41Checking for strong stationarity of GARCH(1,1) is more complicated and we do not do it here.
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Again by assuming strong stationarity, it can be proved that the kurtosis for GARCH(1,1) is

κε =
1− (α+ β)2

1− (α+ β)2 − α2(κz − 1)
κz

thus even if z∼i.i.d.N(0, 1), i.e. κz = 3 we have

κε =
3(1− (α+ β)2)

1− (α+ β)2 − 2α2
> 3

Therefore, the GARCH model can capture fat tails, i.e. tails that have more mass than those of a
Gaussian distribution.

As for ARCH we have two alternative parameterisations. The exponential weighted mov-
ing average representation is based on representing a GARCH as an ARCH(∞) model. So for
example, for a GARCH(1,1) we have

σ2t = ω + αε2t−1 + β[ω + αε2t−2 + β(ω + αε2t−3 + βσ2t−3)]

= ω

( ∞∑
i=0

βi

)
+ α

∞∑
i=0

βiε2t−i−1

=
ω

1− β
+ α

∞∑
i=0

βiε2t−i−1

This representation shows how a GARCH(1,1) is a parsimonious way of characterizing ARCH
dynamics. The conditional variance of a GARCH(1,1) can be seen as a weighted average of recent
returns such that the weight given to past information decreases exponentially fast, since β < 1.

Equivalently the GARCH(p, q) can be seen as an ARMA for squared returns. As before, we
define the innovations νt = ε2t − σ2t . Then, in case of the GARCH(1,1) we get:

ε2t = ω + (α+ β)ε2t−1 + νt − βνt−1,

which is an ARMA(1,1). In general for a GARCH(p, q) we get:

ε2t = ω +
r∑
i=1

(αi + βi)ε
2
t−i + νt −

p∑
j=1

βjνt−j

where r = max(p, q) and this is an ARMA(r, p). As before we can prove that νt is a white noise
but it is not independent.

The ARMA representation allows for computing the acvs of ε2t . For a GARCH(1,1) we can
use the results for ARMA(1,1) for the squared returns (see Chapter 3)

ρε
2

h =
Cov(ε2t , ε

2
t−h)

Var(ε2t )
= ρε

2

1 (α+ β)h−1

where

ρε
2

1 =
α[1− β(α+ β)]

1− (α+ β)2 + α2

Notice that ρε
2

h > 0 always and in this case acvs are decreasing monotonically.
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Figure 48: Forecast of a GARCH(1,1) model with α = 0.1 and β = 0.8 up to lag 100. The blue
line is the unconditional variance σ2ε .

7.6.1 Forecasting with GARCH

The one-step-ahead forecast of the conditional variance in a GARCH(1,1) model is

σ2T+1|T = ET [σ2T+1] = ω + αε2T + βσ2T

which shows that the one-step-ahead forecast error is zero. The 2-step-ahead forecast is

σ2T+2|T = ET [σ2T+2] = ω + αET [ε2T+1] + βσ2T+1|T

= ω + ασ2T+1|T + β(ω + αε2T + βσ2T )

= ω + (α+ β)σ2T+1|T = σ2ε + (α+ β)(σ2T+1|T − σ
2
ε)

since ω = σ2ε − σ2ε(α+ β). In the same way we can find the h-step-ahead forecast as

σ2T+h|T = σ2ε + (α+ β)h−1(σ2T+1|T − σ
2
ε),

and we immediately see that since α+ β < 1, as h→∞, we have σ2T+h|T → σ2ε . An example is
in Figure 48 where we see that the reversion to the mean is very slow as in this case α+ β = 0.9.

7.7 Limitations of GARCH

The simple GARCH(p, q) has some limitations

The most important is that it cannot take into account the dependence between volatility and
the sign of past returns

• Standard GARCH models assume that positive and negative error terms have a symmetric
effect on the volatility, i.e. good and bad news have the same effect on the volatility

• In many real situations the volatility reacts asymmetrically to the sign of the shocks. In
particular negative past returns have a bigger effect on σ2t than positive returns of the same
size
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• This dependence is due to the leverage effect, i.e. a negative shock to returns would increase
the debt to equity ratio which in turn will increase uncertainty of future returns

S&P500 absolute returns |εt| vs lagged returns εt−1
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• Consider the model for returns

εt = σtzt

σ2t = ω +

p∑
i=1

αiε
2
t−i +

q∑
j=1

βjσ
2
t−j

• Then we can re-write the volatility as

σ2t = ω +

p∑
i=1

αiz
2
t−iσ

2
t−i +

q∑
j=1

βjσ
2
t−j

which is invariant to changes in the sign of zt

In GARCH models the volatility σt is an even function of εt−i, i > 0. For example in a simple
ARCH(1) we can write σt = h(ε2t−1) and, if the density of zt is symmetric, we have

Cov(σt, εt−1) = E[σtεt−1] =

∫
h(ε2t−1)εt−1fz(zt)dzt = 0

and in general it can be proved that for GARCH models

Cov(σt, εt−h) = 0, h > 0.

which is equivalent to

Cov(ε+t , εt−h) = Cov(ε−t , εt−h) = 0, h > 0,

with
ε+t = max(εt, 0), ε−t = min(εt, 0).

• Empirically we find that

Corr(εt, εt−h) ' 0, Corr(ε2t , ε
2
t−h) > 0, Corr(|εt|, |εt−h|) > 0,

which are properties reproduced by GARCH models
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• But we also find Corr(ε+t , εt−h) < 0. When εt = σtzt, with σt a positive function of εt as in
GARCH, we have

Corr(ε+t , εt−h) = KCov(σt, εt−h) < 0,

for some constant K > 0

• This is the leverage effect that GARCH models cannot reproduce

• GARCH models with leverage (asymmetric) effects are the subject of next lectures

Corr(ε+t , εt−h)
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7.8 Estimation of GARCH models

ARCH models are typically estimated by Maximum Likelihood and the estimator has no closed
form expression and needs to be found numerically. Moreover, if we have a general model with
a conditional mean specified as an ARMA, then the ARMA parametes also depend on the ARCH
parameters

Consider the ARMA(1, 1)-GARCH(1, 1) model for a zero mean time series

xt = µt + εt,

µt = φxt−1 + θεt−1,

εt =
√
σ2t zt, zt ∼ i.i.d.(0, 1)

σ2t = ω + αiε
2
t−1 + βσ2t−1,

where ω0 > 0, α ≥ 0, β ≥ 0 and |φ| < 1, α + β < 1. We then have the vectors of parameters to
be estimatedm = (φ θ)′, s = (ω αβ)′.

Assume to observe T realizations (x1 . . . xT ) of {Xt}. We know that the likelihood is given
by the joint density of the observations

f(x1 . . . xT ) = f(xT |x1 . . . xT−1)f(x1 . . . xT−1) = f(x0)

T∏
t=1

f(xt|x1 . . . xt−1) = f(x0)

T∏
t=1

f(xt|It−1).
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So we need to find f(xt|It−1) which is the conditional density. For the model above we have

zt =
εt
σt

=
xt − µt
σt

=
xt − φxt−1 − θεt−1√
ω + αε2t−1 + βσ2t−1

thus zt and its density will depend on the parameters of the model. If the pdf of zt is know then
we can write

f(xt|It−1) = fz(zt)

∣∣∣∣ ∂zt∂xt

∣∣∣∣ = fz(zt)
1

σt

notice that the density of zt is not conditional as the process is i.i.d.

Usually we assume that zt ∼ i.i.d.N(0, 1) and we have the likelihood for the observed data42

f(xt|It−1) =
1√

2πσt
exp

(
−z

2
t

2

)
=

1√
2πσt

exp

(
−(xt − µt)2

2σ2t

)
from which we see that the conditional distribution of xt given information up to time t − 1 is
Gaussian with mean the conditional mean given by the ARMA part and variance the conditional
variance given by the GARCH part.

By taking logs we have the log-likelihood for all observations

LT (xT ,m, s) =
T∑
t=1

log f(xt,m, s|It−1)

and the Maximum Likelihood (ML) estimator of the parametersm and s is defined as

(m̂, ŝ) = arg max
m, s

LT (xT ,m, s).

As for all ML estimators this estimator is consistent

(m̂, ŝ)
p→ (m, s), T →∞

and is asymptotically normal
√
T [(m̂, ŝ)− (m, s)]

d→ N(0,Σ), T →∞.

The form of Σ is complex and depends on derivatives of LT and on the parameters too. The
diagonal elements of the matrix Σ can be used to build confidence intervals for the parameters
of the model. For an ARMA(1,1)-GARCH(1,1) the matrix is 5 × 5. If the distribution of zt is
symmetric (as in the Gaussian case) we have that the matrix has a block diagonal structure

Σ =

(
Σm 0
0 Σs

)
.

We have asymptotic independence between estimated ARMA and GARCH coefficients. However,
the distribution of the estimators of the ARMA coefficients depends on the GARCH coefficients,
while on the other hand the asymptotic accuracy in the estimated GARCH coefficients is not
affected by the ARMA part. Therefore if we are interested only in the GARCH parameters but we
have also an ARMA component, we can first estimate an ARMA with heteroskedastic errors and
then take the residuals and estimate a GARCH. This two step procedure is simpler and fast.

42Gaussian distribution is the typical choice (see the discussion in Chapter 4 for ARMA) but in financial data also
the Student-t distribution is a popular model.
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7.9 Diagnostics

Once we have estimated a GARCH(1,1) model we can check for model adequacy by inspection
of the so called “standardized residuals”, defined as

ẑt =
εt
σ̂t

=
εt√

ω̂ + α̂ε2t−1 + β̂σ̂2t−1

where ω̂ and α̂, and β̂, are obtained by ML under a given distribution D (e.g. a Gaussian). If the
specification is correct, standardised residuals should

1. be approximately distributed according to distribution D;

2. do not exhibit dependence in levels, absolute levels, square levels, etc... i.e. they must be
i.i.d. We can test for acvs of ẑt and ẑ2t to be zero as we did for the errors of an ARMA
model.

8 Non-stationary processes

8.1 Trend and difference stationary processes

We have seen two kinds of non-stationarity.

1. The presence of a linear trend
yt = a+ bt+ xt

where {Xt} is stationary. The linear trend makes the mean time varying. By taking first
differences we have a stationary process

(1− L)yt = b+ (1− L)xt.

Or alternatively we can regress {Yt} on a constant and a linear trend and the residual would
be {Xt} which is stationary. In this case {Yt} is called Trend Stationary (TS). Generaliza-
tions to trends of higher order (as quadratic trend) are also possible (see Chapter 2).

2. The presence of a unit root in the AR polynomial of an ARMA. So for example the AR(1)
with unit coefficient (also known as random walk)

yt = yt−1 + ut, ut ∼ wn(0, σ2u)

or equivalently using the MA representation

yt =

∞∑
k=0

ut−k, ut ∼ wn(0, σ2u)

or

yt = y0 +

t−1∑
k=0

ut−k,
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for which the mean is zero but the variance is infinite

Var(Yt) = Var

( ∞∑
k=0

ut−k

)
=∞.

or if we treat y0 as given

Var(Yt) = Var

(
y0 +

t−1∑
k=0

ut−k

)
= tσ2u →∞.

By taking first differences we have a stationary process

(1− L)yt = yt − yt−1 = ut,

which is a white noise by assumption. In this case {Yt} is Difference Stationary (DS) and
the general case is considered below.

Let us consider the two cases more in detail.43

8.2 Trend stationary processes

Consider the process
yt = a+ bt+ xt

where {Xt} is zero mean and stationary. Analysis of the TS process is elementary and we also
refer to Chapter 2. Here the source of non stationarity is a deterministic function of time which has
no relationship with the stationary component. The process has time varying mean E[Yt] = a+ bt
but the variance is

Var(Yt) = Var(Xt)

which is not time varying since {Xt} is stationary.

The prediction of the TS process is

yT+h|T = a+ b(T + h) + xT+h|T .

Since we know that xT+h|T → E[Xt] = 0 as h → ∞, the long-run prediction of yT+h is just the
trend, i.e. for h large we have

yT+h|T ' a+ b(T + h).

In the TS case the influence of yT on the predicted values tends to zero as h increases and exactly
as in the stationary case we have mean reversion, where now the mean is a linear deterministic
trend.

As an example consider the case in which {Xt} is an AR(1)

xt = φxt−1 + ut, ut ∼ wn(0, σ2u).

43Remember that non-stationarity does not mean necessarily that the process has a trend or a unit root. So the process

yt =

{
xt if t ≤ τ

1 + axt if t > τ

represents a regime-change (the mean and the variance suddenly change at t = τ ).
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Figure 49: Forecast of a TS process with trend (1+0.2t) (dashed blue line) and underlying AR(1)
with parameter φ = 0.8 joint with 68% confidence interval.

Then,

xt =
∞∑
k=0

φkut−k = ut + φut−1 + φ2ut−2 + . . .

and the h-step-ahead forecast error is

εT+h|T = yT+h − yT+h|T = xT+h − φhxT = uT+h + φuT+h−1 + . . .+ φh−1uT+1

which has variance (i.e. mean squared forecast error)

MSFE(h) = E[ε2T+h|T ] = σ2u(1 + φ2 + . . .+ φ2(h−1))→ σ2u
1− φ2

i.e. it converges to the variance of xt as h→∞, as in the stationary case.

In Figure 49 we see that the forecast of {Yt} tends to its trend and is driven by the AR(1)
forecast with 68% confidence bands are given by

yT+h|T ±
√
σ2u(1 + φ2 + . . .+ φ2(h−1))

Hence the intervals revert to

a+ b(T + h)±
√
σ2u/(1− φ2)

as h increases.

8.3 Difference stationary processes - Random walk with drift

The DS case is much more complicated. Here the source of non-stationarity is not a deterministic
component, we say there is a stochastic trend. In the simple case we have an AR(1) model with a
unit root and we say that the process is a random walk. If we include a linear deterministic trend,
we have the random walk

yt = b+ yt−1 + ut, ut ∼ wn(0, σ2u)

or using the MA representation

yt = y0 + bt+ u1 + . . .+ ut
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Usually we assume that the process starts at t = 1 and that y0 is a given non-stochastic value.
Then, conditional on y0, we have

E[Yt] = y0 + bt, Var(Yt) = Var(u1 + . . .+ ut) = tσ2u

Thus both mean and variance are time varying and in particular the variance explodes (unlike the
TS case). The deterministic trend y0 + bt has little importance. Indeed if we had b = 0, we would
have a simple random walk, and the variance would still be exploding.

Compare the random walk with drift with a simple stationary AR(1) with non-zero mean

yt = b+ φyt−1 + ut

where |φ| < 1. If we write the MA representation of this process (as we did for the random walk)
we get

yt = (φty0 + b(1 + φ+ . . .+ φt−1)) + (ut + φut−1 + . . .+ φt−1u1)

while the random walk will explode when t→∞, in this case we have

yt
p→ b

1− φ
+
∞∑
k=0

φkut−k.

The second term is known, while the first is due to the non-zero mean of the AR(1) we are consid-
ering. We also know that the variance of a stationary AR(1) is finite Var(Yt) = σ2u/(1− φ2).

The T + h observation of a random walk with drift can be written as (imagine that the initial
condition is not at time 0 but at time T and use the MA representation)

yT+h = yT + bh+ uT+1 + . . . uT+h.

Then the h-step-ahead forecast and the related forecast error and its variance are

yT+h|T = yT + bh

εT+h|T = uT+1 + . . .+ uT+h

σ2T+h|T = E[ε2T+h|T ] = hσ2u

In the TS case the influence of yT on the predicted values tends to zero as h increases exactly
and as in the stationary case we had mean reversion. Now for a DS process, the effect of yT
on the predicted values never vanishes. Moreover, the prediction error variance tends to infinity
as h → ∞. The properties we had for stationary processes do not hold here. Figure 50 shows
forecasts for a random walk with drift. By comparing with the TS case in Figure 49, we see that the
size of the confidence interval increases with

√
h. Finally, in Figure 51 we consider two forecasts

of the same random walk with drift but made at T and at T − 10. We see that the effect of the last
used observation is persistent and never vanishes, the forecast being a linear extrapolation from
last observation YT or YT−10 never reverting to anything.

8.4 Difference stationary processes - General case with autocorrelated errors (ARIMA)

The general model is
yt = b+ yt−1 + xt
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Figure 50: Forecast of a DS process (random walk with drift) with trend b = 0.2 joint with 68%
confidence interval.
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Figure 51: Two forecasts of a DS process (random walk with drift) with trend b = 0.2 when
forecasting at T (red) and at T − 10 (blue).

where {Xt} is zero mean stationary with non-zero autocorrelations, as an ARMA process. First
of all notice that {∆Yt} is stationary, therefore also in this case {Yt} is DS. We have

y1 = b+ y0 + x1

y2 = b+ y1 + x2

= b+ b+ y0 + x1 + x2

. . .

yt = b+ . . .+ b︸ ︷︷ ︸
t times

+y0 + x1 + x2 + . . .+ xt︸ ︷︷ ︸
t−1 terms

Then44

yt = y0 + bt+ (1 + L+ . . .+ Lt−1)xt = y0 + bt+
1− Lt

1− L
xt.

The Wold representation of an ARMA stationary process is such that

xt = c(L)ut, ut ∼ wn(0, σ2u),

44Using 1
1−q

=
∑∞

k=0 q
k and

∑t−1
k=0 q

t = 1−qt

1−q
.
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where
∑∞

k=0 c
2
k < ∞ and c0 = 1. Notice that this requires ck → 0 as k → ∞. The coefficient

ck contains the effect of ut−k on xt, which is therefore vanishing in the long-run, ut is a transitory
shock for xt.

By substituting, we have

yt = y0 + bt+
1− Lt

1− L
c(L)ut (35)

Now, suppose first that c(L) = (1 − L)d(L), which implies that c(1) =
∑∞

k=0 ck = 0 and we
must have also

∑∞
k=0 d

2
k <∞ which implies dk → 0 as k →∞. Then, from (35) we have

yt = y0 + bt+
1− Lt

1− L
c(L)ut

= y0 + bt+ (1− Lt)d(L)ut

= (y0 − d(L)u0) + bt+ d(L)ut

= a+ bt+ d(L)ut

with d(L)ut stationary since it is an MA(∞) with square summable coefficients. But then {Yt}
would be TS. And the effect of ut−k on yt is given by dk, thus as k grows the effect becomes
smaller (it tends to zero as k →∞) and we say that the effect is only temporary. This proves that
the effect of innovations on stationary or TS processes is just transitory.

However, since we assumed that {Yt} is DS then we have that for a DS process we must
always have c(1) 6= 0 and from (35) we have

yt = y0 + bt+
1− Lt

1− L
c(L)ut

=

(
y0 −

1

1− L
u0

)
+ bt+

c(L)

1− L
ut

= a+ bt+ c(L)
∞∑
k=0

ut−k

= a+ bt+

∞∑
h=0

chL
h

( ∞∑
k=0

ut−k

)

= a+ bt+
∞∑
h=0

ch

( ∞∑
k=0

ut−k−h

)

= a+ bt+
∞∑
h=0

ch (ut−h + ut−h−1 + ut−h−2 + . . .)

where we set c0 = 1 as usual. Then in this case the effect of ut−k on yt is
∑k

h=0 ch, thus it never
vanishes (it tends to c(1) as k →∞) and we say the effect is permanent. The simple random walk
case corresponds to c(L) = 1 which implies c(1) = 1.
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The forecasts of yT+h given T and given T − 1 are (use the forecast of an MA process)

yT+h|T = bh+ yT + xT+1|T + . . .+ xT+h|T

= bh+ yT +
∞∑
k=1

ckuT+1−k + . . .+
∞∑
k=h

ckuT+h−k

= bh+ yT + (c1 + c2 + . . .+ ch)uT + (c2 + c3 + . . .+ ch+1)uT−1 + . . .

yT+h|T−1 = b(h+ 1) + yT−1 + xT |T−1 + . . .+ xT+h|T−1

= b(h+ 1) + yT−1 +
∞∑
k=1

ckuT−k + . . .+
∞∑

k=h+1

ckuT+h−k

= bh+ yT + (c1 + c2 + . . .+ ch+1)uT−1 + (c2 + c3 + . . .+ ch+2)uT−2 + . . .

The difference between the two forecasts is then

yT+h|T − yT+h|T−1 = yT − yT−1 − b+ (c1 + c2 + . . .+ ch)uT − c1uT−1 − c2uT−2 − . . .
= xT + (c1 + c2 + . . .+ ch)uT − c1uT−1 − c2uT−2 − . . .

=

∞∑
k=0

ckuT−k + (c1 + c2 + . . .+ ch)uT − c1uT−1 − c2uT−2 − . . .

= (1 + c1 + c2 + . . .+ ch)uT

and in the limit h→∞ we have

yT+h|T − yT+h|T−1 →

( ∞∑
k=0

ck

)
uT = c(1)uT

and the quantity c(1) is called measure of persistence of the process {Yt}. It is the change in the
long-run prediction due to a shock uT , divided by uT . Equivalently it is the change in long-run
prediction due to a shock uT of unitary value. Since it is a constant non-zero number the effect of
a shock at time T is persistent at any future point in time. In Figure 52 we show the forecasts of
the same random walk with drift made at T and at T − 1 and with

xt = 0.8xt−1 + ut, ut ∼ w.n.(0, 1)

i.e. with a unitary shock, i.e. σ2u = 1. In this case ck = 0.8k and the distance between the blue
and red lines is then the persistence

c(1) =

∞∑
k=0

ck =

∞∑
k=0

0.8k =
1

1− 0.8
= 5.

Notice that the persistence of a TS process is zero. That is, the long-run prediction does not
change with the last observation used. If yt is TS, yt = a+ bt+xt, with {Xt} stationary and zero
mean, then as h→∞

yT+h|T − yT+h|T−1 = (a+ b(T + h) + xT+h|T )− (a+ b(T + h) + xT+h|T−1)

= xT+h|T − xT+h|T−1

=

∞∑
k=h

ckuT+h−k −
∞∑

k=h+1

ckuT+h−k = chuT → 0
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Figure 52: Two forecasts of a DS process (random walk with drift) with trend b = 0.2 and xt is an
AR(1) with parameter φ = 0.8, when forecasting at T (red) and at T − 1 (blue).

since to have c(1) = 0 we must have ch → 0 as h → ∞. For example if {Xt} is a stationary
AR(1) we have ch = φh → 0 as h → ∞. Obviously, in a TS process if b = 0 then {Yt} is
stationary and again the persistence is zero.

Summing up, while the shock ut of a DS process has a permanent effect, namely the change
in the long-run prediction, the shock of a stationary or TS process has only a transitory effect.

A DS process {Yt} has a unit root, indeed

(1− L)yt = b+ (1− Lt)c(L)ut

= (b− c(L)u0) + c(L)ut

= k + c(L)ut

which is an ARMA with AR polynomial given by (1−L) that is with a root in z = 1. We also say
that {Yt} is an integrated process of order 1 denoted as Yt ∼ I(1), that is we must differentiate it
once to have a stationary process. As a consequence we have that ∆Yt ∼ I(0).

Now since the last term is the Wold representation of xt = c(L)ut, we can assume a causal
and invertible ARMA(p, q) model for xt = c(L)ut, such that we have Φ(L)xt = Θ(L)ut, then

(1− L)Φ(L)yt = k + Θ(L)ut, ut ∼ w.n.(0, σ2u)

where Φ(L) is of order p (with no roots inside or on the unit circle) and Θ(L) is of order q (with no
roots inside or on the unit circle) then we say that {Yt} is a casual and invertible ARIMA(p, 1, q)
to highlight the unit root.45 The constant term k accounts for the possible non-zero mean of {Yt}.

8.5 Beveridge-Nelson decomposition

Now, let us assume that b = 0 as we have seen that its effect is just to introduce a linear trend.
We now show that any I(1) process can be written as a random walk process {Pt} which is a
permanent component of {Yt}, i.e. it is I(1), plus a zero-mean stationary process {Tt} which is
the transitory component of {Yt} and therefore is I(0):

yt = Pt + Tt

45If we need d differences of {Yt} to have a stationary process then Yt ∼ I(d) and if {Xt} is an ARMA(p, q) then
{Yt} is an ARIMA(p, d, q).
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This decomposition is called Beveridge-Nelson decomposition (BN).

Notice first that for any polynomial c(z) of order q we can always find a polynomial c∗(z) of
order q − 1 such that46

c(z) = c(1) + c∗(z)(1− z).

Now, since by definition we have that {∆Yt} is stationary then it has a Wold representation

∆yt = c(L)ut, ut ∼ wn(0, σ2u),

where
∑∞

k=0 c
2
k < ∞ and c0 = 1. Recall from above that for an I(1) process we always have

c(1) 6= 0. Using the above decomposition of c(L) we have

∆yt = c(1)ut + c∗(L)(1− L)ut

and we see that we must have
∑∞

k=0 c
∗2
k <∞ because ∆yt is stationary, so that the long run effect

of ut on yt is only through c(1).

Then, define the random walk µt = µt−1 + ut or equivalently ∆µt = ut, then

yt = c(1)µt + c∗(L)ut = c(1)

[
µ0 +

t−1∑
k=0

ut−k

]
+ c∗(L)ut

and therefore Pt = c(1)µt which is a random walk, and Tt = c∗(L)ut which is a stationary process
(it is an MA(∞) with square summable coefficients). Given a time series we can decompose it
into a cycle and a trend by first fitting an ARMA on first differences and then computing the BN
decomposition using the estimated parameters. This is not the only possibility of decomposing
a series into a permanent and transitory component and a common critique is that the permanent
component might not be just a pure random walk.

Example: consider Yt ∼ I(1) such that

∆yt = ut + 0.5ut−1 = (1 + 0.5L)ut, ut ∼ w.n.(0, 1).

Then, c(1) = 1.5 and c∗(L) = −0.5, indeed

[c(1) + c∗(L)(1− L)]ut = 1.5ut − 0.5ut + 0.5ut−1 = ut + 0.5ut−1 = c(L)ut

and Pt = 1.5µt = 1.5
∑t−1

k=0 ut−k and Tt = −0.5ut.

8.6 Testing for unit roots

There are many ways to test for the presence of a unit root, here we just go through the main one
and its underlying idea. Consider the AR(1)

yt = φyt−1 + ut,

46The new polynomial is the remainder of the quotient c∗(L) = c(L)−c(1)
1−L

such that

c∗(z) =

∞∑
j=0

c∗jz
j , c∗j = −

q∑
i=j+1

ci.
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where ut ∼ wn(0, σ2). Then consider its first differences

∆yt = yt − yt−1 = (φ− 1)yt−1 + ut = ρyt−1 + ut,

where ρ = (φ − 1). Thus {Yt} has a unit root when ρ = 0. We might hope then to test this
hypothesis by means of a t-test as in usual linear regressions. Given the least squares estimator of
the above AR model we have the statistics

t =
ρ̂√

Var(ρ̂)

where Var(ρ̂) is the variance of the estimator (see Chapter 5). That is indeed correct however there
are some observations that we must make

1. The asymptotic distribution of t is not a Student-t nor asymptotically is Gaussian. It has
a particular shape and its called Dickey-Fuller distribution and its critical value have been
computed numerically. The statistic has zero mean under the null of unit root. When testing
we have to look at its left tail only (negative values) because under the alternative of no unit
root we want stationarity thus |φ| < 1, i.e. ρ < 0.

2. In the above model we are testing for {Yt} to be a random walk (when φ = 1) but that might
not be the case as ut might not be a white noise but an ARMA process. For example

yt = φ1yt−1 + . . .+ φpyt−p + εt

where εt ∼ wn(0, σ2). Using the fact that yt−k = yt−1 −
∑k−1

i=1 ∆yt−i we get

∆yt = ρyt−1 + γ1∆yt−1 + . . .+ γp−1∆yt−p+1 + εt

where ρ = (φ1 + . . .+φp)− 1 e γi = −(φi+1 + . . .+φp). Also in this case we have a unit
root if ρ = 0, indeed in that case we have

∆yt = γ1∆yt−1 + . . .+ γp−1∆yt−p+1 + εt

which shows that ∆yt is stationary and therefore yt ∼ I(1). A test based on the least squares
estimator of ρ can be run as before. This is called the Augmented Dickey-Fuller test. The
right number of lags to be included can be determined as usual by means of information
criteria. The rule is that we must add as many lags as those necessary to have εt white noise,
i.e. no serial dependence is left.

3. We might have as a starting model a random walk with drift, then the model to be considered
for the test is

∆yt = a+ ρyt−1 + γ1∆yt−1 + . . .+ γp∆yt−p+1 + εt

and yet another distribution for the test ρ = 0 has to be used. Notice that under the null a is
the slope of a linear trend.

An alternative derivation of these formulation are obtained using the polynomials in L, then
for the Augmented Dickey-Fuller we have

Φ(L)yt = εt
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thus we have a unit root if Φ(1) = 0. Then, we can write Φ(L) = 1 − B(L)L where B(L)L =∑p
k=1 φkL

k, therefore when we have a unit root we must have B(1) = 1. Now, the following are
all equivalent

Φ(L)yt = εt

Φ(L)yt − yt−1 = −yt−1 + εt

(1−B(L)L)yt − yt−1 = −yt−1 + εt

∆yt −B(L)yt−1 = −yt−1 + εt

∆yt = [B(L)− 1]yt−1 + εt

by applying the Beveridge-Nelson decomposition to H(L) = B(L)− 1 we have

∆yt = [B(1)− 1]yt−1 + (1− L)B∗(L)yt−1 + ut,

where B(1) =
∑p

k=1 φk, and B∗(L) =
∑p−1

k=1 γkL
k with γk = −

∑p
j=k+1 φk. We see that when

we have unit root in {Yt} the first term disappears.

8.7 Spurious regression

Consider two I(1) processes such that

yt = yt−1 + ηt

xt = xt−1 + et

where ηt and et are two white noises mutually independent. The two processes are random walk
and they are not dependent on each other. Therefore we might be tempted to consider the regres-
sion

yt = α+ βxt + ut

and test if β = 0. It can however be proved that in this case the usual asymptotic theory of OLS
does not apply and indeed we reject the null-hypothesis too often. As a consequence one might
think that actually yt and xt are related to each other even if they are not, when this happens we
are in presence of a spurious regression.

As an explanation consider the case in which β = 0, then we have yt = α + ut and therefore
if yt ∼ I(1) either ut ∼ I(0) but then we have a contradiction or if ut ∼ I(1) then the whole
asymptotic theory of linear regression does not apply, since we would have autocorrelated residu-
als.47 In other words, if yt is not related to xt then only ut can take into account the unit root in
yt.

A possible solution is to add lags of yt and of xt to the regression as for example

yt = α+ φyt−1 + β0xt + β1xt−1 + ut

in such a way that the lags of yt capture the persistence in yt thus making the errors less autocor-
related (they should be white noise). A case in which we can test for β = 0 in the usual way is
in presence of cointegration when indeed by hypothesis yt and xt are correlated and ut is a white
noise (see Chapter 11).

47In this case we would have

β̂ − β =

∑T
t=1 utxt∑T
t=1 x

2
t

but when ut ∼ I(1) as T →∞ both terms grow as T 2 and we cannot have consistency.
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9 Spectral analysis of time series

The aim of this Chapter is to be able to represent a stationary stochastic process {Xt} as a sum
(possibly infinite) of sinusoidal components, in order to highlight the periodicities present in the
data.

9.1 Fourier analysis

Let us start with a periodic deterministic real function of time g(t) with period 2π, i.e. g(t) =
g(t + 2π), then due to periodicity such function can be considered only for t ∈ [−π, π] and we
assume g ∈ L2([−π, π]), i.e. such that∫ π

−π
|g(θ)|2dθ <∞.

Then g(t) can be represented as a sum of (possibly infinite) sinusoids. Define the sum of k sinu-
soids as

gk(t) =

k∑
j=0

(aj cos(jt) + bj sin(jt)),

where aj = 1
π

∫ π
−π g(t) cos(jt)dt and bj = 1

π

∫ π
−π g(t) sin(jt)dt are the Fourier coefficients ob-

tained by projecting g(t) onto the orthonormal basis of the space made of cosine and sine func-
tions, and obviously b0 = 0. Then we can prove that∫ π

−π
[gk(t)− g(t)]2dt→ 0 k →∞.

So every function of period 2π which is also in L2 can be written with an infinite Fourier series.

Assume now the periodicity of g(t) is 2T for some T therefore g ∈ L2([−T, T ]), then define
a new function h(t) = g(tT/π), then h(t) is periodic with period 2π and has again a Fourier
series representation. In this way we can map any periodic fucntion to functions on the space
L2([−π, π]) where now for g(t) we use the basis cos(πjt/T ) and sin(πjt/T ), that is functions
with period 2T/j.

A period of a signal is also called wavelength and its inverse is called frequency which is
measured in number of cycles per unit of time. Therefore, a period of 2T/j corresponds to a
frequency fj = j/(2T ) therefore the basis functions read also as cos(2πfjt) and sin(2πfjt).
Another possibility is to use the angular frequency defined as θj = 2πfj .

If we then consider non-periodic functions, for an arbitrary T we can define a new function

g∗(t) = g(t), g∗(t+ 2kT ) = g∗(t) for k = 1, 2, 3, . . .

which is certainly periodic, therefore, it has a Fourier series

g∗(t) =

∞∑
j=−∞

(aj cos(2πfjt) + bj sin(2πfjt)), b0 = 0,

and using the orthonormal basis {ei2πfjt} in L2([−T, T ]) it can be written also as

g∗(t) =
∞∑

j=−∞
cje

i2πfjt
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where i is the imaginary unit with

cj =
1

2T

∫ T

−T
g∗(t)e−i2πfjtdt

are known as the Fourier coefficients. Since g(t) = g∗(t) over the interval [−T, T ] we also have
(recall fj = j/2T hence fj − fj−1 = 1/2T )

g(t) = g∗(t) =
∞∑

j=−∞

[∫ T

−T
g∗(t)e−i2πfjtdt

]
ei2πfjt(fj − fj−1)

by letting T → ∞ (that is allowing for no periodicities), we have the Fourier integral (or Inverse
Fourier transform)

g(t) =

∫ ∞
−∞

g̃(f)ei2πftdf

and the Fourier transform
g̃(f) =

∫ ∞
−∞

g(t)e−i2πftdt.

We say that g(t) and g̃(f) are a Fourier pair. Notice that we have written g(t) as a sum of infinite
sinusoids defined over a continuum of frequencies.

Now notice that if t ∈ Z, i.e. g is defined on a discrete time scale (as it will be for our time
series), then the maximum sampling frequency, is f = 1/2, indeed in one interval of time ∆t
we can have maximum 1/2 cycle (otherwise the process will not change). This is called Nyquist
frequency and in real unit of measures is given by fN = 1/(2∆t) where ∆t is the smallest interval
of time over which we collect observations. In this case the Fourier integral of our signal will be
defined as

g(t) =

∫ 1/2

−1/2
g̃(f)ei2πftdf, t ∈ Z,

while the Fourier transform becomes

g̃(f) =
∞∑

t=−∞
g(t)e−i2πft, t ∈ Z,

which is called Discrete Fourier transform. This is the formula we want now to generalise for the
case in which g(t) is the stochastic time series {Xt}.

9.2 Spectral representation

9.2.1 Real valued processes

Start considering a stationary real valued time series process {Xt} which contains a periodic
sinusoidal component with a known frequency f , then

xt = R cos(2πft+ φ) + zt

where {Zt} is a stationary process (random), R is called amplitude and φ is called phase. The
angle (2πft+ φ) is measured in radians such that π = 180o. Then θ = 2πf is called the angular
frequency, while f is the number of cycles per unit of time. The period of a signal, called also
wavelength, is given by 1/f = 2π/θ.
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In practice variation in time can be caused by k different frequencies, so we write

xt =

k∑
j=1

Rj cos(2πfjt+ φj) + zt (36)

For example sales or signals with seasonality components of period 4 months have always a com-
ponent with frequency 1/4 superimposed on the variation given by the maximum sampling fre-
quency, that is f = 1/2.

Notice that (36) is not stationary since it has a time varying mean (all parameters are constant).
So it is customary to model time series using random coefficients Rj such that they are uncorre-
lated and have zero mean. In this way {Xt} is stationary (but in general not ergodic). Using the
fact that cos(2πfjt+ φj) = cos(2πfj) cos(φj) + sin(2πfj) sin(φj) we write (36) as

xt =
k∑
j=1

(aj cos(2πfj)) + bj sin(2πfj)) + zt

where aj = Rj cos(φj) and bj = Rj sin(φj) are new random coefficients with zero mean and still
uncorrelated.

Actually as we have seen in the deterministic case the number of frequencies in {Xt} might
be infinite and they might be continuos (and that would be the case of a generic stationary process
where zt is capturing the non purely periodic component). By letting k →∞ it can be proved that
any discrete time real valued stationary process can be written as

xt =

∫ 1/2

0
cos(2πft)du(f) +

∫ 1/2

0
sin(2πft)dv(f),

where u(f) and v(f) are uncorrelated random variables defined on [0, 1/2] with values in R and
with random increments (see below). This is the spectral representation of the process {Xt} and
it involves stochastic integrals. What is important here is to recognize that {Xt} can be written as
linear combination of infinite orthogonal sinusoids defined on a continuum of frequencies.

9.2.2 Complex valued processes

The above result is a particular case of the general case obtained for complex valued stochastic
process. Recall that for two complex valued random variables X,Y we have

Cov(X,Y ) = E[XY ]− E[X]E[Y ]

where Y is the complex conjugate of Y .

Start with {Z(f)} which is a stochastic process indexed by f ∈ [−1/2, 1/2] and with values
in C. Consider infinitely small jumps of {Z(f)}, defined as

dZ(f) =

{
Z(f + df)− Z(f) f < 1/2

0 f = 1/2.

The properties of {Z(f)} are the following

1. E[dZ(f)] = 0 for any |f | ≤ 1/2;
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2. for any two frequencies f, f ′ ∈ [−1/2, 1/2] such that f 6= f ′ Cov(dZ(f),dZ(f ′)) =
E[dZ(f)dZ(f ′)] = 0;

3. define dSI(f) = E[|dZ(f)|2] = E[dZ(f)dZ(f)] > 0, this is called integrated spectrum.

Then if the intervals [f, f +df ] and [f ′, f ′+df ′] are non-overlapping subintervals of [−1/2, 1/2]
by property (2) above the process Z(f) is said to have orthogonal increments. Notice that dZ(f)
is a stochastic process that makes sense only if integrated.

Let {Xt} be a stationary zero mean (possibly complex-valued) stochastic process with index
t ∈ Z. The spectral representation theorem states that there exists a process {Z(f)} with orthog-
onal increments defined on [−1/2, 1/2] such that

xt =

∫ 1/2

−1/2
ei2πftdZ(f), t ∈ Z. (37)

Using the polar form of a complex number dZ(f) = |dZ(f)|ei arg(dZ(f)), this means that we can
represent any discrete complex-valued stationary process as an infinite sum of complex exponen-
tials at frequencies f with associated random amplitudes |dZ(f)| and random phases arg(dZ(f)):

xt =

∫ 1/2

−1/2
ei2πft|dZ(f)|ei arg(dZ(f))

=

∫ 1/2

−1/2
cos(2πft+ arg(dZ(f)))|dZ(f)|+ i

∫ 1/2

−1/2
sin(2πft+ arg(dZ(f)))|dZ(f)|.

9.3 Spectral density

Now in practical situation instead of working with u(f) and v(f) or Z(f) we introduce a new
function SI(f), called the power spectral distribution (or integrated spectrum). Then, we can
compute the acvs (recall that in general {Xt} is complex valued)

γh = E[XtXt−h] = E

[(∫ 1/2

−1/2
ei2πftdZ(f)

)(∫ 1/2

−1/2
e−i2πf

′(t−h)dZ(f ′)

)]

=

∫ 1/2

−1/2

∫ 1/2

−1/2
ei2π(f−f

′)tei2πf
′hE[dZ(f)dZ(f ′)]

=

∫ 1/2

−1/2
ei2πfhE[dZ(f)dZ(f)]

=

∫ 1/2

−1/2
ei2πfhdSI(f), h ∈ Z.

Let us assume that SI(f) is differentiable everywhere then there exists a function S(f) such that

E[|dZ(f)|2] = dSI(f) = S(f)df

notice that this implies that S(f) ≥ 0. Equivalently

S(f) =
dSI(f)

df
,
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which is called the spectral density function or simply spectrum. Hence the acvs are given by

γh =

∫ 1/2

−1/2
ei2πfhS(f)df, h ∈ Z,

and since γh is deterministic (and discrete) we have that its Discrete Fourier transform is exactly
the spectral density

S(f) =

∞∑
h=−∞

γhe
−i2πfh, f ∈ [−1/2, 1/2].

The acvs and the spectral density are two equivalent ways of describing a stationary process.
Notice that for this definition to make sense we must have

∑∞
h=−∞ |γh| <∞.

If the spectral density exists, then S(f)df represents the contribution to the total variance of
{Xt} given by the components with frequency in [f, f + df ]. Indeed,

Var(Xt) = γ0 =

∫ 1/2

−1/2
S(f)df,

which is also called the power.

The following properties of the integrated spectrum can be derived using the spectral density

1. SI(f) =
∫ f
−1/2 S(f ′)df ′;

2. 0 ≤ SI(f) ≤ γ0 since S(f) ≥ 0;

3. SI(−1/2) = 0, SI(1/2) = γ0;

4. if f < f ′, then SI(f) ≤ SI(f ′).

Given these properties it is clear that SI(f) represents the contribution to the total variance of {Xt}
given by the components with frequency smaller than f . Moreover, SI(f) has all the properties
of a cdf (up to a scale of γ0), thus it is also called spectral distribution and for this reason S(f) is
called spectral density (see the relation between cdf and pdf). Finally

S(−f) =
∞∑

h=−∞
γhe
−i2π(−f)h

=
∞∑

h=−∞
γh(cos(−2πfh)− i sin(−2πfh)), set k = −h

=

∞∑
k=−∞

γ−k(cos(2πfk)− i sin(2πfk))

=

∞∑
k=−∞

γk(cos(2πfk)− i sin(2πfk))

=
∞∑

k=−∞
γke
−i2πfk = S(f)

Therefore, the spectral density is symmetric about f = 0.
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Any SI(f) is usually decomposed as

SI(f) = SI1(f) + SI2(f)

where SI1(f) is a non-decreasing continuos function, and SI2(f) is a non-decreasing discrete step
function. This decomposition corresponds to the Wold decomposition of {Xt} where S1(f) is
related to the purely non-deterministic components, while SI2(f) is related to the deterministic
components. In particular,

1. SI1(f) is absolutely continuous, i.e. its derivative exists for almost all f and is equal to the
spectral density. For a purely non-deterministic process we then have SI(f) = SI1(f) and
the density S(f) is absolutely integrable, thus, we can prove that γh → 0 as |h| → ∞ (this
is an application of the Riemann-Lebesgue lemma). This result is a mixing condition for
stationary process with purely continuos spectrum.

2. SI2(f) is a step function, as an example consider the case of one component of {Xt} with
frequency f0 > 0

xt = R cos(2πf0t)

where R has zero mean and variance σ2.48 Then,

γh = σ2 cos(2πf0h)

= σ2
cos(2πf0h) + i sin(2πf0h) + cos(−2πf0h) + i sin(−2πf0h)

2

=
∑

j=−1,1

σ2j
2
ei2πfjh, h ∈ Z.

where σ2j = σ2−j = σ2 and f1 = −f−1 = f0. Then, since

γh =

∫ 1/2

−1/2
ei2πfhdSI(f) =

∑
j=−1,1

σ2j
2
ei2πfjh

we must have

SI(f) =


0 f ∈ [−1/2,−f0)
σ2
−1

2 f ∈ [−f0, f0)
σ2
−1

2 +
σ2
1
2 f ∈ [f0, 1/2]

SI(f) has two jumps in −f0 and f0 which summed give the expected squared amplitude.

Hereafter we consider only the purely non-deterministic case SI2(f) = 0.

As an example. Consider a speech signal of length T = 8000 as in Chapter 1 and shown in
Figure 53 corresponding to the syllable “ma” and sampled at a frequency of Hertz (Hz). Therefore,
since 1Hz = 1sec−1, the signal has a duration of 1 second. We see that is composed of many
wavelets each corresponding to a different periodicity. If we plot the acs of the signal we have a
periodic behavior with the main period of roughly h = 25, that is corresponding to a frequency
f = 1/25 = 0.04. An estimator of the spectral density (the scaled periodogram introduced below)
has indeed a peak at f ' 0.04.

We can also compute the spectral density of known processes.
48Recall that a deterministic component is such that Psdt = dt for any s, t and this is the case for terms like

R cos(2πf0t), even if R is random.
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Figure 53: Top left: speech signal; top right: autocorrelation: bottom: scaled periodogram.

1. White noise {ut}. Since γuh = 0 for |h| 6= 0 we immediately have

Su(f) =

∞∑
h=−∞

γuhe
−i2πfh = γu0 ,

a white noise has a constant spectrum and for this reason is called white (the white light is
the sum of all colours, i.e. of all frequencies of light). The spectrum of a white noise is
therefore not informative.

2. MA(1) process
xt = ut + θut−1

where ut is a zero mean white noise with variance σ2u. Then, we have γx1 = γx−1 = θσ2u and
γx0 = (1 + θ2)σ2u, and γh = 0 otherwise, then

Sx(f) =
∞∑

h=−∞
γxhe
−i2πfh

= (1 + θ2)σ2u + θσ2u(e−i2πf + ei2πf )

= (1 + θ2 + 2θ cos(2πf))σ2u, f ∈ [−1/2, 1/2]

Therefore, if θ < 0 the spectral density is minimum at f = 0 and maximum at f = 1/2,
viceversa if θ > 0 the spectral density is maximum at f = 0 and minimum at f = 1/2 (see
Figure 54). Notice that the true spectral density and the one estimated via the periodogram
differ substantially, we need a better estimation method (see next).

9.4 Linear filters

We need a general rule to compute spectra of ARMA processes. In order to this we use the notion
of linear digital filterL. A filter which transforms and input sequence {xt} into an output sequence
{yt} is called linear time-invariant (LTI) digital filter of it satisfies the properties
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Figure 54: Left: MA(1) with θ = 0.5; right: MA(1) with θ = −0.5. Red: true spectral density;
black: periodogram.

1. Scale preservation: L({αxt}) = αL({xt});

2. Superposition: L({x1t + x2t}) = L({x1t}) + L({x2t});

3. Time invariance: if L({xt}) = {yt} then L({xt+h}) = {yt+h} for any h ∈ Z and {xt+h}
is a sequence with t-th element xt+h.

Suppose now that the input sequence is {ξf,t} = {ei2πft} and let {yf,t} = L({ξf,t}) for
f ∈ [−1/2, 1/2] (a frequency), then by properties (1) and (3) above

{yf,t+h} = L({ξf,t+h}) = L({ei2πfhξf,t}) = ei2πfh{yf,t}, h ∈ Z.

In particular, for t = 0 we have yf,h = ei2πfhyf,0, the first element of the output sequence and if
we set h = t, we have

yf,t = ei2πftyf,0, t ∈ Z

which is a generic element of the output sequence. So when {ξf,t} = {ei2πft} is the input of an
LTI digital filter, the output is the same function {ξf,t} but multiplied by a constant yf,0 which is
independent of time but depends on the frequency f .

The function G(f) = yf,0 is called transfer function or frequency response of L. Since this is
in general a complex valued function we can write it using its polar form as

G(f) = |G(f)|eiθ(f), θ(f) = arg(G(f)).

The absolute value of the transfer function, |G(f)| is also called gain. Moreover, G(f) is a de-
terministic function and it is the Discrete Fourier transform of a discrete deterministic signal {gu}
(see Section 9.1) such that

G(f) =

∞∑
u=−∞

gue
−i2πfu, gu =

∫ 1/2

−1/2
G(f)ei2πfudf, u ∈ Z, f ∈ [−1/2, 1/2], (38)

So G(f) and gu are a Fourier pair. Then we have

L({ei2πft}) = {ei2πft}G(f) =
∞∑

u=−∞
gu{ei2πf(t−u)}. (39)

The result in (39) can be generalised to any stochastic sequence {Xt} and any LTI digital filter
thus we can write

L({Xt}) =
∞∑

u=−∞
gu{Xt−u}.
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In this case the deterministic sequence {gu} is called impulse response sequence and its elements
are the coefficients of a polynomial in the lag operator

G(L) =

∞∑
u=−∞

guL
u, (40)

for this reason we sometime call these polynomials filters (see Chapter 3.1).

Now, for a generic LTI digital filter define the elements of the output sequence as

Yt =

∞∑
u=−∞

guXt−u = G(L)Xt (41)

and recall the spectral representation theorem

Xt =

∫ 1/2

−1/2
ei2πftdZX(f), Yt =

∫ 1/2

−1/2
ei2πftdZY (f),

then from (39) and (41) we have

Yt =

∫ 1/2

−1/2
ei2πftdZY (f) =

∞∑
u=−∞

gu

∫ 1/2

−1/2
ei2πf(t−u)dZX(f)

=

∫ 1/2

−1/2
ei2πftG(f)dZX(f) (42)

so that
dZY (f) = G(f)dZX(f)

and the integrated spectrum of {Yt} is

E[|dZY (f)|2] = |G(f)|2E[|dZX(f)|2] ⇐⇒ SIY (f) = |G(f)|2SIX(f),

and if the spectral density of {Xt} and {Yt} exists then we also have

SY (f) = |G(f)|2SX(f).

This relation gives us a rule to compute spectral densities of ARMA processes: once we have
the impulse response sequence, we can compute the gain (absolute value of the Discrete Fourier
transform of the impulse response) and we immediately have the spectral density of the filtered
process. Notice that G(f) is computed straightforwardly using (38) and comparing it with (40).
Indeed once we have the polynomial G(L) we just have to replace L with e−i2πf , i.e.

G(f) = G(e−i2πf ). (43)

Some examples follow.

1. MA(q)
xt = ut + θ1ut−1 + . . .+ θqut−q,

where ut is zero mean white noise with variance σ2u. Notice that the MA is obtained as a
LTI digital filter acting on {ut}:

{Xt} = LMA({ut}) =

q∑
k=0

θk{ut−k}

125



Then G(f) is given by applying the filter LMA to {ei2πft} (see (38))

LMA({ei2πft}) =

q∑
k=0

θk{ei2πf(t−k)} = {ei2πft}
q∑

k=0

θke
−i2πfk

︸ ︷︷ ︸
G(f)

Or more easily define

Θ(L) =

q∑
k=0

θkL
k

such that xt = Θ(L)ut, then by using (43) we have

G(f) = Θ(e−i2πf ) =

q∑
k=0

θke
−i2πfk.

Then, since ut is a white noise Su(f) = σ2u and the spectral density of {Xt} is given by

SX(f) = |G(f)|2Su(f) = σ2u

∣∣∣∣∣
q∑

k=0

θke
−i2πfk

∣∣∣∣∣
2

.

Define z = e−i2πf , then z̄ = z−1 and49

|G(f)|2 = Θ(z)Θ(z−1) = Θ(e−i2πf )Θ(ei2πf ).

So for example when q = 1 we have the same result as in the previous section:

|G(f)|2 = (1 + θ1z)(1 + θ1z
−1)

= 1 + θ21 + θ1(z + z−1)

= 1 + θ21 + θ1(e
−i2πf + ei2πf )

= 1 + θ21 + θ1 (cos(2πf) + i sin(2πf) + cos(2πf)− i sin(2πf))

= 1 + θ21 + 2θ1 cos(2πf).

Moreover, notice that if α is a root of Θ(z) then α−1 is a root of Θ(z−1). Thus for an
invertible (in the past) MA we must have |α| > 1, but there exists also a non invertible MA
with polynomial Θ(z−1) such that it has the same gain and the same spectral density. Take
as an example the MAs

xt = (1 +
1

2
L)ut = Θ1(L)ut, xt = (1 + 2L)

1

2
ut = Θ2(L)vt,

where Var(ut) = σ2u and therefore Var(vt) = σ2
u
4 . The spectral densities are identical, indeed

SX1(f) = σ2u|G1(f)|2 = σ2uΘ1(z)Θ1(z
−1)

= σ2u(1 +
1

2
z)(1 +

1

2
z−1) = σ2u(1 +

1

4
+

1

2
(z + z−1))

SX2(f) =
σ2u
4
|G2(f)|2 =

σ2u
4

Θ2(z)Θ2(z
−1)

= σ2u(
1

2
+ z)(

1

2
+ z−1) = σ2u(

1

4
+ 1 +

1

2
(z + z−1))

We cannot distinguish from the spectrum if an MA is invertible or not, the same result we
had for acvs.

49Recall that for a complex number z ∈ C we have |z|2 = zz̄.
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2. AR(p)
xt = ut + φ1xt−1 + . . .+ φpxt−p,

where ut is zero mean white noise with variance σ2u. Notice that the AR is obtained as a LTI
digital filter acting on {Xt}:

{ut} = LAR({Xt}) = {Xt} −
p∑

k=1

φk{Xt−k}

Then G(f) is given by applying the filter LAR to {ei2πft} (see (38))

LAR({ei2πft}) = {ei2πft} −
p∑

k=1

φk{ei2πf(t−k)} = {ei2πft}

(
1−

p∑
k=1

φke
−i2πfk

)
︸ ︷︷ ︸

G(f)

Equivalently, define the polynomial

Φ(L) = 1−
p∑

k=1

φkL
k

such that Φ(L)xt = ut. Then, the associated G(f) is (using (43))

G(f) = Φ(e−i2πf ) = 1−
p∑

k=1

φke
−i2πfk.

and the spectral density is

SX(f) =
σ2u

|G(f)|2
=

σ2u∣∣1−∑p
k=1 φke

−i2πfk
∣∣2 .

Consider the case p = 1 and set z = e−i2πf , then

|G(f)|2 = (1− φ1z)(1− φ1z−1)
= 1 + φ21 − φ1(z + z−1)

= 1 + φ21 − φ1(e−i2πf + ei2πf )

= 1 + φ21 − 2φ1 cos(2πf).

Notice that since |z| = 1 the inverse of the previous expression is always well defined unless
|φ| = 1, i.e in case of uint root, when the process is non-stationary (causality being a time
related concept is not required here) see Figure 55. The spectral density is

SX(f) =
σ2u

1 + φ21 − 2φ1 cos(2πf)
.

Consider the an AR(2) with two complex roots and for a causal process which in polar form
can be written as

z1,2 =
1

r
e±i2πf

′
, 0 < r < 1.
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Figure 55: Top left: AR(1) with φ = 0.5; top right: AR(1) with φ = −0.5; bottom left: AR(1)
with φ = 2; bottom right: AR(1) with φ = −2.

The characteristic polynomial of the AR(2) is written in terms of these roots as

1− φ1z − φ2z2 =

(
z

z1
− 1

)(
z

z2
− 1

)
= (rz − e−i2πf ′)(rz − ei2πf ′)

= r2z2 − zr(e−i2πf ′ + ei2πf
′
) + 1

= r2z2 − 2zr cos(2πf ′) + 1. (44)

We can then write the AR(2) model as (replace z with L)

xt = 2r cos(2πf ′)xt−1 − r2xt−2 + ut

In this case {Xt} has a periodic component of frequency f ′ (this can happen only for com-
plex roots which come in pairs, therefore not for an AR(1) which has only one real root).
The spectrum is (replace z with e−i2πf )

SX(f) =
σ2u

|1− φ1e−i2πf − φ2e−i4πf |2
=

σ2u
|re−i2πf − e−i2πf ′ |2 |re−i2πf − ei2πf ′ |2

Then

|re−i2πf − e−i2πf ′ |2 = (r − ei2π(f ′−f))(r − e−i2π(f ′−f)) = r2 − 2r cos(2π(f ′ − f)) + 1

and this gives

SX(f) =
σ2u

(r2 − 2r cos(2π(f ′ − f)) + 1)(r2 − 2r cos(2π(f ′ + f)) + 1)

The maximum of the spectrum is when the denominator is minimum, which for r close to
1 occurs when f = ±f ′, the spectrum becoming larger as r → 1 (from below) an example
is in Figure 56. Generally speaking complex roots, which correspond to an oscillatory (or
cyclical or periodic) behaviour, induce a peak in the spectrum indicating the frequency f ′ of

128



0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

30

f

0 5 10 15 20
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Lag

S
a

m
p

le
 A

u
to

c
o

rr
e

la
ti
o

n

Figure 56: Left: AR(2) spectra, solid: with r = 0.7 and f ′ = 1/4; dashed: with r = 0.9 and
f ′ = 1/4; Right: autocorrelation for the case r = 0.9 and f ′ = 1/4.

the cycle. The larger is r (the more persistent is the process, as is closer to non-stationarity)
the more dominant becomes the cycle. This is a pseudo-cyclical behaviour since a purely
deterministic behaviour would have a sharp spike, i.e. a line in the spectrum and acvs would
never decline to zero.

3. ARMA(p, q)
Φ(L)xt = Θ(L)ut,

where ut is zero mean white noise with variance σ2u. Define yt = Θ(L)ut, then

|Gφ(f)|2SX(f) = SY (f)

and
SY (f) = |Gθ(f)|2σ2u

which gives

SX(f) = σ2u
|Gθ(f)|2

|Gφ(f)|2
= σ2u

∣∣∑q
k=0 θke

−i2πfk∣∣2∣∣1−∑p
k=1 φke

−i2πfk
∣∣2

4. Differencing. Let {Xt} be stationary with spectral density SX(f), and let Yt = Xt −Xt−1
which defines a LTI digital filter L({Xt}) = {Yt}, such that

L({ei2πft}) = {ei2πft − ei2πf(t−1)} = {ei2πft}(1− e−i2πf ) = {ei2πft}G(f)

which is obviously an AR(1) filter with parameter φ = 1. The associated gain is (recall that
|eiπfk| = 1 for any k ∈ Z)

|G(f)|2 = |1− e−i2πf |2 = |e−iπf (eiπf − e−iπf )|2 = |e−iπf2i sin(πf)|2 = 4 sin2(πf).

The spectral density of {Yt} is then

SY (f) = |G(f)|2SX(f) = 4 sin2(πf)SX(f).

As an example consider the case in which {Xt} is a white noise with mean zero and variance
σ2, then

SY (f) = 4 sin2(πf)σ2.

which is the spectral density of an MA(1) with parameter θ = −1. Indeed, from the general
MA(1) formula we have50

SY (f) = 1 + θ2 + 2θ cos(2πf) = 2(1− cos(2πf)) = 2 sin2(2πf) = 4 sin2(πf).
50Use the relation cos(2a) = cos2(a)− sin2(a) = 1− 2 sin2(a) since sin2(a) + cos2(a) = 1.
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9.5 Estimation

9.5.1 Finding periodicity in the data

10 Multivariate stochastic processes

We extend all basic definitions and results of stationarity and of ARMA processes to vector pro-
cesses.

10.1 Vector stochastic process

Given a probability space (Ω,F , P ) an n-dimensional random vector X is a function

X : Ω→ S.

where S is the state space, i.e. the space of the values taken by the random variables. For us it
will always be S = Rn. The choice of state space is specified by the physical situation being
described.

An n-dimensional stochastic process associates a random vector to each t ∈ T

X : t 7→ Xt.

where T is the set of values of the time index, and for us it will always be T = Z. We use the
notation {Xt, t ∈ Z} for the n-dimensional stochastic process. This process has n components
given by the processes {Xit, t ∈ Z}, for i = 1, . . . , n.

In principle for any integer s and t1 ≤ t2 ≤ . . . ≤ ts, we need to specify the joint probability
distribution function of Xt1 . . .Xts which takes values on a space of dimension ts×n. As for the
case n = 1 we will just consider a theory based only on second moments which in this case are a
more rich set of moments. In particular, we have the n-dimensional mean vector

E[Xt] =

 E[X1t]
...

E[Xnt]

 , t ∈ Z,

and the n× n matrices of the second moments

E[XtX
′
t+h] =

 E[X1tX1t+h] . . . E[X1tXnt+h]
...

. . .
...

E[XntX1t+h] . . . E[XntXnt+h]

 , t, h ∈ Z,

so out of the diagonal we have the dependencies among the different components of {Xt}. The
matrix

Γh = Cov(Xt,Xt+h) = E[XtX
′
t+h]− E[Xt] E[X′t+h]

is the lag h autocovariance matrix of {Xt}.
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10.2 Weak stationarity

The n-dimensional vector process {Xt} is weakly stationary if for any integer s and t1 ≤ t2 ≤
. . . ≤ ts, and all integers k, all the joint moments of order 1 and 2 of {Xt1 . . .Xts} exist, are
finite, and equal to the corresponding joint moments of {Xt1+k . . .Xts+k}. Thus,

1. E[Xt] = µ does not depend on t;

2. E[XtX
′
t+k] depends only on |k|, therefore

E[XtX
′
t+k] = E[Xt−kX

′
t] = E[XtX

′
t−k]

′,

and then Γk = Γ′−k.

The stationarity of each of the components of {Xt} does not imply stationarity of the vector {Xt}.
On the other hand stationarity of the vector {Xt} requires that the components of the vector are
also stationary and co-stationary.

Example of co-stationarity. Consider the two processes {Xt} and {Yt}, formed from the sum
and difference of two successive values of a white noise process:

xt = wt + wt−1, yt = wt − wt−1, wt ∼ w.n.(0, 1).

We have, E[Xt] = E[Yt] = 0, then

γx0 = E[(wt + wt−1)
2] = 2 = γy0 .

Moreover

γx1 = Cov(Xt, Xt+1) = E[XtXt+1]

= E[(wt + wt−1)(wt+1 + wt)] = E[w2
t ] = 1 = γx−1.

Similarly, we can show that γy1 = −1 = γy−1. Also, we can define the cross-covariance at lag 1 as

γxy1 = Cov(Xt+1, Yt) = E[(wt+1 + wt)(wt − wt−1)] = E[w2
t ] = 1

and

γxy−1 = Cov(Xt−1, Yt) = E[(wt−1 + wt−2)(wt − wt−1)] = −E[w2
t−1] = −1

which illustrates the non-symmetric behavior about zero of the cross-autocovariance. Moreover

γxy0 = Cov(Xt, Yt) = E[(wt + wt−1)(wt − wt−1)] = 0.

So, we finally obtain:

ρxyk =


−1/2 if k = −1
+1/2 if k = +1

0 otherwise.

And for the 2-dimensional process Zt = (Xt, Yt)
′ we have

ΓZ0 =

(
2 0
0 2

)
, ΓZ1 =

(
1 1
−1 1

)
= ΓZ

′
−1
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10.3 Vector white noise

The n-dimensional stationary process {Xt} is a white noise if E[Xt] = µ which does not depend
on time and Γk = 0n×n for all k 6= 0. We denote the process as Xt ∼ w.n.(µ,Γ0).

A vector whose components are white noise is not necessarily a white noise. For example, let
ut be a scalar white noise with zero-mean and variance σ2u as in previous chapters. Then consider
the bidimensional process Xt = (ut ut−1)

′. We have

Γ0 =

(
σ2u 0
0 σ2u

)
, Γ1 =

(
0 0
σ2u 0

)
,

which shows that {Xt} is not a white noise.

Consider for n = 2 the covariance matrix of a generic process {Xt}

Γ0 =

(
σ21 σ12
σ12 σ22

)
,

then the definition of vector white noise has no implications for this matrix since we are not
requiring that σ12 = 0.

The definition of vector white noise does not imply that Γ0 has maximum rank either. This
however will be assumed in this chapter, if {Xt} is a white noise then Γ0 is non-singular.

10.4 Vector moving average

Given an n-dimensional zero-mean vector white noise ut = (u1t . . . unt)
′ with covariance matrix

Γu0 , then a moving average of ut of order m is a process {Xt} with realisations

xt =
m∑
k=0

Akut−k = A0ut + A1ut−1 + . . .+ Amut−m

where Ak are n × n matrices of coefficients.51 Therefore, each component of {Xt} depends on
all the components of ut.

We usually assume that A0 is non-singular and as a consequence the moving average can be
rewritten as

xt = vt +
m∑
k=1

Bkvt−k = vt + B1ut−1 + . . .+ Bmut−m

where vt = A0ut and Bk = AkA
−1
0 . We can then prove that vt is also a vector white noise since

E[vtv
′
t−k] = A0E[utu

′
t−k]A

′
0

which is zero unless k = 0 because ut is a white noise.

Consider the lagged MA

xt−1 = A0ut−1 + A1ut−2 + . . .+ Amut−m−1

51Two-sided vector moving averages are also possible: xt =
∑m

k=−m Akut−k.
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Since by construction E[Xt] = 0n, for example the lag 1 acvs of {Xt} is then computed as

Γ1 = E[XtX
′
t−1] = AmΓu0A′m−1 + . . .+ A2Γ

u
0A′1 + A1Γ

u
0A′0.

As in the scalar case vector moving averages are always stationary.

Consider now a more general case of infinite vector moving averages

xt =
∞∑
k=0

Akut−k (45)

then each component of {Xt} has realisations

xjt =

∞∑
k=0

n∑
h=1

ajh,kuh,t−k, j = 1, . . . , n,

and in order for this process to have finite variance

Var(xjt) =
∞∑
k=0

n∑
h=1

n∑
`=1

ajh,kaj`,kCov(uht, u`t)

we need for any j = 1, . . . , n

∞∑
k=0

(
n∑
h=1

ajh,k

)2

≤
∞∑

k=−∞

n∑
h=1

a2jh,k <∞.

which is equivalent to asking
∞∑
h=0

‖Ak‖2 <∞.

10.5 Vector autoregression - VAR

10.5.1 VAR(1)

As in the scalar case the infinite vector moving average is equivalent to a vector autoregression of
order 1, VAR(1) which has realisations

xt = Axt−1 + ut,

where ut is an n-dimensional zero-mean vector white noise with covariance matrix Γu0 . In the
case n = 2 the two components of {Xt} have realisations

x1t = a11x1t−1 + a12x2t−1 + u1t

x2t = a21x1t−1 + a22x2t−1 + u2t,

where aij is the generic i, j-th entry of A. By iterating we have

xt = Axt−1 + ut

= A[Axt−2 + ut−1] + ut

= A2xt−2 + Aut−1 + ut
...

= ut + Aut−1 + A2ut−2 + . . .

=
∞∑
k=0

Akut−k
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We now need to find the conditions for the above process to have a finite variance.

Given the square n× n matrix A, a vector v 6= 0n is called an eigenvector of A if Av = λv
where λ is a real number, i.e. if v and the transformed vector Av are parallel. The number λ,
which is uniquely determined by v is the eigenvalue associated with v. Alternatively, λ is an
eigenvalue of A if

det(A− λIn) = 0. (46)

Since the matrix A − λIn is singular (it has zero determinant), there exists v 6= 0n such that
(A − λIn)v = 0n, i.e. such that Av = λv. Equation (46) is an algebraic equation of degree n,
hence the matrix A has n eigenvalues and eigenvectors (they can be complex numbers).

Thus, for j = 1, . . . , n we have
Avj = λjvj ,

which can be rewritten as

AV = VΛ, V = (v1 . . .vn),′ Λ =

 λ1 . . . 0
...

. . .
...

0 . . . λn


that is

A = VΛV−1.

This is known as diagonalization of a matrix. Every matrix A (we assume here that the eigenvalues
are distinct) is equivalent to a diagonal matrix, with the eigenvalues of A on the diagonal. Notice
that

As = VΛsV−1, Λs =

 λs1 . . . 0
...

. . .
...

0 . . . λsn

 .

Now the infinite vector moving average can be written as

xt = ut + VΛV−1ut−1 + VΛ2V−1ut−2 + . . .

or defining yt = V−1xt and vt = V−1ut we have

yt = vt + Λvt−1 + Λ2vt−2 + . . .

and each component of {Yt} is not dependent on the others indeed since Λ is diagonal we have

yit = vit + λivit−1 + λ2i vit−2 + . . . =
∞∑
k=0

λki vit−k = λiyit−1 + vit,

which is an AR(1) process and it is stationary and causal as long as |λi| < 1. Moreover, {Xt} is
stationary if and only if {Yt} is stationary.52 Then we must have that all eigenvalues of the matrix
A must be inside the unit circle, i.e. such that |λi| < 1. Diagonalization of A transforms a vector
problem into a collection of scalar problems.

Alternatively we can start from the equation

A(L)xt = (In −AL)xt = ut.

52Indeed for any integer k we have Γx
k = VΓy

kV′ since xt = Vyt.
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If we can invert the matrix A(L) then the process would be written as a Moving Average and
therefore it would be stationary. To A(L) we can associate det A(L) and the matrix Aad(L) is
the transposed of the cofactor matrix which in turn has in entry i, j the determinant of A(L) when
removing row i and column j multiplied by (−1)i+j such that53

A(L)Aad(L) = [det A(L)]In.

Therefore, (48) becomes
[det A(L)]xt = Aad(L)ut. (47)

Consider the example with n = 2 and p = 1(
1− a11L −a12L
−a21L 1− a22L

)(
x1t
x2t

)
=

(
u1t
u2t

)
which becomes

[det A(L)]

(
x1t
x2t

)
=

(
1− a22L a12L
a21L 1− a11L

)(
u1t
u2t

)
,

where det A(L) = (1− a11L)(1− a22L)− a12a21L2. That is we have two equations

[det A(L)]x1t = u1t − a22u1,t−1 + a12u2,t−1

[det A(L)]x2t = u2t − a11u2,t−1 + a21u1,t−1

Again, the autoregressive matrix A(L) has been transformed into n = 2 autoregressive polyno-
mials det A(L) of order n = 2, therefore they have two roots.

Back to the general case, we know from Chapter 4 that a polynomial in z ∈ C is invertible if
all its roots are outside the unit circle. Therefore, if all the roots of det A(z) = 0 lie outside the
unit circle, then det A(L) can be inverted backwards and (47) or equivalently (48) has solution

xt = [det A(L)]−1Aad(L)ut.

For p = 1, we have n roots of det A(z) = det(In − Az) = 0 which are the reciprocals of the
roots of det(A − λIn) = 0, that is the eigenvalues of A. The latter lie within the unit circle if
and only if the former lie without, which is the result obtained before (the results obtained with
the different approaches are consistent).

10.5.2 VAR(p)

Consider now the generic VAR of order p

xt = A1xt−1 + A2xt−2 + . . .+ Apxt−p + ut

where ut is an n-dimensional zero-mean vector white noise with covariance matrix Γu0 . In order
to study stationarity we study the solutions of the equation

(In −A1L−A2L
2 − . . .−ApL

p)xt = A(L)xt = ut (48)

53In more detail, define as Aij the (i, j) minor of A, i.e. the determinant of the (n− 1)× (n− 1) matrix that results
from deleting row i and column j of A. Then the cofactor matrix of A is the n × n matrix C whose (i, j) entry is
Cij = (−1)i+jAij . Then, (Aad)ij = Cji = (−1)i+jAji.
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The entries of the polynomial matrix A(L) are polynomials in L, for example

A11(L) = 1−a11,1L−a11,2L2− . . .−a11,pLp, A12(L) = −a12,1L−a12,2L2− . . .−a12,pLp.

We can always rewrite this as a VAR(1) of dimension np.

Start with an example. Suppose that n = p = 2

xt = A1xt−1 + A2xt−2 + ut

Define yt = xt−1. Then we have the system of two equations

xt = A1xt−1 + A2yt−1 + ut

yt = xt−1

If we define also

A =

(
A1 A2

I2 02

)
zt = (x′t y′t), vt = (u′t 0 0)′

we have the new VAR(1)
zt = Azt−1 + vt

where now p = 1 but n = 4. Moreover, notice that we have

det(I4 −AL) = det

((
I2 −A1L −A2L
−I2L I2

))
= det(I2 −A1L−A2L

2)

By studying the roots of the above equation we can study stationarity. Also we have that the
eigenvalues of A satisfy

det(A− λI4) = det

((
A1 − λI2 A2

I2 −λI2

))
= det(I2λ

2 −A1λ−A2) = 0.

Hence roots of det(I2 −A1L−A2L
2) = 0 are the reciprocals of eigenvalues.

In general given the VAR(p) in (48), we can define y1t = xt−1, y2t = y1,t−1 = xt−2,
y3t = y2,t−1 = xt−3, and so on until yp−1,t = yp−2,t−1 = xt−p+1 and we obtain

zt = Azt−1 + vt

where

A =


A1 A2 . . . Ap−1 Ap

In 0n . . . 0n 0n
0n In . . . 0n 0n
...

...
. . .

...
...

0n 0n . . . In 0n

 zt = (x′t y′1t . . .y
′
p−1,t), vt = (u′t 0 0 . . . 0︸ ︷︷ ︸

n(p−1)times

)′

In conclusion, (48), which has dimension n and order p, can be transformed into an equation of
dimension np and order 1. The VAR(1) equation in zt is called the companion equation and we
then know how to study stationarity of a VAR(1) by looking at the eigenvalues of the companion
matrix A. Or equivalently, as for the case n = 2 and p = 2 above, we can prove that det(Inp −
AL) = det(In−A1L− . . .−ApL

p) therefore we can also look at the roots of det(Inp−Az) =
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0. Notice also that vt is singular (many of its components are zero) but this does not affect
stationarity.

Summing up, as in the VAR(1) and VAR(2) cases, also for the VAR(p) the roots of

det(Inp −Az) = det(In −A1z − . . .−Ap−1z
p−1 −Apz

p) = 0

are the reciprocals of the eigenvalues of the companion matrix defined by

det(A− λInp) = det(Inλ
p −A1λ

p−1 − . . .−Ap−1λ−Ap) = 0.

Example. Obviously an AR(2) can be written as a VAR(1) with n = 2. Take

yt = 1.3yt−1 − 0.4yt−2 + ut,

then we must find the roots ofA(z) = 1−1.3z+0.4z2, this gives z1 = 2 and z2 = 1.25, therefore
the model is stationary. Using the companion form we have(

yt
yt−1

)
=

(
1.3 −0.4
1 0

)
︸ ︷︷ ︸

A

(
yt−1
yt−2

)
+

(
ut
0

)
.

We can then compute the eigenvalues of A by solving det(A− I2λ) = 0, which gives

−λ(1.3− λ) + 0.4 = 0,

hence we have the solutions λ1 = 0.8 and λ2 = 0.5, which implies that the process is stationary.
Notice that λ1 = z−11 and λ2 = z−12 .

10.6 VARMA

Vector ARMA processes (VARMA) are the stationary solutions of equations of the form

(In −A1L−A2L
2 − . . .−ApL

p)xt = (In + B1L+ B2L
2 + . . .+ BqL

q)ut

Under the assumptions that the roots of det(In −A1z −A2z
2 − . . .−Apz

p) = 0 lie outside of
the unit circle, the stationary solution is

xt = C(L)ut = A(L)−1B(L)ut = [det A(L)]−1Aad(L)B(L)ut

Here C(L) =
∑∞

k=0 CkL
k and the coefficients of C(L) tend to zero (they must to have station-

arity and therefore the previous sum well defined) with a speed determined by the worst root of
det A(L), precisely like in the scalar case (see the example of an AR(1)).54 So, for a VAR(1) the
MA(∞) is given by C(L) =

∑∞
k=0 AkLk.

If also the roots of det(In + B1z+ B2z
2 + . . .+ Bqz

q) = 0 are outside the unit circle we say
that the VARMA is invertible in the past. In that case

ut = B(L)−1A(L)xt

so that ut is a linear combination of present and past values of xt. This implies, that ut is the
innovation of xt (see next section).

54More precisely we have
∑∞

k=0 ‖Ck‖2 < ∞, where ‖Ck‖2 =
∑n

i=1

∑n
j=1[Ck]2ij . This also implies ‖Ck‖ → 0

as k →∞.
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10.7 Prediction and the Wold decomposition

Now consider the vector (x1tx2t)
′. We want to predict each of the variables by using the past of

both variables. We consider only linear prediction. Given what we have discussed in the scalar
n = 1 case, the solution of this problem is given by projecting xjt, j = 1, 2, on 1 and xj,t−k,
j = 1, 2, k > 0

x1t = [a10 + a11,1x1,t−1 + a12,1x2,t−1 + a11,2x1,t−2 + a12,2x2,t−2 + . . .] + e1t

x2t = [a20 + a21,1x1,t−1 + a22,1x2,t−1 + a21,2x1,t−2 + a22,2x2,t−2 + . . .] + e2t

In vector notation
xt = [A0 + A1xt−1 + A2xt−2 + . . .] + et

where A0 is a 2× 1 vector while Ak, for k ≥ 1, is 2× 2.

Using the same argument employed in the scalar case we obtain the result that et is a vector
white noise, that is e1t is orthogonal to past values of both e1t and e2t, and the same for e2t. For,
e1t is orthogonal to 1, x1,t−1, x2,t−1,.... But e1,t−1 and e2,t−1 are linear combinations of 1, x1,t−1,
x2,t−1,....

In general, if xt is n-dimensional the best linear prediction of the components of xt is obtained
by projecting each of them on 1 and past values of all the components of xt:

xt = A0 + A1xt−1 + A2xt−2 + . . .+ et

where A0 is n × 1, Ak is n × n for k ≥ 1. The result that et is an n-dimensional white noise is
obtained by an obvious generalization of the argument used for n = 2. As in the scalar case we
then have the prediction equation for xt

xt = Pt−1xt + et

where Pt−1xt is the projection of xt on its past and et since it is a white noise is the innovation or
one step ahead prediction error. The only reason why the process xt is not completely determined
by its past values is the presence of the term et.

Now project each component of xt on 1 and all components of et−k, k ≥ 0,

xt = [B + et + B1et−1 + B2et−2 + . . .] + Dt

where B is n × 1, Bk is n × n for k > 0. Moreover, the residual of the projection Dt is an
n-dimensional vector that is predictable without error given its past, that is Pt−1Dt = Dt is a
deterministic process.

Examples.

1. Stationary VAR(1)
xt = Axt−1 + ut

the best linear predictor is Axt−1 and ut is the innovation.

2. A VMA(1) invertible in the past

xt = ut + But−1

this can be re-written as a VAR(∞)

xt = ut +

∞∑
k=1

(−1)k−1Bkxt−k

and therefore the best linear predictor is B[xt−1 −Bxt−2 + . . .] and ut is the innovation.
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3. VARMA(p, q) stationary and invertible in the past

xt = [A1xt−1 + . . .+ Apxt−p] + [B1ut−1 + . . .+ Bqut−p] + ut

by using the arguments in the two previous examples we see that the innovation is ut.

Forecasting of VARs then follows straightforwardly as for the scalar AR case.

10.8 VAR estimation

A VAR can be estimated by OLS. In the scalar case we have seen that under Gaussianity this is also
asymptotically equivalent to Maximum Likelihood estimation. Consider for example a VAR(1),

xt = Axt−1 + ut

where ut is a white noise with zero mean and covariance Γu. We have the OLS estimator

Â =

(
T∑
t=2

xt−1x
′
t−1

)−1( T∑
t=2

xt−1x
′
t

)
(49)

when seen as an ML estimator consistency and asymptotic normality are immediately given. In
general, if no Gaussianity is assumed, this estimator is consistent and asymptotically normal pro-
vided that ut is such that E[ut|Xt−1,Xt−2, . . .] = 0 (it is a martingale difference sequence).

The above estimator (49) corresponds to estimation of each of the n VAR equations by OLS,
and by looking at the first n equations of the companion form we see that any VAR(p) model can
also be estimated by OLS equation-by-equation. Consider a VAR(p) and the companion form

zt = Ãzt−1 + vt

where zt−1 = (x′t−1 x′t−2 . . .x
′
t−p). Then, for equation j we have the OLS estimator:

̂̃aj =

(
T∑
t=2

zt−1z
′
t−1

)−1( T∑
t=2

zt−1x
′
jt

)
, j = 1, . . . n.

Then each ̂̃aj contains the np estimated coefficient of the j-th equation of the VAR(p) that is of

xjt = aj1,1x1,t−1 . . . ajn,1xn,t−1 + . . .+ aj1,px1,t−p + . . .+ ajn,pxn,t−p + ujt, j = 1, . . . n.

So ̂̃a1 . . . ̂̃an contain estimates of all parameters A1 . . .Ap. The above is a system of seemingly
unrelated regression equations and OLS is in general consistent but not efficient even under Gaus-
sianity. However, since in a VAR the regressors are the same in each equation it can be proved
that OLS is also efficient provided Gaussianity or serial independence of ut are assumed (this is a
consequence of Kruskal’s theorem).55

The covariance matrix of ut in a VAR (p) is then estimated as

Γ̂u0 =
1

T

T∑
t=1

ûtû
′
t,

where ût = xt−
∑p

k=1 Âkxt−k. It can be proved that also Γ̂u0 is consistent when fourth moments
of ut exist.

55If that were not the case then generalised least squares should be preferred using an estimator of the covariance of
the ut’s obtained by a first OLS estimation.
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10.9 Granger causality

We say that a process {Xt} Granger Causes (GC) a process {Yt} if

E[Yt|Yt−1, Yt−2, . . . , Xt−1, Xt−2, . . .] 6= E[Yt|Yt−1, Yt−2, . . .]

that is to say that the past observations of {Xt} help in predicting {Yt}.

As an example consider a VAR with n = 2(
A11(L) A12(L)
A21(L) A22(L)

)(
yt
xt

)
= ut

then {Xt} does not Granger Causes {Yt} if and only if A12(L) = 0. Therefore if the VAR is
stationary and we estimate it by OLS then we can just use the ordinary F -test to test for Granger
causality. In the example above we have the first equation of the VAR

yt = a1,11yt−1 + a1,12xt−1 + . . .+ ap,11yt−p + ap,12xt−p + u1t

then {Xt} does not Granger Causes {Yt} if and only if ak,12 = 0 for any k = 1, . . . , p, which is a
set of linear restriction that can be tested by means of the F -test.

10.10 Systems of simultaneous equations and impulse response functions

A VAR is a system of simultaneous equations. These systems were usually employed by macroe-
conomists to study jointly many economic indicators. In general the models were written as

Γyt = Bxt + ut

where yt are the n endogenous variables, xt are k exogenous variables, and ut is a white noise with
mean zero and covariance the identity matrix, such that the elements of ut are uncorrelated and
are interpreted by macroeconomists as “structural shocks” hitting the economy. In order to have
an interpretation of the model we would like to estimate Γ and B but these cannot be consistently
estimated via OLS. Hence we reduce ourselves to the model

yt = Πxt + wt

where wt is still a white noise with mean zero but covariance Σ and Π = Γ−1B. This model
can be estimated by OLS but the coefficients in Π do not have an economic interpretation. In
order to identify Γ and B separately we should solve ΓΠ = B but there are more parameters
(n2 + nk) than equations (n) thus no unique solution exists. Some economic restriction should
then be imposed on those matrices in order to achieve identification.

A VAR model can then also be seen as the reduced form of a structural model in which there
are no exogenous regressors but the regressors are the lags of the endogenous variables and we
have seen that OLS estimation is possible. The question is how do we then identify the parameters?
Traditional Structural VAR literature has focused on identifying the dynamic dependencies among
macroeconomic variables by identifying the so called impulse response functions (IRF) of the
variables to unexpected orthogonal (non-correlated) shocks which represent the new information
entering the economy at each point in time as the usual innovation process.

Given the VAR process
A(L)xt = et,
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where et is a white noise with zero mean and covariance matrix Γe, the definition of IRF comes
from the equivalent VMA representation56

xt =

∞∑
k=0

Cket−k = C(L)et,

as usual we have C0 = In. We define the IRF as

h(i, j, k) =
∂xit
∂ej,t−k

= (Ck)ij

this is the response of the ith variable to the j-th shock after k periods. Notice that et, is the one-
step-ahead prediction error which is the innovation in the sense that it is unpredictable and belongs
to the space of present and past values of xt. However, with respect to the scalar case we have
n prediction errors one for each series and we can try to disentangle the shocks trying to find the
prediction error for each single series. This can be done by working on their covariance matrix.
Formally, we assume that the prediction errors are a linear relation of the structural shocks, ut
which are also a white noise with zero mean but with covariance the identity matrix.

et = But

and we assume B to be n × n invertible, that is we have n distinct structural shocks.57 While et
can be estimated as the residual of a VAR since it is an innovation, ut and B cannot be estimated
directly.

Let us start by assuming we knew B, then we would have the VAR

A(L)xt = But,

which once inverted would give

xt =

∞∑
k=0

CkBut−k

and the structural IRF are defined as

IRF (i, j, k) =
∂xit
∂uj,t−k

= (CkB)ij

Therefore, we have identification if we find a way to obtain B starting from the coefficient of an
estimated VAR A(L) and its innovations et. In particular this is possible under the assumption
that the structural shocks ut like the innovations et belong to the space of present and past values
of xt. In this case we say that ut is fundamental for xt. Economic models with non-fundamental
structural shocks are possible but cannot be identified using VAR (see the end of the section).

For ease of notation we will denote as D(L) = C(L)B the polynomial of structural IRF.
There are no general rules to identify IRF that and we review two examples.

56In order to invert a VAR(p) we can use the companion form and notice that for a VAR(1)

(In −AL)xt = et

the inverse of the VAR polynomial is given by

(In −AL)−1 = In + AL+ A2L2 . . . =

∞∑
k=0

AkLk,

thus Ck = Ak.
57It could also be singular if there were fewer structural shocks than series.
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1. Recursive or Choleski identification. This is based on the covariance matrix of the VAR
residuals, et, denoted as Γe. Notice that since ut have as covariance In, we must have
Γe = BB′. If we impose B to be lower triangular then the solution is given by the Choleski
factor of Γe and its unique. Saying that B is lower triangular means that only the first shock
has a contemporaneous effect on all variables xit, indeed take for example n = 2 then at
k = 0 the structural IRF would be (recall that C0 = In always)

C0B = B =

(
b11 0
b21 b22

)
hence since b12 = 0 we have IRF (1, 2, 0) = 0 that is the second shock does not have a
contemporaneous effect on the first variable. Or equivalently we have that the prediction
errors are given by

e1t
e2t
...
ent

 =


b11 0 . . . 0
b21 b22 . . . 0

...
...

. . .
...

bn1 bn2 . . . bnn




u1t
u2t

...
unt

 =


b11u1t

b21u1t + b22u2t
...∑n

k=1 bnkukt


The first prediction error depends only on the first structural shock, the second prediction
error depends only on the first two structural shocks, and in general the ith prediction error
depends only on the first i structural shocks. This implies that the ordering of the elements of
xt is not arbitrary. The structural shocks are then identified recursively from the prediction
errors.

As an example consider the three series, GDP growth rate, CPI growth rate (inflation), and
Federal Funds Rate. They are all stationary. A monetary policy shock is identified as a shock
that has contemporaneous effect only on the Federal Funds Rate so we can use a Choleski
identification such that the effect of shocks on variables is given by ∆ logGDPt

∆ logCPIt
FFRt

 = C0But +
∞∑
k=1

CkB =

 b11 0 0
b21 b22 0
b31 b32 b33

 u1t
u2t
u3t

+
∞∑
k=1

CkB

so we see that at impact (k = 0) the third shock has effect only on the third variable and
we can define it as the monetary policy shock. The impulse responses implied by this
identification and using US data from 1954q3 to 2006q2 are in are in Figure 59.

2. Long run restrictions. These are based on the assumption that in the long run only some
shocks have an effect on the variables. First, notice that by definition of IRF we have that
on a stationary variable the lag k effect of a shock is given by Ck, thus the long run effect is
given by limk→∞Ck = 0, since because of stationarity we must have square summable IRF
limk→∞Ck = 0.58 So this identification makes sense only if we work with I(1) variables
and we look at their response in the long run. Take yt ∼ I(1), so that ∆yt ∼ I(0) and we
the structural VAR in first differences

A(L)∆yt = But

and then the structural MA representation reads

∆yt =

∞∑
k=0

CkBut−k. (50)

58For example take the stationary VAR(1) process then
∑∞

k=0 Ak =
∑∞

k=0 Ck converges, or in other words the MA
representation is well defined, and in order to have that we must have limk→∞Ak = 0 which is indeed the case since
because of stationarity A has the largest eigenvalue inside the unit circle.
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Figure 57: IRF to a monetary policy shock. Top left: GDP; top right: CPI; bottom left: Federal
Funds Rate.

If we are interested on the effect of ujt−k on yit we must compute the cumulated structural
IRF

CIRF (i, j, k) =
∂yit
∂ujt−k

=
∂yit+k
∂ujt

=
∂
∑k

`=0 ∆yit+`
∂ujt

=
k∑
`=0

IRF (i, j, `) =
k∑
`=0

(C`B)ij .

The long run effect is then the cumulative response after infinite periods:
∑∞

k=0 IRF (i, j, k),
which is given by C(1)B =

∑∞
k=0 CkB. This series converges since ∆yt is stationary but

it is in general not zero since yt ∼ I(1) (see Chapter 8).

Example. Assume that ∆y1t is the GDP growth rate and ∆y2t is the unemployment rate.
Then n = 2 we have

C(1)B =

( ∑∞
k=0 ck,11

∑∞
k=0 ck,12∑∞

k=0 ck,21
∑∞

k=0 ck,22

)(
b11 b12
b21 b22

)
=

(
C11(1)b11 + C12(1)b21 C11(1)b12 + C12(1)b22
C21(1)b11 + C22(1)b21 C21(1)b12 + C22(1)b22

)
Blanchard and Quah say that the second shock is a demand shock and therefore does not
have permanent effect on the first variable which is GDP. Then we must have C11(1)b12 +

C12(1)b22 = 0, or by setting θ = −C12(1)
C11(1)

we have

BB′ =

(
b211 + θ2b222 b11b21 + θb22
b11b21 + θb22 b221 + b222

)
= Γe =

(
σ2e1 σe1e2
σe1e2 σ2e2

)
which implies a system of three equations in three unknowns (b11, b21, b22). The IRF implied
by this identification and using US data from 1950q1 to 2010q4 are in Figure 58 while when
using the sample 1950q1 to 1989q4 are in Figure 59. The first permanent shock is called a
supply shock and the second non-permanent is called a demand shock.59

59The same result is found by considering a rotation of the innovations such that Ret = ut with RR′ = I, which
in the case n = 2 has the simple form

R =

(
cosϕ sinϕ
− sinϕ cosϕ

)
ϕ ∈ [0, 2π]

solving for ϕ we get the same identification with ϕ = tan−1 θ.

143



10 20 30 40 50
0.8

1

1.2

1.4

lags
10 20 30 40 50

−0.4

−0.2

0

lags

10 20 30 40 50
−4

−2

0

2

lags
10 20 30 40 50

0

1

2

3

lags

Figure 58: IRF to a demand and supply shocks. Top left: GDP to supply; top right: GDP to
demand; bottom left: unemployment to supply; bottom right: unemployment to demand.
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Figure 59: IRF to a demand and supply shocks. Top left: GDP to supply; top right: GDP to
demand; bottom left: unemployment to supply; bottom right: unemployment to demand.

As we said the above methods are possible only under the assumption that the structural shocks
ut like the innovations et belong to the space of present and past values of xt, that is when
ut is fundamental for xt. Notice that in practice economic theory starts from an MA model
where structural IRF are defined. Then the structural shocks are a linear combination of the VAR
innovations (which are those that we estimate) only if the MA can be written as a VAR that is only
if the MA is invertible in the past. Consider a VAR(p) then

et = xt −Axt−1 − . . .−Apxt−p

hence the innovations are always fundamental. There are however economic examples in which
the MA is invertible only in the future and we say in that case that the shocks are non-fundamental.60

As an example consider the the permanent income Friedman-Muth model. Income yt is de-
composed in a permanent part y1t and a transitory part y0t which are independently affected by

60When the MA is not invertible because it has unit roots then we might still have fundamental shocks.
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uncorrelated shocks
(1− L)y1t = u1t, y0t = u0t.

If consumption ct follows the permanent income hypothesis, we have: (1−L)ct = u1t+(1−β)u0t
where β ∈ (0, 1) is the agent discount factor. Therefore, we have the structural MA model

xt =

(
(1− L)yt
(1− L)ct

)
=

(
1 1− L
1 1− β

)(
u1t
u0t

)
= C(L)ut.

In this case det C(z) = (z − β) and hence it has the only root in z = β, which by definition lies
inside the unit circle. The above econometric model representing the permanent income model
is nonfundamental. Permanent and transitory components of income are not recoverable by con-
sidering only present and past values of income and consumption and VAR cannot be used as an
estimation tool.

11 Multivariate unit root processes

11.1 VAR for I(1) processes

We generalise the case of unit root processes to a process of dimension n. Consider a VAR(p)
model

A(L)xt = ut, ut ∼ w.n.(0n,Γu0),

which is stationary if the equation det(A(z)) = 0 has roots outside the unit circle. We now
consider the case in which some of the roots are such that |z| = 1. Notice that even in the
case p = 1 there are n roots to be considered, and therefore in general there are np roots to be
considered.61 So an important issue is not only whether there are unit roots but also knowing how
many unit roots are present.

Start with a VAR(2) model

(In −A1L−A2L
2)xt = ut, ut ∼ w.n.(0n,Γu0),

then the companion matrix is

Ã =

(
A1 A2

In 0n

)
such that it has eigenvalues defined by

det(Ã− λInp) = det(λ2In − λA1 −A2) = 0.

If we have a unit root then by definition det(A(1)) = 0 where A(1) = In−A1−A2. But notice
also that

det(Ã− Inp) = det(In −A1 −A2) = det(A(1)) = 0,

which shows that when we have unit roots at least one eigenvalue of the companion matrix is
λ = 1.

There are two possible cases that give det(A(1)) = 0:

1. A(1) = 0n, that is rank(A(1)) = 0;
61Recall that the condition for stationarity can also be restated by looking at the eigenvalues of the companion matrix

which has dimension np× np.
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2. rank(A(1)) = r < n.

Let us define rank(A(1)) = k with 0 ≤ k < n, then to study the two cases it is useful to write the
matrix A(L) using its Smith McMillan form

A(L) = U(L)

(
In−k(1− L) 0

0 Ik

)
V(L) (51)

where U(L) and V(L) are n× n and have no unit root hence are invertible. Notice that if we had
k = n then the VAR is invertible since there are no unit roots.

1. A(1) = 0n then k = 0 and we immediately see from (51) that there are n unit roots, all
components of xt are non-stationary. It is useful then to consider the Beveridge-Nelson
decompositon for a polynomial matrix (see Chapter 8.5) which is given by62

A(z) = A(1) + A∗(z)(1− z)

which, since A(1) = 0n, implies that

A∗(L)(1− L)xt = ut

where from (51) we have A∗(L) = U(L)V(L). Now A∗(L) has no unit root, thus ∆xt is
stationary and the process xt is I(1).63 In this case we must carry on the empirical analysis
on ∆xt rather than on xt. It can also be proved that the number of unitary eigenvalues of the
companion matrix is n (but the viceversa is in general not true). Moreover there is no Wold
representation for xt since it is non-stationary. However we have the Wold decomposition
for the first differences

∆xt = C(L)ut

where C(L) = (A∗(L))−1 = V−1(L)U−1(L) (invertible since A∗(L) has no unit root).
Thus, the IRFs are D(L) such that (1− L)D(L) = C(L) and

[Dk]i,j =

k∑
h=0

∂∆xit
∂uj,t−h

=

k∑
h=0

(Ch)ij

and we see that in this case Dk 6→ 0 hence are not square-summable. Identification can then
proceed as shown in the previous Chapter (see for example the case of long run restrictions).

As an example take again the VAR(2), then A∗(L) must be of order 1 such that

A∗(L)(1− L)xt = (In −A∗1L)(1− L)xt = (In − (In + A∗1)L+ A∗1L
2)xt = ut

Then A(1) = 0n as expected and the companion matrix is

Ã =

(
In + A∗1 −A∗1

In 0n

)
such that it has eigenvalues that satisfy det(Ã−λI2n) = det(λ2In−(In+A∗1)λ+A∗1) = 0.
This last equation has a solution for λ = 1. Now there are n unit roots for det(A(L)) = 0

62If A(L) is of order p then A∗(L) is of order p− 1 with coefficients Ak = −
∑p

j=k+1 Aj .
63If A∗(L) had a unit root then xt would be I(2) and we have to take differences twice, we do not consider this case

further.
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which are also roots of det(Ã(L)) = 0. Hence since the eigenvalues of Ã are the reciprocal
of the roots of det(Ã(L)) = 0 we have n eigenvalues equal 1.

As it is seen the impulse response functions (top left block of the inverse companion matrix∑∞
k=0 ÃkLk) are of the type Dk = (In + A∗1)

k hence they never decrease to zero.64

2. A(1) has reduced rank, say rank(A(1)) = r < n, that is in (51) we have k = r, then we
still have det(A(1)) = 0. From (51) we see that there are n − r unit roots which imply
n− r unit eigenvalues in the companion matrix. In this case we have cointegration (see the
next Section).

11.2 Cointegration

We say that yt is cointegrated if there exists at least one vector β such that the linear combination
zt = β′yt = β1y1t + . . . + βnynt is such that zt ∼ I(0). Then we say that β is a cointegration
vector. There might be more than one vector with this property and then all those vectors form
the columns of a cointegration matrix. The number of linearly independent cointegration vectors
(the rank of the cointegration matrix) is called cointegration rank. For a vector of dimension n the
maximum cointegration rank is n− 1.65 For macroeconomic variables the cointegration relations
β′yt = 0r give the long run equilibrium conditions.

Example. Take yt = (x1t, x2t)
′ such that

x1t = x1t−1 + et

x2t = x1t + ut

where et and ut are white noise with zero mean and variance one. Then x1t ∼ I(1) and x2t ∼ I(1)
but zt = x2t − x1t = ut ∼ I(1), therefore the cointegration rank is 1 and the cointegration vector
is (−1, 1)′.

Now consider a VAR(1)

xt = Axt−1 + ut, ut ∼ w.n.(0,Γu)

which can be rewritten as (define Π = A− In)

xt − xt−1 = (A− In)xt−1 + ut

∆xt = Πxt−1 + ut (52)

Notice that Π = −A(1). Now we already considered the case in which Π = 0, in which case
there are n unit roots and we must use the model in first differences because all components of xt
are I(1) (see previous Section). In particular we see that (52) is an equation of an n-dimensional
random walk. If on the other hand det(Π) 6= 0 then det(A(1)) 6= 0 and there are no unit roots,
therefore xt ∼ I(0).66

64The eigenvalues of Dk are always greater than 1, this means that the norm of Dk which is given by its largest
eigenvalue is always greater than 1.

65If we had n cointegration vectors then we would have a full-rank matrix B such that zt = Byt ∼ I(0) but since
B is invertible then also yt = B−1zt ∼ I(0) which is a contradiction.

66In this case Π is invertible and (52) is written also as

Π−1∆xt = xt−1 + ut

and since the left hand side is I(0) so must be the right hand side and in particular xt−1 ∼ I(0).
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However, we also know that if rank(A(1)) = rank(Π) = r for some 0 < r < n we have
n − r unit roots in the VAR(1), then we still have det(Π) = det(A − In) = 0. In this case Π is
not zero but has reduced rank and we can always write Π = αβ′ where α and β are n× r:

∆xt = αβ′xt−1 + ut

Now since the left hand side is stationary then zt−1 = β′xt−1 must also be stationary and therefore
β is the cointegration matrix having as columns the r cointegration vectors, so the cointegration
rank is nothing else but the rank of A(1). Cointegration arises when we have fewer unit roots than
processes.

The process zt represents the deviation from the cointegration relations defined by the equilib-
rium β′xt−1 = 0r. Then the dynamics of a cointegrated vector is described by two components:
the first one is the white noise ut (or more in general is random vector of shocks), the other one is
the magnitude at t− 1 of the deviation zt−1 from the long-run equilibrium. The matrix α is called
loading of zt and describes how the dynamic adjusts to revert to the long run equilibrium. This
mechanism of correction given by αβ′xt−1 is called error correction mechanism (ECM) and (52)
is called Vector Error Correction Model (VECM).

Let us generalise the previous result to the VAR(p)

A(L)xt = ut, ut ∼ w.n.(0,Γu)

then define B(L)L = (In −A(L)) such that

xt = B(L)xt−1 + ut

By using the Beveridge-Nelson decomposition of B(L), we have

xt = [B(1) + Γ(L)(1− L)]xt−1 + ut

and by subtracting xt−1 from both sides we get (notice that B(1) = In −A(1))

∆xt = [B(1)− In]xt−1 + Γ(L)∆xt−1 + ut

= −A(1)xt−1 +

p−1∑
i=1

Γi∆xt−i + ut

= Πxt−1 +

p−1∑
i=1

Γi∆xt−i + ut

= αβ′xt−1 +

p−1∑
i=1

Γi∆xt−i + ut (53)

As for the VAR(1) case the cointegration rank is nothing else but the rank of A(1). Notice that
(53) is equivalent to the VAR(p) from which we started our derivation

A(L)xt = ut (54)

where A0 = I, A1 = (Γ1 −αβ′ + I), A2 = Γ2 − Γ1, and Ap = −Γp−1.

Now, consider the matrices

M(L) =

(
In−r(1− L) 0

0 Ir

)
, M̄(L) =

(
In−r 0

0 Ir(1− L)

)
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then M̄(L)M(L) = In(1− L). Then, from (51) we can invert the VAR as follows:

(1− L)xt = V−1(L)M̄(L)U−1(L)ut = V−1(L)

(
In−r 0

0 Ir(1− L)

)
U−1(L)ut = C(L)ut

From this MA representation we see that rank(C(1)) = n − r < n. As before, the IRFs are
defined by D(L) such that (1 − L)D(L) = C(L). Hence, for n − r shocks we have that the
IRFs are not summable that is the shocks have a permanent effect. While for the remaining r
shocks the IRFs are square summable so the long run effect is zero. This justifies the search
for Permanent Transitory decompositions of xt when there is cointegration. Notice also that if
xt were stationary (no unit roots) then r = n and rank(C(1)) = 0 and square summable IRFs
equal to D(L) = V−1(L)U−1(L). On the other hand if we had n unit roots then r = 0 and
rank(C(1)) = n and the IRFs D(L) of all shocks are never square summable (see previous
section).

When we have cointegration it means that we have n − r trends which are common to all
series. Since ∆xt is stationary, then it admits a Wold decomposition which using the Beveridge
Nelson decomposition reads

∆xt = C(L)ut = [C(1) + (1− L)C∗(L)]ut

or equivalently

xt = C(1)

∞∑
k=0

ut−k + C∗(L)ut

therefore the first component is driven by multivariate random walk which we denote as µt. More-
over, under the hypothesis of cointegration we have shown that C(1) has a reduced rank n − r,
thus we can always write

xt = ψη′µt + C∗(L)ut (55)

where ψ and η are n × (n − r). This is the common trend representation by Stock and Watson
which is nothing else but the multivariate Beveridge Nelson decomposition. It is also called the
common trend representation. In particular since β′xt ∼ I(0) it must happen that β′C(1) = 0 to
achieve stationarity in (55). Moreover, the vector τt = η′µt is a random walk of dimension n− r,
so we can write (55) as

xt = ψτt + C∗(L)ut

τt = τt−1 + ut, (56)

and the process is made of two components: τt which are the so called common trends and are the
non-stationary component of xt and C∗(L)ut which is stationary by definition.

The Granger Representation Theorem. A cointegrated vector can be expressed in two
equivalent ways, corresponding to the autoregressive and moving average representations. The
representation derived from a VAR is the VECM in (53), while the representation derived from
the moving average is the common trend representation in (55).

A last remark is about identification of the cointegration matrix. If β′xt ∼ I(0) then also
Rβ′xt ∼ I(0) for any non-singular matrix R. If we call T = Rβ′ then we can always choose
R such that Txt represents some economic meaningful long-run relations (e.g. money demand,
purchasing power parity, long-run consumption or investment as function of GDP). Typically we
set one entry of each column of β to be one. Or we can also choose T such that T′T = I.
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Figure 60: Stationary VAR(1). Left: time series; right: phase diagram (x1t, x2t).

As an example to have an intuition of the meaning of cointegration consider a VAR(1) with
n = 2 and E[xt] = (3, 0) and with initial condition (x10, x20) = (10, 2). In the case of stationarity,
the system quickly converges to its mean and it oscillates around it, this is seen in the phase
diagram too (see Figure 60). The consider the case of 2 unit roots, which implies that xt is a
random walk with mean equal to its initial condition, however the process never converge but
keeps fluctuating with very high dispersion around the mean, compare the dispersion of the phase
diagram of this case with the previous one. Notice that if in this case we run the regression

x2t = β1x1t + wt

we get β1 ' 4 (quite different from zero) and we have a spurious regression indeed the acvs of wt
show that these are clearly non-stationary (see Figure 61).

Last consider the case of one unit root, thus of cointegration with rank 1, then the two processes
are random walks that co-move (one common trend), in the phase diagram this comovement is
around a line given by the cointegration vector β′xt = β1x1t +β2x2t = 0. The elements of β can
be found for example by fixing β2 = 1 and by considering the linear regression

x2t = β1x1t + et

and in this case we get β1 ' 5. Notice that from the acvs of et we see that this is now a stationary
process. In this sense we say there is an equilibrium condition (see Figure 62).

11.3 Estimation of cointegrated systems

In terms of estimation the matrices Ak of the VAR the model in (54) can be consistently estimated
by OLS even when the data have unit roots, that is without accounting for the ECM, this is shown
by Sims, Stock, and Watson. However, the long run matrix A(1) would not be estimated con-
sistently and actually it would converge to a random variable (the errors of the OLS estimation
cumulate and do not vanish) as proved by Phillips. Indeed unless we add an ECM we cannot get
an estimate of A(1) with reduced rank and as a consequence the long run impulse response would
be estimated as having full-rank which is not correct. Therefore, the long run impulse response
functions entailed by the VECM cannot be recovered unless we take into account explicitly the
ECM, that is unless we estimate β and α.

As for β the most common way is to estimate it via Maximum Likelihood as proposed by
Johansen (unless r = 1 and then we can use OLS). Once an estimator of β is given then we can
estimate the other VECM parameters by simple OLS. More precisely, if we have the VECM

∆xt = αβ′xt−1 + ut
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Figure 61: Random walk. Left: time series; right: phase diagram (x1t, x2t) with regression line in
red; bottom: acvs of the regression errors.
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Figure 62: Cointegration. Left: time series; right: phase diagram (x1t, x2t) with regression line
with slope β1 in red; bottom: acvs of the regression errors.

Then, define67

M11 =
1

T

T∑
t=1

xtx
′
t M10 = M′

01 =
1

T

T∑
t=2

xt−1∆x′t M00 =
1

T

T∑
t=1

∆xt∆x′t.

The cointegration matrix is estimated as

(M11 −M10M
−1
00 M01)β̂j = µjβ̂j ,

67If there are lags of ∆xt in the VECM these matrices should become conditional covariances with respect to those
lags.
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where µj are the r-largest eigenvalues of the above matrix, that is the estimated cointegration
vectors β̂j are the corresponding eigenvectors. Consistency of this estimator can be proved and it
is with rate T , that is the estimator is super-consistent, thus justifying the second step in estimation
of the VECM.

11.4 Permanent and transitory decompositions

The Beveridge Nelson is just one possible PT decomposition. In this section we review the most
famous PT decompositions based on the parameter of the VECM. In what follows we adopt the
conventional assumption that us = 0 for s ≤ 0 and we allow xt to have a non-random initial
value, which by our assumptions is x0 = 0.

The simplest and most used PT decomposition is the common trends representation by Stock
and Watson (1988) derived above. Define µt = µt−1 + ut, a n − r-dimensional random walk.
Then

xt = ψ
[
η′µt

]
+ C∗(L)ut, (57)

where η is n×n−r andψ is n×n−r such that C(1) = ψη′, while C∗(L) = (1−L)−1(C(L)−
C(1)) is a n×n infinite matrix polynomial with square summable coefficients.68 As a consequence
we must also have that β′ψ = 0r×n−r, by definition of cointegration matrix. The first term on
the right hand side of (57) is driven by n − r common trends, η′µt, which are all random walks,
while the second term on the right hand side is instead stationary by construction. Note that (57)
is the multivariate generalisation of the Beveridge Nelson (1981) decomposition in the case of
cointegrated processes. For an autoregressive representation of (57) see Proietti, 1997.

As pointed out by many authors (Lippi and Reichlin, 1994), the main limitation of (57) is that
the long-run component is made only of random walks, while permanent shocks might have an
effect which is only gradually absorbed into the economy, thus are associated to a more general
MA-type dynamics (e.g. technological diffusion). Depending on the assumed identification con-
straints on such dynamics, different decompositions with orthogonal shocks can be derived from
(57) (Lippi and Reichlin, 1994, Gonzalo and Ng, 2001). Any such decomposition can be written
starting from a form like

xt = ψ
[
η′µt

]
+ C∗(L)η(η′η)−1

[
η′ut

]
+ C∗(L)η⊥(η′⊥η

′
⊥)−1

[
η′⊥ut

]
. (58)

Any identifying restriction can then be imposed in (58), by multiplication by suitable invertible
matrices.69 The shocks η′ut generate the common trends of (57), therefore are called permanent
and drive the first and second term on the right hand side of (58). Those two terms define the
long-run component, which is more than just a random walk. The third term, driven only by the
transitory shocks η′⊥ut, generates instead the short-run dynamics.

Based on the same concept of permanent and transitory components, Gonzalo and Granger
(1995) propose the decomposition70

xt = β⊥(α′⊥β⊥)−1
[
α′⊥xt

]
+α(β′α)−1

[
β′xt

]
. (59)

Here, the long-run component, which is the first term on the right hand side of (59), is defined
as everything that is not the Error Correction term in the VECM, that is the only shocks that can

68If Ck are the coefficient of C(L) and C∗k those of C∗(L), then C∗k = −
∑∞

j=k+1 Cj .
69For example, transitory shocks can be identifed by means of an orthogonal d× d matrixR such that the identified

implies responses are C∗(L)η⊥(η′⊥η
′
⊥)−1R, while the identified shocks areR′η′⊥ut.

70This is obtained by inverting (α′⊥ β′)′xt in order to get xt as the sum of two components.
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affect long run forecasts are the permanent ones since for these there is no mean reversion (in the
VECM there is mean reversion because of the ECM). As a consequence, the second term is driven
only by the cointegration relations. To illustrate the relation between (59) and (57), let us consider
the VECM in when p = 2. Then, the long-run component of (59) reads

α′⊥xt −α′⊥xt−1 = α′⊥ut +α′⊥Γ1∆xt−1. (60)

First, notice that if p = 1 the last term on the right hand side of (60) disappears and then the long-
run component looks exactly like the one in (57), i.e. it is generated by the n − r-dimensional
random walk α′⊥xt. However, when p = 2, and in general when p > 1, the long-run component,
has also a stationary part, and (59) is similar to (58), although in this case the two components are
in general not orthogonal.

Finally, an alternative orthogonal decomposition, is proposed by Johansen (1991) and Kasa
(1992):

xt = β⊥(β′⊥β⊥)−1
[
β′⊥xt

]
+ β(β′β)−1

[
β′xt

]
. (61)

Contrary to (59), here firstly the stationary component is defined as the part driven by the cointegra-
tion relations only, then the non-stationary term is obtained by simply considering the orthogonal
complement. Such a decomposition is not based on any economic assumption, but is based on a
purely geometric argument. In particular, it has to be noticed that shocks to the stationary term
might have permanent effects on the non-stationary one.

11.5 Cointegration and common factors

A cointegrated system always admits a factor representation, as shown, for example, by Escribano
and Peña (1994):

xt = Ψ1τt + Ψ0ct, (62)

where Ψ1 is n×n− r and Ψ0 is n× r, so that τt is n− r× 1 and ct is r× 1. Model (62) is such
that τt has τjt ∼ I(1) for any j = 1, . . . n− r, while ct ∼ I(0). A PT decomposition can then be
obtained by specifying Ψ1, τt, Ψ0, and ct. The most common choices are based on the VECM
representation and where outlined in the previous section.

A non-parametric PT decomposition instead makes use only of unconditional second mo-
ments. Peña and Poncela (1997, 2006) show that the space spanned by the columns of Ψ1 coin-
cides with the space spanned by the eigenvectors corresponding to the n − r non-zero eigenval-
ues of the n × n random matrix C(1)

(∫ 1
0 W(u)W(u)′du

)
C(1)′, where W(·) is the n − r-

dimensional Brownian motion.71 The matrix Ψ0 is then given by the remaining r eigenvec-
tors. The PT decomposition obtained in this way has the following properties.

1. It is based just on the long-run second moments of xt, hence it is completely agnostic in
terms of economic assumptions and does not require to specify and estimate a VECM.

2. Since (Ψ1Ψ0) are an orthonormal basis, the two components in (62) are orthogonal and
Ψ0 = Ψ1⊥.

3. From orthonormality of eigenvectors we have

Ψ′1xt = Ψ′1Ψ1τt = τt, Ψ′0xt = Ψ′0Ψ0ct = ct. (63)

71This matrix is estimated by means of 1
T2

∑T
t=1 xtx

′
t.
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hence the PT reads
xt = Ψ1Ψ

′
1xt + Ψ0Ψ

′
0xt

4. The n − r non-stationary processes τt are driven by n − r common trends in the sense of
Stock and Watson (1988), but τt are not necessarily pure random walks. They generate the
trend or permanent component of xt.

5. The stationary processes ct are r common cycles in the sense of Vahid and Engle (1993).
They generate the cycle or transitory component of xt.

6. The cointegration matrix is given by the columns of Ψ0.

7. xt is driven by n− r common factors which are I(1) and r common factors which are I(0).

Such a geometric approach is similar to the one in (61) and as said above cannot be used if the
goal is identifying permanent and transitory shocks.

12 Unobserved component models and signal extraction
INCOMPLETE

The PT decompositions are based on the idea of a latent process driving the dynamics of observed
data. This is a particular case of the general problem of extracting a signal from a noisy observa-
tions. Assume to observe xt which is n dimensional and assume that it is driven by r unknown,
hence latent, signals (or states or factors) which we call Ft. If xt is observed with noise then on
general we have

xt = Λt(Ft, et), et ∼ wn(0,R) (64)

where Λt is a generic time varying possibly non-linear function. We also assume that the factors at
time t = 0 are observed (possibly with a covariance matrix P0), while the successive observations
are contaminated by a noise process:

Ft = At(Ft−1,ut,P0), ut ∼ wn(0,Q). (65)

The system (64)-(65) is a state-space model where (64) is called measurement equation and (65)
is called state equation.

12.1 Linear time invariant state space models

We now make the assumptions that the function in (64)-(65) are linear and time invariant and the
noise is Gaussian,

xt = ΛFt + et, et ∼ wnN(0,R), (66)

Ft = AFt−1 + Hut, ut ∼ wnN(0,Q). (67)

we also assume E[eitujs] = 0 for any i, j, s, t. Notice that in general the number of shocks ut can
be different from the number of states Ft. This model is very flexible and can accommodate many
models seen up to this point.

Examples of stationary ARMA models in state-space form.
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1. AR(2). xt = δ + φ1xt−1 + φ2xt−2 + wt with wt ∼ wnN(0, σ2), this is equivalent to

xt = δ∗ + [1 0]︸ ︷︷ ︸
Λ

Ft

Ft =

(
xt − δ∗
xt−1 − δ∗

)
=

(
φ1 φ2
1 0

)
︸ ︷︷ ︸

A

(
xt−1 − δ∗
xt−2 − δ∗

)
︸ ︷︷ ︸

Ft−1

+

(
wt
0

)
︸ ︷︷ ︸

ut

, Q =

(
σ2 0
0 0

)

where δ∗ = δ
1−φ1−φ2 and therefore R = 02 and H = I2.

2. MA(1). xt = wt + θwt−1 with wt ∼ wnN(0, σ2), this is equivalent to

xt = [1 0]︸ ︷︷ ︸
Λ

Ft

Ft =

(
θwt−1 + wt

θwt

)
=

(
0 1
0 0

)
︸ ︷︷ ︸

A

(
θwt−2 + wt−1

θwt−1

)
︸ ︷︷ ︸

Ft−1

+

(
1
θ

)
︸ ︷︷ ︸

H

wt

and therefore R = 02 and Q = σ2. Or alternatively we can write

xt = θFt + wt

Ft = wt−1

which has the advantage of having a smaller state vector but the disadvantage of having the
errors of both equations correlated.

3. ARMA(2,1). xt = φ1xt−1+φ2xt−2+wt+θwt−1 withwt ∼ wnN(0, σ2), this is equivalent
to

xt = [1 θ]︸ ︷︷ ︸
Λ

Ft

Ft =

(
φ1 φ2
1 0

)
︸ ︷︷ ︸

A

Ft−1 +

(
wt
0

)
︸ ︷︷ ︸

ut

, Q =

(
σ2 0
0 0

)

and therefore R = 02 and H = I2. Note that the state equations give

F1t = (1− φ1L− φ2L2)−1wt

F2t = F1t−1,

while the observation equation gives

xt = (1 + θL)F1t = (1 + θL)(1− φ1L− φ2L2)−1wt

which is an ARMA(2,1). This is Hamilton (1994) formulation. Alternatively, following
Harvey (1989) we can write

xt = [1 0]︸ ︷︷ ︸
Λ

Ft

Ft =

(
φ1 1
φ2 0

)
︸ ︷︷ ︸

A

Ft−1 +

(
1
θ

)
︸ ︷︷ ︸

H

wt (68)
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and therefore R = 02 and Q = σ2. Note that the state equations now give

F2t = φ2F1t−1 + θwt

F1t = φ1F1t−1 + F2t−1 + wt

= φ1F1t−1 + φ2F1t−2 + θwt−1 + wt

and the observation equation gives xt = F1t which is an ARMA(2,1).

In general any Gaussian ARMA or VARMA model can be written in state-space form although
such form is in general not unique. However, the state-space formulation allows also for models
with more structure than ARMA where we can impose some a priori assumed structure on the
dynamics of the system. These are the structural time series models.

Examples of structural time series models.

1. Trend cycle. Let yt = y1t + y2t with y1t = δ + y1t−1 + e1t being the trend component (a
random walk) and y2t = φ1y2t−1 + φ2y2t−2 + e2t being the cycle component (a stationary
AR(2)). Let eit ∼ wnN(0, σ2i ) for i = 1, 2 and E[e1te2s] = 0 for any t, s. There are three
ways of writing this model in state-space form:

(a) only y2t is an unobserved state, then

∆yt = δ + [1 − 1]

(
y2t
y2t−1

)
+ e1t(

y2t
y2t−1

)
=

(
φ1 φ2
1 0

)(
y2t−1
y2t−2

)
+

(
e2t
0

)
;

(b) only y2t is an unobserved state, then

yt = [1 − φ1 − φ2]

 y1t
y1t−1
y1t−2

+ φ1yt−1 + φ2yt−2 + e2t

 y1t
y1t−1
y1t−2

 =

 δ
0
0

+

 1 0 0
1 0 0
0 1 0

 y1t−1
y1t−2
y1t−3

+

 e1t
0
0

 ;

(c) both y1t and y2t are unobserved states, then

yt = [1 1 0]

 y1t
y2t
y2t−1


 y1t

y2t
y2t−1

 =

 δ
0
0

+

 1 0 0
0 φ1 φ2
0 1 0

 y1t−1
y2t−1
y2t−2

+

 e1t
e2t
0

 .

2. Local linear trend.

3. Trigonometric cycle.

4. Trend plus trigonometric cycle.
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5. Cointegrated systems. If xt ∼ I(1) then the first equation is a PT decomposition and Ft are
the common trends (see previous chapter) where under the assumption that rank(Λ) = r,
the cointegration matrix is given by Λ⊥ such that Λ⊥Λ = 0n−r×r. For convenience of
notation in this chapter we change the role of r thus we have n − r cointegration relations
and r common trends.

6. Also seasonal components can be modeled using (66)-(67).

12.2 Forward filter - Kalman filter

Assume that all parameters of the model (Λ,R,A,H,Q) are known. Then the signals can be
extracted from the data using the so called Kalman filter. We consider two ways for deriving the
algorithm that characterises the Kalman filter.

First, assume that F0 is observed then (assume for simplicity H = Ir)

F1 = AF0 + Hu1, u1 ∼ wn(0,Q)

Then, since u1 is a white noise the distribution of F1 is the same as the one of u1 with mean AF0

and covariance HQH′. The best guess (one-step ahead prediciton) for F1 is its mean:

F1|0 = AF0 (69)

Moreover, given the observed value x1 we also have

x1 = ΛF1 + e1, e1 ∼ wn(0,R). (70)

and by combining (69) and (70), we have

x1 −ΛF1|0 = v1|0 (71)

where v1|0 is the one-step-ahead prediction error.

At time t = 1 we know both F1|0 and x1, which follow the model[
AF0

x1

]
=

[
Ir
Λ

]
F1 +

[
−u1

e1

]
The unknown is here F1 and can be estimated by GLS.72 We define the GLS estimator of F1 at
time t = 1 given information up to time t = 1 as F1|1 hence

F1|1 =

{[
Ir Λ′

] [ Q 0
0 R

]−1 [
Ir
Λ

]}−1 [
Ir Λ′

] [ Q 0
0 R

]−1 [
AF0

x1

]
=
{
Q−1 + Λ′R−1Λ

}−1 {
Q−1AF0 + Λ′R−1x1

}
=
{
Q−1 + Λ′R−1Λ

}−1
Q−1AF0 +

{
Q−1 + Λ′R−1Λ

}−1
Λ′R−1x1 (72)

which is a weighted average of the two known vectors F0 and x1.73 Moreover, using (71) we have

F1|1 =
{
Q−1 + Λ′R−1Λ

}−1
Q−1AF0 +

{
Q−1 + Λ′R−1Λ

}−1
Λ′R−1

{
ΛAF0 + v1|0

}
= AF0 +

{
Q−1 + Λ′R−1Λ

}−1
Λ′R−1v1|0 (73)

72Given the model y = Xβ + ε with ε ∼ iid(0,G) then the GLS estimator is β̂ = (X′G−1X)−1X′G−1y.
73If we had H such that HH′ = I then the formula would be

F1|1 =
{
H′Q−1H + Λ′R−1Λ

}−1
H′Q−1HAF0 +

{
H′Q−1H + Λ′R−1Λ

}−1
Λ′R−1x1.
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and the second term on the right hand side is the correction due to the prediction error when
predicting F1 at time t = 0. Notice that Gaussianity is not necessary for deriving this formulas. In
general, GLS is always consistent but under Gaussianity we know that GLS is also efficient. By
iterating at t ≥ 1 we obtain the whole path Ft|t. This can be done provided we take into account
that at each step we also have uncertainty in the estimate of Ft, that is in general the covariance
of Ft|t is not zero and must be updated at each point in time. We do not do this using the above
approach but we turn to a different approach.

The general iterations of the Kalman filter allowing also for a random initial condition are
easily derived under Gaussianity. Assume that at t = 0 we have

F0 ∼ N(F0|0,P0|0).

where F0|0 and P0|0 are known (notice that the previous case we had P0|0 = 0, thus F0 = F0|0).
Then at t = 1 we have

F1 = AF0 + Hu1, u1 ∼ wnN(0,Q)

Then since u1 is white noise and Gaussian then is also independent of F0 and the sum of two
independent Gaussians is also Gaussian:

F1 ∼ N(AF0|0,AP0|0A
′ + HQH′)

We denote the one-step-ahead prediction of F1 as F1|0 and we define it as its mean

F1|0 = AF0|0. (74)

Then, the associated one-step-ahead mean squared error is the variance of F1

P1|0 = E[(F1 − F1|0)
2] = AP0|0A

′ + HQH′. (75)

Thus,
F1 ∼ N(F1|0,P1|0).

Now assume to observe x1 and we look for the distribution of F1 given x1. We have

F1 = F1|0 + (F1 − F1|0)

x1 = ΛF1 + e1, e1 ∼ wnN(0,R)

= ΛF1|0 + Λ(F1 − F1|0) + e1

Then, since u1 and e1 are independent because of Gaussianity, we have the joint Gaussian distri-
bution74 [

F1

x1

]
= N

([
F1|0

ΛF1|0

]
,

[
P1|0 P1|0Λ

′

ΛP1|0 ΛP1|0Λ
′ + R

])
(76)

Then, the conditional mean and variance of F1 given information up to time t = 1 are given by75

F1|1 = E[F1|x1] = F1|0 + P1|0Λ
′(ΛP1|0Λ

′ + R)−1(x1 −ΛF1|0)

= F1|0 + P1|0Λ
′(ΛP1|0Λ

′ + R)−1v1|0 (77)

P1|1 = Cov(F1|x1) = P1|0 −P1|0Λ
′(ΛP1|0Λ

′ + R)−1ΛP1|0. (78)

74Notice that E[(F1 − F1|0)] = 0 and also E[(F1 − F1|0)F1|0] = 0 because F1|0 is known.
75Given (X,Y) jointly normal we have

E[X|Y] = E[X] + ΣXY Σ−1
Y Y (Y − E[Y]), Cov(X|Y) = ΣXX −ΣXY Σ−1

Y Y ΣY X
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By generalising (74), (75), (77), and (78) to any t ≥ 1 we have

Ft|t−1 = AFt−1|t−1 (79)

Pt|t−1 = APt−1|t−1A
′ + HQH′ (80)

Ft|t = Ft|t−1 + Pt|t−1Λ
′(ΛPt|t−1Λ

′ + R)−1(xt −ΛFt|t−1) (81)

Pt|t = Pt|t−1 −Pt|t−1Λ
′(ΛPt|t−1Λ

′ + R)−1ΛPt|t−1 (82)

The equations (79) and (80) are called prediction equations and the equations (81) and (82) are
called update equation and together they form the Kalman filter. Notice that the algorithm is
optimal since under Gaussianity estimates the signal as the conditional mean

Ft|t = E[Ft|xt]

which is the best predictor of Ft given information up to time t. The associated mean-squared-
error

Pt|t = E[(Ft − Ft|t)(Ft − Ft|t)
′]

which is therefore minimised by definition of conditional mean.

The prediction and update equations can also be written as a unique recursion which is useful
for forecasting

Ft+1|t = AFt|t

= AFt|t−1 + APt|t−1Λ
′(ΛPt|t−1Λ

′ + R)−1(xt −ΛFt|t−1)

= AFt|t−1 + Ktvt|t−1

where Kt = APt|t−1Λ
′(ΛPt|t−1Λ

′ + R)−1 is the Kalman gain and vt|t−1 = xt − ΛFt|t−1 is
the one-step-ahead prediction error of xt given information up to time t − 1. We also have the
one-step-ahead mean squared prediction error as

Pt+1|t = APt|tA
′ + HQH′

= A
(
Pt|t−1 −Pt|t−1Λ

′(ΛPt|t−1Λ
′ + R)−1ΛPt|t−1

)
A′ + HQH′

which is called Riccati difference equation.

Notice that (77) is equivalent to (73). Indeed when P0|0 = 0 and H = I, we have F0|0 = F0

and P1|0 = Q and (73) and (77) give respectively

F1|1 = AF0 +
{
Q−1 + Λ′R−1Λ

}−1
Λ′R−1v1|0 (83)

F1|1 = AF0 + QΛ′(ΛQΛ′ + R)−1v1|0 (84)

Now because of the Woodbury formula when r < n (fewer signals than variables observed) then

QΛ′(ΛQΛ′ + R)−1 = (Q−1 + Λ′R−1Λ)−1Λ′R−1

and (83) and (84) are equivalent. Notice however that if H 6= I or there are more signals than
variables then only the left hand side makes sense. Indeed in this case the GLS derivation cannot
be done.
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12.3 Backward filter - Kalman smoother

Once all the history of xt is available then we could obtain a better estimate of the latent signals
by considering the conditional mean when conditioning on x1 . . .xT defined as

Ft|T = E[Ft|x1 . . .xT ] (85)

by definition this estimator minimises the mean-squared-error

Pt|T = E[(Ft − Ft|T )(Ft − Ft|T )′].

Because Ft|T is the conditional mean and therefore minimises the mean-squared-error, then we
must have

E[(Ft − Ft|T )x′s] = 0r×n, s = 1 . . . T

which implies
E[Ftx

′
s] = E[Ft|Tx′s]. (86)

Now, under Gaussianity the conditional mean is linear therefore can be written as a weighted
average of all available observations

Ft|T = H(L)xt =
T∑

k=t−1
Hkxt−k =

T∑
τ=1

Ht−τxτ (87)

notice that this is a two-sided filter. By substituting (87) into (86) we have

E[Ftx
′
s] =

T∑
k=t−1

Ht−τE[xτx
′
s]

This is the Weiner-Hopf equation. Moreover using (66) we can write

E[FtF
′
s]Λ
′ =

T∑
k=t−1

Ht−τE[xτx
′
s] (88)

where we used the fact that since E[uitejs] = 0 for any i, j, s, t, then E[Fte
′
s] = 0r×n.

Now if xt ∼ I(0) we can take the Fourier transform of both sides of (88) and we have

SF (θ)Λ′ = H(e−iθ)Sx(θ)

and by solving for the filter we have

H(e−iθ) = SF (θ)Λ′S−1x (θ)

= SF (θ)Λ′(ΛSF (θ)Λ′ + Se(θ))
−1 (89)

which defines the Wiener-Kolmogorov filter.
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A Complex numbers

Definition

The complex numbers are an extension of the real numbers containing all roots of quadratic equa-
tions. If we define i to be a solution of the equation x =

√
−1, then the set C of complex numbers

is represented in standard form as

C = {a+ bi|a, b ∈ R}.

The complex number i is called “imaginary unit”. We often use the variable z = a + bi to
represent a complex number. The number a is called the real part of z (<z or Rez) while b is
called the imaginary part of z (=z or Imz). Two complex numbers are equal if and only if their
real parts are equal and their imaginary parts are equal.

From the definition of C we see that there is a one-to-one correspondence between the complex
set C and the set R2 = R×R. We represent complex numbers graphically by associating z = a+bi
with the point (a, b) on the plane R2. This plane is also called the complex plane or the Argand
Plane. On the Argand Plane the horizontal axis is called the real axis and the vertical axis is called
the imaginary axis.

Basic operations

First notice that by definition i =
√
−1, so for any c > 0 we have

√
−c = i

√
c. The number i has

no real part, <i = 0. Moreover, i2 = −1, i3 = −i, i4 = 1 and so on...

The sum and difference of complex numbers is defined by adding or subtracting their real
components i.e.:

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i,

(a+ bi)− (c+ di) = (a− c) + (b− d)i.

The communitive and distributive properties hold for the product of complex numbers i.e.:

(a+ bi)(c+ di) = ac+ adi+ bci+ bdi2 = (ac− bd) + (bc+ ad)i.

Conjugates and absolute values

If we have a complex number defined as z = a + bi then the conjuate would be z̄ = a − bi. The
geometric interpretation of a complex conjugate is the reflection along the real axis. Properties of
conjugates:

1. ¯̄z = z;

2. z + w = z̄ + w̄;

3. zw = z̄w̄;

4. zn = z̄n;

5. if z 6= 0, then w/z = w̄/z̄;
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6. z ∈ R if and only if z̄ = z.

The distance from the origin of the plane to any complex number is the absolute value or modulus.
Pythagoras’ Theorem gives us a formula to calculate the absolute value of a complex number
z = a+ bi

|z| = |a+ bi| =
√
a2 + b2,

moreover
zz̄ = (a+ bi)(a− bi) = a2 + b2 = |z|2.

Thus by multiplying a complex number times its conjugate we always get a real number. Properties
of absolute values:

1. |z| = 0 if and only if z = 0, i.e. <z = =z = 0;

2. |z| = |z̄|;

3. |zw| = |z| |w|;

4. if z 6= 0, then |1/z| = 1/|z|;

5. |z + w| ≤ |z|+ |w|.

Fundamental Theorem of Algebra

Every polynomial function equation

f(x) = akx
k + ak−1x

k−1 + . . . a1x+ a0 = 0, ak 6= 0, k ≥ 1, (90)

has at least one complex root. Keep in mind that complex numbers include real numbers. More-
over, in polynomial function equations, non-real complex roots always occur in conjugate pairs.
In other words, if a complex number with an imaginary part is a root of a polynomial function
equation, then its conjugate is also a root of that same function. That is, if for z ∈ C

f(z) = 0⇔ f(z̄) = 0.

Notice that if z ∈ R then the above is still trivially true since for real numbers z = z̄.

The Linear Factorization Theorem Consider (90), then we can always write

f(x) = ak(x− c1)(x− c2) . . . (x− ck)

where c1, c2, . . . , ck are complex numbers (possibly real and not necessarily distinct). In other
words, a polynomial function of degree k, where k > 0, can be factored into k (not necessarily
distinct) linear factors over the complex number field.

Example: find the roots of x4 − 8x2 − 33 = 0. There must be four complex roots. We have

x4 − 8x2 − 33 = (x2 − 11)(x2 + 3)

= (x+
√

11)(x−
√

11)(x2 + 3)

This gives us two real roots equal to ±
√

11. Then we must find the roots of x2 + 3 = 0. We can
either compute them using the rule for quadratic equations, which gives the two roots

x1,2 =
0±
√
−4 · 3
2

= ±
√
−3 = ±i

√
3,
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or use the rule seen above (a+ bi)(a− bi) = a2 + b2 where here a = x and b =
√

3, then

x2 + 3 = (x− i
√

3)(x+ i
√

3).

So the four roots we are looking for are the two real±
√

11 and the two complex conjugates±i
√

3.

Example: find the roots of z3 = 1 or equivalently z3 − 1 = 0. There must be three complex
roots. A first one is the real number 1. Then we have

z3 − 1 = (z − 1)(z2 + z + 1)

then the other two roots are given by z2 + z + 1 = 0, thus they are

z1,2 =
−1±

√
1− 4

2
=
−1± i

√
3

2
= −1

2
± i0.866

(notice that these are complex conjugates so they come in pairs).

Polar form

Another useful way to write complex numbers is by using polar coordinates. Then, if z = a + bi
we have

a = r cos θ, b = r sin θ, r ≥ 0, θ ∈ [0, 2π].

Where r is the absolute value or modulus of z and θ is called argument of z, it’s the angle between
the real axis and the vector linking the origin to the point z in the complex plane. Indeed, we have

r =
√
a2 + b2 = |z|, tan θ =

b

a
.

Then, we can write, using Euler’s formula (eiθ = cos θ + i sin θ)

z = r cos θ + ir sin θ = reiθ.

So for example we have

eiπ = cosπ + i sinπ = −1

3eiπ/2 = 3 cosπ/2 + i3 sinπ/2 = 3i

(1 + i)8 = {[
√

12 + 12] exp[i tan−1(1/1)]}8

= {
√

2 exp[iπ/4]}8

= 16 exp[i2π]

= 16 cos(2π) + 16i sin(2π) = 16

Roots to unity

The polar form can be useful for solving equations as zn = 1. The solutions have all modulus 1,
so r = 1 and we can write z = eiθ. Then,

zn = 1

eiθn = 1

eiθn = ei2πk, k = 0,±1,±2 . . .

θ =
2πk

n
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So for k = 0, 1, 2, . . . n there are n distinct roots evenly distributed on the unit circle and then they
repeat.

For n = 1 we have z = eiθ = ei2πk = 1.
For n = 2 we have z2 = e2iθ = ei2πk = 1 thus z = eiπk = cos(πk) + i sin(πk) so when k = 0
we have z = 1 and when k = 1 we have z = −1.
For n = 3 we have z3 = e3iθ = ei2πk = 1 thus z = ei2πk/3 = cos(2πk/3) + i sin(2πk/3) so
when k = 0 we have z = 1, when k = 1 we have z = −1/2 + i0.866, when k = 2 we have
z = −1/2− i0.866 (cf. with the result above).
For n = 4 we have z4 = e4iθ = ei2πk = 1 thus z = eiπk/2 = cos(πk/2) + i sin(πk/2) so when
k = 0 we have z = 1, when k = 1 we have z = i, when k = 2 we have z = −1, when k = 3 we
have z = −i.

B Matrix algebra

Properties of matrices

• rectangular matrices A of dimension m× n, with rows Ai: and columns A:j ;

• the product between matrices is rows times columns, thus if A is m × n and B is n × k,
then AB is m× k and

(AB)il =

n∑
j=1

aijbjl,

or
ABi: = Ai:B, AB:j = AB:j ;

• the product is non-commutative AB 6= BA;

• squared matrices A of dimension n× n:

– identity matrix

In =

 1 . . . 0
...

. . .
...

0 . . . 1

 ;

– diagonal matrix A = diag(a11, . . . , ann) if

A =

 a11 . . . 0
...

. . .
...

0 . . . ann

 ;

– transposed matrix AT such that (AT )ij = (A)ji;

• vectors are particular matrices: a is a column vector of Rn with dimension n × 1, aT

(transposed) is a row vector of dimension 1× n, both have components (a1, . . . an);

• squared length of a vector (norm)

||a||2 =
n∑
i=1

a2i = aTa;
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• scalar product

aTb = bTa =
n∑
i=1

aibi;

• if two vectors are orthogonal, a ⊥ b then aTb = 0;

• outer product between two vectors a of dimension m × 1 and b of dimension n × 1, then
abT is a matrix m× n;

• symmetric matrix such that A0AT ;

• for any matrix AAT and ATA are squared symmetric matrices;

• properties of transposed matrices

(A + B)T = AT + BT , (AB)T = BTAT ;

• determinant of a squared matrix A of dimension n: if n = 2,

det A = a11a22 − a12a21,

in general

det A =

n∑
j=1

aij(−1)i+jMi,j ,

where Mi,j is the determinant of the matrix that results from A by removing the i-th row
and the j-th column, we call (−1)i+jMi,j cofactor;

• properties of the determinant:

– if B results from A by interchanging two rows or two columns, then det B = −det A,

– if B results from A by multiplying one row or column with a number c, then det B =
cdet A,

– if two rows or two columns of A are equal, then det A = 0,

– if a row or column of A is a linear combination of two rows or columns of the same
matrix, then det A = 0,

– det(A + B) 6= det A + det B,

– det(cA) = cn det A,

– det AT = det A,

– if A is triangular or diagonal, then

det A =

n∏
i=1

aii,

– det(AB) = det A det B (Binet’s theorem);

• inverse of a squared matrix is A−1 such that AA−1 = A−1A = In;

• alternative necessary and sufficient conditions for the existence of the inverse matrix:

– det A 6= 0 so that det A−1 = (det A)−1,
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– the columns of A are linearly independent thus form a basis of Rn,

– the linear system Ax = b has a unique solution,

– the linear system Ax = 0 has the unique trivial solution x = 0;

• singular matrix if det A = 0;

• adjoint matrix is the matrix Aadj such that

(Aadj)ij = (−1)i+jMj,i,

is the transposed of the matrix of cofactors;

• the inverse of a matrix A is
A−1 =

Aadj

det A
;

• properties of the inverse matrix:

– the inverse matrix is unique,

– (AB)−1 = B−1A−1,

– (AT )−1 = (A−1)T ,

– if A = diag(a11, . . . , ann), then A−1 = diag(a−111 , . . . , a
−1
nn);

• rank of a matrix is the maximum number of linearly independent rows or columns;

• if A is n× k with k < n, then rankA ≤ k and if rankA = k then A is full-rank;

• a non-singular squared matrix has full-rank;

• properties of the rank:

– rank(ATA) = rank(AAT ) = rankA,

– rank(AB) ≤ rankA and rank(AB) ≤ rankB,

– if B is a squared non-singular matrix then rank(AB) = rankA,

• trace of a squared matrix A is the sum of the diagonal elements

traceA =
n∑
i=1

aii,

and traceAB = traceBA;

• orthogonal matrix (or rotation in Rn) Q is such that QQT = QTQ = In or equivalently
QT = Q−1 and det Q = ±1;

• idempotent matrix is such that A2 = A, trivial examples are 0, In;

• other idempotent matrices:

– projector on the space spanned by the columns of X defined as

PX = X(XTX)−1XT ;

provided that X is full-rank so that XTX exists,
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– projector on the space orthogonal to the space spanned by the columns of X defined
as

MX = In −PX;

– deviation from the average defined as

A = In −
ιιT

n
,

where ι = (1, . . . , 1)T , such that

Ay = y − 1

n

n∑
i=1

yi;

• quadratic form xTAx, for a n× 1 vector x and a squared matrix A of dimension n;

• A is positive definite if
xTAx > 0, ∀x ∈ Rn,

is positive semidefinite if
xTAx ≥ 0, ∀x ∈ Rn;

• properties of positive definite matrices:

– given two squared matrices A and B both of dimension n we say that A > B if
(A−B) is positive semidefinite,

– the inverse of a positive definite matrix is positive definite,
– if P is m× n with n < m and rankP = n, then PTP is positive definite,
– if A is positive definite and symmetric, then PTAP is positive definite with P defined

above,
– in particular, if P is squared and non-singular, then PP and PPT are positive definite,
– if A is symmetric and positive definite, then it always exists at least one squared matrix

P with full-rank such that A = PTP;

Eigenvalues and eigenvectors

Given a squared matrix A of dimension n such that

Av = λv,

for some n× 1 vector v and some scalar λ, we call v eigenvector and λ the associated eigenvalue.

We find the eigenvalues by solving the characteristic equation

det(A− λIn) = 0,

and the solution can be real or complex (couples of complex conjugate roots).

Once an eigenvalue is determined (call it λ∗) the corresponding eigenvector is the solution of
the linear system

(A− λ∗In)v = 0

which is non-trivial because the determinant of the matrix is by definition null.

Properties of eigenvalues and eigenvectors:
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• to real eigenvalues correspond real eigenvectors,

• eigenvectors are defined up to a scale (length),

• eigenvectors of multiple eigenvalues are defined also up to a rotation (i.e. an orthogonal
matrix);

Properties of a squared symmetric matrix A of dimension n:

• has all n eigenvalues real, i.e. λ ∈ R,

• has n orthogonal eigenvectors, of we rescale them in such a way that ||v|| = 1, then we
have n orthonormal eigenvectors, i.e. for two eigenvectors vi and mathbfvj we have

vTi vj = δij =

{
1 if i = j
0 if i 6= j

,

• the orthonormal eigenvectors can be collected in the column of a squared orthogonal matrix
Q, also the rows of Q are orthonormal,

• the matrix of eigenvectors Q is such that

QTAQ = L = diag(λ1, . . . , λn),

where λi are the eigenvalues of A,

• determinant and trace

det A =
n∏
i=1

λi, traceA =
n∑
i=1

λi,

• the rank of a squared symmetric matrix is the number of non-zero eigenvalues,

• the matrix A2 = AA has eigenvalues λ2i but has the same eigenvectors,

• if A is non-singular A−1 has eigenvalues λ−1i but has the same eigenvectors,

• if A is idempotent, then λi = 0 or 1 and rankA = traceA,

• if A is positive definite, then λi > 0 for any i, indeed QTAQ = L, thus, for any i,

λi = vTi Avi > 0,

since A is positive definite.

Derivatives

1. Gradient ∇x: the vector of first derivatives of a scalar function with respect to the vector
of variables.

Define a function f : Rn → R, and a vector x ∈ Rn, then

∇xf(x) =


∂f
∂x1

(x)
...

∂f
∂xn

(x)

 .
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Example: the derivative of the scalar product:

∇x(xTy) =


∂(xT y)
∂x1

(x)
...

∂(xT y)
∂xn

(x)

 =

 y1
...
yn

 = y.

and analogously∇y(xTy) = x.

Example: the derivative of the quadratic form:

∇x(xTAx) = (A + AT )x.

2. Jacobian Jx: the matrix of first derivatives of a vector valued function with respect to the
vector of variables.

Define a function f : Rn → Rm, and a vector x ∈ Rn, then

Jxf(x) =


∂f1
∂x1

(x) . . . ∂f1
∂xn

(x)
...

. . .
...

∂fm
∂x1

(x) . . . ∂fm
∂xn

(x)

 .

Example: given a matrix B of dimension m× n

Jx(Bx) = B,

matrices are linear vector valued functions.

3. Hessian Hx: the matrix of second derivatives of a scalar function with respect to the vector
of variables.

Define a function f : Rn → R, and a vector x ∈ Rn, then

Hxf(x) =


∂2f

∂x1∂x1
(x) . . . ∂2f

∂x1∂xn
(x)

...
. . .

...
∂2f

∂xn∂x1
(x) . . . ∂2f

∂xn∂xn
(x)

 .

Example: second derivative of the quadratic form

Hx(xTAx) = A + AT .

4. the maximum x0 of a scalar function f is such that

∇xf(x0) = 0, vTHxf(x)v < 0, ∀v ∈ Rn,

the minimum x0 of a scalar function f is such that

∇xf(x0) = 0, vTHxf(x0)v > 0, ∀v ∈ Rn.
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