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Matteo Barigozzi‡ Christian Brownlees†

A Proofs of main results

A.1 Notation and definitions

Estimation is conditional on a given value of c = (c11 . . . cnn)′. We define the dimension of the
parameters’ space as m = n2p+n(n− 1)/2. We collect the parameters of interest in (8) into
the m×1 vector θ = (α′ ρ′)′, where α = (α′11 . . .α

′
1p . . .α

′
n1 . . .α

′
np)
′ and α′ik = (αi1k . . . αink)

is the i-th row of the var matrix Ak with k = 1, . . . , p. The n(n− 1)/2× 1 vector ρ contains
the stacked partial correlations of the var innovations. Similarly the parameters in (7) are
collected into the m × 1 vector φ = (β′ ρ′)′, where β = (β′11 . . .β

′
1p . . .β

′
n1 . . .β

′
np)
′ and

β′ik = (βi1k . . . βink) for i = 1, . . . , n and k = 1, . . . , p. Define as θ0, φ0, and c0 the true values
of the parameters.

With reference to the minimisation problem in (11)-(12), recall that the adaptive lasso

weights are defined as wi = C•/|θ̃T i|, with λGT = CαλT and λCT = CρλT . Hereafter, for
simplicity and without loss of generality we assume that Cα = Cρ = 1. Moreover, we define
the sample score and Hessian of the unconstrained problem as

ST (θ, c) =
1

T

T∑
t=1

∇θ`(θ,yt, c), HT (θ, c) =
1

T

T∑
t=1

∇θθ`(θ,yt, c).

where ∇θ = ∂
∂θ

and ∇θθ = ∂
∂θ∂θ′ , and `(θ,yt, c) is the unconstrained loss function defined in

(9). The population counterparts of the above are defined as S0(θ, c) = E[∇θ`(θ,yt, c)] and
H0(θ, c) = E[∇θθ`(θ,yt, c)].

For a given symmetric matrix A we denote by µmin(A) and µmax(A) its smallest and
largest eigenvalues respectively. For a generic matrix B, the notation ‖B‖ =

√
µmax(BB′)

is used for the spectral norm. For a generic vector b, the notation ‖b‖ =
√∑

i b
2
i indi-

cates the Euclidean norm and ‖b‖∞ = maxi |bi|. In what follows we use the symbol K to
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denote a generic positive constant. The value of K needs not to be the same from line to
line. When more than one distinct constant are present in the same equation we denote
them by K0, K1, K2, .... The symbols κ0, κ1, κ2, ... denote universal constants that are unique
throughout the paper.

A.2 Preliminary results

We start by stating a series of Lemmas and Conditions which are proved in Appendix B.

Lemma A1. The parameters θ and φ are related by means of the equations

βijk = αijk −
n∑
l=1
l 6=i

ρil
√
cll
cii
αljk, γij = ρij

√
cjj
cii
, i, j = 1, . . . , n, k = 1, . . . , p.

Moreover, the error terms in (6) and (7) coincide, that is, ei t = ui t.

Lemma A2. For a given value of c, define the n2 × n2 matrix M(ρ; c) = (diag C)−1C⊗ In.
Then, (

β
ρ

)
︸ ︷︷ ︸

φ

=


M(ρ; c) . . . 0 0

...
. . .

...
...

0 . . . M(ρ; c) 0
0 . . . 0 In(n−1)/2


(
α
ρ

)
︸ ︷︷ ︸

θ

.

Lemma A3. Consider the mapping gc : Rm → Rm, such that gc(θ) = φ. Then, under
Assumption 1, there exists a function hc0 : Rm → Rm such that: hc0(gc0(θ0)) = θ0, that is
gc0 is invertible in θ0.

Lemma A4. Under Assumption 1, the true value of the parameters is such that

θ0 = arg min
θ

E[`(θ; yt, c0)].

Condition 1. Under Assumption 1, there exist constants L,L such that

0 < L ≤ µmin(H0(θ0, c0)) ≤ µmax(H0(θ0, c0)) ≤ L <∞.

Condition 2. Under Assumption 2, for T sufficiently large there exist constants C3, C4 > 0
such that, for any η > 0, with probability at least 1−O(T−η), we have

max
1≤i≤m

∣∣ST i(θ0, c0)− ST i(θ0, ĉT )
∣∣ ≤ C3

√
log T

T
,

max
1≤i,j≤m

∣∣HT ij(θ0, c0)−HT ij(θ0, ĉT )
∣∣ ≤ C4

√
log T

T
.

Lemma A5. Under Assumptions 1 and 2 and the same conditions as in Proposition 1, for T
sufficiently large there exist constants κ0, κ1, κ2, κ3 > 0 such that, for any η > 0 and any u
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in RqT , with probability at least 1−O(T−η), we have

(a)
∥∥ST A(θ0, ĉT )

∥∥ ≤ κ0
√
qT

√
log T

T
;

(b)
∣∣u′ST A(θ0, ĉT )

∣∣ ≤ κ1 ‖u‖
√
qT

√
log T

T
;

(c)
∥∥HT AA(θ0, ĉT )u−H0AA(θ0, c0)u

∥∥ ≤ κ2 ‖u‖ qT

√
log T

T
;

(d)
∣∣u′HT AA(θ0, ĉT )u− u′H0AA(θ0, c0)u

∣∣ ≤ κ3 ‖u‖2 qT

√
log T

T
.

Lemma A6. For any subset S ⊆ A ∪ Ac, we have θ̂ST = argminθ:θc
S=0 LT (θ, ĉT ), where

LT (θ, ĉT ) is defined in (12), if and only if the i-th component of the sample score satisfies

ST i(θ̂
S
T , ĉT ) = − λT

|θ̃T i|
sign(θ̂ST i), if θ̂ST i 6= 0,

|ST i(θ̂ST , ĉT )| ≤ λT

|θ̃T i|
, if θ̂ST i = 0.

If the solution is not unique then |ST i(θ
S
T , ĉT )| ≤ λT (|θ̃i|)−1 for some specific solution θ

S
T ,

then since ST i(θ, ĉT ) is continuous in θ, then θ̂i = 0 for all solutions θ̂. Hence, if S = A∪Ac,
we have the unconstrained optimisation and θ̂ST = θ̂T , while if S = A, we have the restricted

optimisation and θ̂ST = θ̂AT .

Lemma A7. Under Assumptions 1 and 2 and the same conditions in Proposition 1, there
exists a constant κ4 > 0 such that, for T sufficiently large and any η > 0,

Pr
(
∃θ∗ = argmin

θ:θc
A=0
LT (θ, ĉT ) : θ∗ ∈ D(θ0)

)
≥ 1−O(T−η),

where D(θ0) = {θ : ‖θ − θ0‖ ≤ κ4
√
qTλT}.

Lemma A8. Under Assumptions 1 and 2 and under the same conditions as in Proposition 1,
there exists a constant κ5 > 0 such that, for T sufficiently large and any η > 0

Pr

(
‖ST (θ, ĉT )‖ > √qT

λT
mini∈A |θ0i|

)
≥ 1−O(T−η),

for any θ ∈ S(θ0) where S(θ0) = {θ : ‖θ − θ0‖ ≥ κ5
√
qTλT , θAc = 0}.

Lemma A9. Under Assumptions 1 and 2 and under the same conditions as in Proposition 1,
for T sufficiently large and any η > 0

Pr

(
max
j∈Ac
|ST j(θ̂AT , ĉT )| ≤ λT

maxj∈Ac |θ̃Tj|

)
≥ 1−O(T−η).
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A.3 Consistency of our estimators

To obtain consistency we follow the same strategy as in Meinshausen and Bühlmann (2006),
Peng et al. (2009), and Fan and Peng (2004). In order to show Proposition 1 first we prove
consistency of the so-called “restricted problem”, that is we show consistency of the estimator
defined in (11) when restricted to the set of parameters θ such that θAc = 0, which is denoted

as θ̂AT . That is, the estimator of the non-zero parameters obtained when we assume to know
those that are zero.

Proposition A1. (estimation consistency). Suppose that, as T →∞, qT = o
(√

T
log T

)
,

λT
√

T
log T
→ ∞, and

√
qTλT = o(1). Then, under Assumptions 1 and 2, for any η > 0, θ̂AT

exists with probability at least 1−O(T−η), and there exists a constant κR > 0 such that

Pr
(∥∥θ̂AT A − θ0A

∥∥ ≤ κR
√
qTλT

)
≥ 1−O(T−η).

Moreover, if the signal sequence {sT} is such that, sT√
qTλT

→ ∞, then Pr
(
sign(θ̂AT i) =

sign(θ0 i)
)
≥ 1−O(T−η), for any i ∈ A.

Proof of proposition A1. From Lemma A6, we have

‖ST A(θ̂AT )‖∞ ≤ λT max
i∈A

1

|θ̃T i|
.

Moreover, for any i ∈ A,

1

|θ̃T i|
=

√
1

θ̃2
T i

≤ 1

|θ0i|
+

√
2

θ3
0i

|θ̃T i − θ0i|+ o(|θ̃T i − θ0i|). (A-1)

Define θ∗0 = mini∈A |θ0i| and notice that θ∗0 > 0 and define also νT =
√
qTλT , therefore νT → 0

as T → ∞. Using Assumption 2 and (A-1), there exists a constant K > 0 such that for T
sufficiently large and for any η > 0, we have with probability at least 1−O(T−η)

‖ST A(θ̂AT )‖ ≤ √qT ‖ST A(θ̂AT )‖∞ ≤ νT max
i∈A

1

|θ̃T i|

≤ νT

[
max
i∈A

1

|θ0i|
+K

(
qT

log T

T

)1/4
]

≤ νT
θ∗0

+ νTK

(
qT

log T

T

)1/4

. (A-2)

Notice that the last term on the rhs of (A-2) is o(νT ), thus it can be neglected so that for T
sufficiently large and for any η > 0, we have

Pr

(
‖ST A(θ̂AT )‖ ≤ νT

θ∗0

)
≥ 1−O(T−η). (A-3)
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From Lemma A8 we also have that for T sufficiently large and for any η > 0

Pr

(
‖ST A(θ)‖ ≤ νT

θ∗0

)
≥ 1−O(T−η). (A-4)

for any θ such that θAc = 0 and ‖θ−θ0‖ < κ5νT . Therefore, (A-4) implies that inside a disc
of radius κ5νT condition (A-3) is satisfied. In particular, (A-3) is a consequence of the Karush-

Kuhn-Tucker condition in Lemma A6 for θ̂AT to be a minimum. Moreover, by Lemma A7,
such minimum always exists in a disc of radius κ4νT . Hence, if we define κR = min(κ4, κ5),
for T sufficiently large and for any η > 0, we have

Pr
(
‖θ̂AT A − θ0A‖ ≤ κRνT

)
≥ 1−O(T−η). (A-5)

Finally, for any i ∈ A and for T sufficiently large, we have |θ0i| > sT > 2κRνT . Moreover, for
any i ∈ A, in general we have

Pr
(

sign(θ̂AT i) = sign(θ0 i)
)
≥ Pr

(
‖θ̂AT A − θ0A‖ ≤ κRνT , |θ0i| > 2κRνT

)
, (A-6)

which by (A-5) implies sign consistency. This completes the proof. �

Proof of proposition 1. (a) By Proposition A1 and Lemma A8 the non-zero coefficients

of θ̂AT satisfy the Karush-Kuhn-Tucker condition in Lemma A6. Moreover, by Lemma A9
for T sufficiently large and for any η > 0 also the zero coefficients satisfy the Karush-Kuhn-
Tucker condition with probability at least 1 − O(T−η). Therefore, since with probability at

least 1−O(T−η) the restricted estimator θ̂AT A is also a solution of the unrestricted problem,
we proved the existence of a solution of the unrestricted problem. On the other hand, by
Lemma A9 and the Karush-Kuhn-Tucker condition in Lemma A6, with probability at least
1−O(T−η), any solution of the unrestricted problem is a solution of the restricted problem.
That is,

Pr
(
θ̂AT A = θ̂T A

)
≥ 1−O(T−η). (A-7)

As a consequence of (A-7), given the unrestricted estimator, θ̂T A, for T sufficiently large, for
any η > 0 and for all j ∈ Ac we have

Pr
(
θ̂T j = 0

)
= Pr

(
θ̂T j = 0

∣∣ θ̂AT A = θ̂T A

)
Pr
(
θ̂AT A = θ̂T A

)
+ Pr

(
θ̂T j = 0

∣∣ θ̂AT A 6= θ̂T A

)
Pr
(
θ̂AT A 6= θ̂T A

)
≥ Pr

(
θ̂T j = 0

∣∣ θ̂AT A = θ̂T A

)
Pr
(
θ̂AT A = θ̂T A

)
= Pr

(
θ̂AT A = θ̂T A

)
≥ 1−O(T−η).

This proves part (a). Part (b) follows directly from Proposition A1 and (A-7). This completes
the proof. �
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B Proof of Lemmas A1-A9 and Conditions 1-2

Proof of lemma A1. The var(p) model (1) has n equations given by

yi t =

p∑
k=1

n∑
j=1

αijk yj t−k + εi t, i = 1, . . . , n, (B-1)

where εit is the i-the element of the vector εt. Then, by substituting (B-1) in (7), we have,
for any i = 1, . . . , n,

yi t =

p∑
k=1

n∑
j=1

βijk yj t−k +
n∑
h=1
h6=i

γih yh t + ei t

=

p∑
k=1

n∑
j=1

βijk yj t−k +
n∑
h=1
h6=i

γih

( p∑
k=1

n∑
j=1

αhjk yj t−k + εh t

)
+ ei t

=

p∑
k=1

n∑
j=1

(
βijk +

n∑
h=1
h6=i

γihαhjk

)
yj t−k +

n∑
h=1
h6=i

γih εh t + ei t. (B-2)

By comparing the rhs of (B-2) with (B-1) we have

αijk = βijk +
n∑
h=1
h6=i

γihαhjk, i, j = 1, . . . , n, k = 1, . . . , p, (B-3)

εi t =
n∑
h=1
h6=i

γih εh t + ei t, i = 1, . . . , n. (B-4)

and therefore, from (6) we also have ei t = ui t. From (B-4) using Lemma 3 in Peng et al.
(2009) we have

γih = ρih
√
chh
cii
, i, h = 1, . . . , n, (B-5)

and clearly when i = h, γih = ρih = 1. By substituting (B-5) into (B-3) we complete the
proof. �

Proof of lemma A2. First define the n×n matrix R = In− (diag C)−1/2C (diag C)−1/2.
Form the definition of partial correlation (4), we see that R is a matrix with ρij as generic
(i, j) entry whenever i 6= j and zero otherwise. Now from Lemma A1 we immediately have
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that, for any k = 1, . . . , p β1k
...
βnk

 =
{

In2 −
[
(diag C)−1/2R(diag C)1/2 ⊗ In

]} α1k
...
αnk


=
{

In2 −
[(

In − (diag C)−1C
)
⊗ In

]} α1k
...
αnk

 = M(ρ; c)

 α1k
...
αnk

 . (B-6)

The statement of the lemma follow straightforwardly from (B-6). �

Proof of lemma A3. From Lemma A2 we have

gc0(θ0) = φ0 =


M(ρ0; c0) . . . 0 0

...
. . .

...
...

0 . . . M(ρ0; c0) 0
0 . . . 0 In(n−1)/2

θ0.

Then consider the Jacobian ∇θgc0(θ0) which has (i, j)-th entry ∂gc0,i(θ0)/∂θj = ∂φi/∂θj:

∇θgc0(θ0) =


M(ρ0; c0) . . . 0 ∇ρM(ρ0; c0)(α0,11 . . .α0,n1)′

...
. . .

...
...

0 . . . M(ρ0; c0) ∇ρM(ρ0; c0)(α0,1p . . .α0,np)
′

0 . . . 0 In(n−1)/2

 . (B-7)

Since M(ρ0; c0) is positive definite because of Assumption 1, the Jacobian in θ0 is positive
definite too and the mapping gc0 is invertible in θ0 and this completes the proof. �

Proof of Lemma A4. Notice that the loss related to (7) is given by

`(φ0; yt, c0) =
n∑
i=1

yi t − p∑
k=1

n∑
j=1

βijk yj t−k −
n∑
h=1
h6=i

ρih
√
c0,hh

c0,ii

yh t


2

. (B-8)

Clearly φ0 is a minimizer of (B-8) (using Assumption 1 for second order conditions):

φ0 = arg min
φ

E[`(φ; yt, c0)]. (B-9)

In order for θ0 to be a minimum, we need to verify that first and second order conditions
hold. The first order conditions are given by1

E[∇θ`(θ0; yt, c0)] = E[∇φ`(φ0; yt, c0)∇θgc0(θ0)] = E[∇φ`(φ0; yt, c0)]∇θgc0(θ0) = 0, (B-10)

1Notice that we can exchange integral and differentiation operators as the loss function is such that
` ∈ C∞(Rm).
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since E[∇φ`(φ0; yt, c0)] = 0 because of (B-9). The second order conditions are

E[∇θθ`(θ0; yt, c0)] = E[∇θφ`(φ0; yt, c0)]∇θgc0(θ0) + E[∇φ`(φ0; yt, c0)]∇θθgc0(θ0)

= E[∇φφ`(φ0; yt, c0)] (∇θgc0(θ0))2 , (B-11)

which we used (B-10). Now, (B-11) is positive definite since the first term is positive definite
because of (B-9) and the second term is positive definite because of Lemma A3. �

Proof of condition 1. The inequality on the lhs is proved in the proof of Lemma A4,
while the inequality on the rhs is proved in condition B1 in the supplementary appendix of
Peng et al. (2009). �

Proof of condition 2. This is an immediate consequence of consistency of the pre-
estimator ĉT given in Assumption 2 and the continuous mapping theorem. �

Proof of lemma A5. (a) We begin by noting that the sample averages of the partial deriva-
tives of ` in (θ′0, c

′
0)′ satisfy a Bernstein–type exponential inequality. The partial derivatives

of ` are

∂`(θ0,yt, c0)

∂α0 ijk

= −2ui tyj t−k +
n∑
l=1
l 6=i

2ρil
√
c0 ii

c0 ll

ul tyj t−k,

∂`(θ0,yt, c0)

∂ρij0
= −2

√
c0 ii

c0 jj

ui tεj t − 2

√
c0 jj

c0 ii

uj tεi t.

We only show this for the partial derivatives with respect to the α coefficients. The proof
for the partial derivatives of the ρ coefficients follows analogous steps. In particular, we
that show that the averages of the partial derivatives of the the α coefficients satisfy an
exponential inequality that does not depend on n. From (6) we have Var(ul t) ≤ Var(εl t) for
any l = 1, . . . , n, therefore, there exists a constant K > 0 such that

Var

 n∑
l=1
l 6=i

ρil0

√
c0 ii

c0 ll

ul t

 ≤ Var

 n∑
l=1
l 6=i

ρil0

√
c0 ii

c0 ll

εl t

 = Var(εi t) ≤ K, (B-12)

where the last equality is given in (6). Define

AT ijk = − 2

T

T∑
t=1

ui tyj t−k, BT ijk =
2

T

T∑
t=1

 n∑
l=1
l 6=i

ρil
√
c0 ii

c0 ll

ul tyj t−k

 .

By Assumption 1, yi t is a zero–mean strongly mixing process with moments satisfying the
Cramér condition

E[|yi t|k] ≤ k!ck−2E[y2
i t] <∞, k = 3, 4, . . . .

Thus, |T−1
∑T

t=1 yi t| satisfy the Bernstein-type exponential inequality in Theorem 1 by
Doukhan and Neumann (2007) (see also Theorem 1.4 in Bosq, 1996), i.e. for any i there
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exists a constant K0 > 0 such that, for any ε > 0,

Pr

(∣∣∣∣ 1

T

T∑
t=1

yit

∣∣∣∣ > ε

)
≤ exp

{
−K0Tε

2
}
. (B-13)

Since ui t is i.i.d. by construction, then as a consequence of (B-13) and Remark 2.2 in
Dedecker et al. (2007), there exists also a constant K1 > 0 such that

Pr (|AT ijk| > ε) ≤ exp
{
−K1Tε

2
}
. (B-14)

Moreover, by Assumption 1, for any i = 1, . . . , n we have 0 < c0 ii <∞ and therefore because
of (B-12) each term in parenthesis in BT ijk has finite variance and zero mean, therefore,
using arguments analogous to those used for (B-14), there exists also a constant K2 > 0 such
that

Pr (|BT ijk| > ε) ≤ exp
{
−K2Tε

2
}
.

Therefore, there exists a constant K3 > 0 such that

Pr

∣∣∣∣∣ 1

T

T∑
t=1

∂`(θ0,yt, c0)

∂α0 ijk

∣∣∣∣∣
2

> ε2

 = Pr (|AT ijk +BT ijk| > ε)

≤ Pr (|AT ijk|+ |BT ijk| > ε) ≤ 2 exp
{
−K3Tε

2
}
.

Note that as a consequence there exist a constant K4 > 0 such that

Pr(‖ST A(θ0, c0)‖ > ε) = Pr(‖ST A(θ0, c0)‖2 > ε2) = Pr

(
qT∑
i=1

|ST A i|2 > ε2

)
,

≤ qTPr

(
|ST A i|2 >

ε2

qT

)
= qTPr

(
|ST A i| >

ε
√
qT

)
,

≤ 2qT exp

{
−K4T

ε2

qT

}
.

By setting the rhs of the last expression equal to δ = O(T−η) for η > 0 and solving with
respect to ε we get that for T sufficiently large there exist a constant κ0 such that

ε ≤ κ0
√
qT

√
log T

T
. (B-15)

Then, for T sufficiently large there exist a constant κ0 such that

‖ST A(θ0, c0)‖ < κ0
√
qT

√
log T

T
,

with at least probability 1−O(T−η). Moreover, we have

‖ST A(θ0, ĉT )‖ ≤ ‖ST A(θ0, c0)‖+ ‖ST A(θ0, c0)− ST A(θ0, ĉT )‖ (B-16)

5



and for T sufficiently large the second term is O(
√

(qT log T )T−1 ) = o(1) by Condition
2. Part (a) follows by combining (B-15) and (B-16). Part (b) follows from (a) and the
Cauchy-Schwarz inequality.

(c) We begin by noting that

‖HT AA(θ0, c0)u−H0AA(θ0, c0)u‖2 ≤ 2‖u‖2‖HT AA(θ0, c0)−H0AA(θ0, c0)‖2,

≤ 2‖u‖2

qT∑
i=1

qT∑
j=1

[HT AA ij(θ0, c0)−H0AA ij(θ0, c0)]2 .

Next, we focus on showing that the differences

AT ij = HT AA ij(θ0, c0)−H0AA ij(θ0, c0)

satisfy an appropriate Bernstein–type exponential inequality. We begin by noting that the
first n2p× n2p diagonal block of the Hessian has entries

∂2`(θ0,yt, c0)

∂αij′k′∂αijk
= 2yj t−kyj′ t−k′

1 +
n∑
l=1
l 6=i

ρil0

√
c0 ll

c0 ii

(
ρli0

√
c0 ii

c0 ll

− 1

)
for any j, j′ = 1 . . . n and any k, k′ = 1 . . . p and

∂2`(θ0,yt, c0)

∂αi′j′k′∂αijk
= 2yj t−kyj′ t−k′

(1− ρii′0

√
c0 i′i′

c0 ii

)
+

n∑
l=1
l 6=i

ρil0

√
c0 ll

c0 ii

(
ρli0

√
c0 ii

c0 ll

− 1

) ,

for i 6= i′ and any j, j′ = 1 . . . n and any k, k′ = 1 . . . p. The second n(n− 1)/2× n(n− 1)/2
diagonal block has entries

∂2`(θ0,yt, c0)

∂ρij′∂ρij
= 2

√
c0 jjc0 ii

c0 iic0 j′j′
εj′ tεj t,

for any i, j, j′ = 1 . . . n with i 6= j, i 6= j′ and j 6= j′. It is straightforward to check that the
averages of the partial derivatives with respect to the ρ coefficients satisfy a Bernstein–type
inequality. As far as the partial derivatives with respect to the α coefficients we need to show
that this term does not grow with n. Notice that by Assumption 1 and from (6), there exists
a constant K1 > 0 such that

n∑
l=1
l 6=i

|ρil0 | ≤
n∑
l=1
l 6=i

(ρil0 )2 ≤ Var(εi t)

µmin(C−1
0 )

= Var(εi t)µmax(C0) < K1. (B-17)

Thus, given (B-17), and since by Assumption 1, we have 0 < c0 ii < ∞ for any i = 1, . . . , n,
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there exists a constant K2 > 0 such that∣∣∣∣∣∣∣
n∑
l=1
l 6=i

ρil0

√
c0 ll

c0 ii

(
ρli0

√
c0 ii

c0 ll

− 1

)∣∣∣∣∣∣∣ ≤
n∑
l=1
l 6=i

(ρil0 )2 +
n∑
l=1
l 6=i

|ρil0 |
√
c0 ll

c0 ii

< K2.

By the Cauchy–Schwartz inequality, we have that the mixed partial derivatives with respect
to α and ρ also not grow with n and satisfy a Bernstein–type concentration inequality. Thus,
there exists a constant K3 > 0 such that |A1T ijk,i′j′k′ | ≤ K3|yj t−kyj′ t−k′ − E[yj t−kyj′ t−k′ ]| for
any (i, j, k) and (i′, j′, k′). Therefore, by Assumption 1 and the same arguments leading to
(B-14) there exists a constant K4 > 0 such that

Pr

(
qT∑
i=1

qn∑
j=1

|AT ij|2 ≥ ε2

)
≤ q2

TPr

(
|AT ij| ≥

ε

qT

)
≤ 2q2

T exp

{
−K4T

ε2

q2
T

}
.

By setting the rhs of the last expression equal to δ = O(T−η
′
) for η′ > 0 and solving with

respect to ε we get that for T sufficiently large there exist a constant κ2 > 0 such that

ε ≤ κ2 qT

√
log T

T
.

Finally, for η > 0 and T sufficiently large there exists a constant κ2 such that

‖HT AA(θ0, c0)u−H0AA(θ0, c0)u‖ < κ2‖u‖2qT

√
log T

T
,

with at least probability 1− O(T−η). Part (c) follows as part (a) by using Condition 2 and
the conditions in the statements of Propositions A1 and 1. Part (d) follows from (c) and the
Cauchy-Schwarz inequality. This completes the proof. �

Proof of lemma A6. See Lemma 2.1 in Bühlmann and van de Geer (2011). �

Proof of lemma A7. Define νT =
√
qTλT , therefore νT → 0 as T → ∞. Consider a

generic vector u ∈ Rm such that uAc = 0 and ‖u‖ = C. Define LT (θ, c) = 1
T

∑T
t=1 `(θ,yt, c)

and `(θ,yt, c) is the unconstrained loss function defined in (9). The increment of the sample
loss defined in (11)-(12) is

QT (θ0 + νTu) =
1

T

(
LT (θ0 + νtu, ĉT )− LT (θ0, ĉT )

)
=

=
[
LT (θ0 + νtu, ĉT )− LT (θ0, ĉT )

]
− λT

m∑
i=1
i∈A

|θ0i| − |θ0i + νTui|
|θ̃T i|

≥
[
LT (θ0 + νtu, ĉT )− LT (θ0, ĉT )

]
− λTνT

m∑
i=1
i∈A

|ui|
|θ̃T i|

. (B-18)

Start from the first term in (B-18). By Lemma A5, for T sufficiently large and for any η > 0,
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we have with probability at least 1−O(T−η)

LT (θ0 + νtu, ĉT )− LT (θ0, ĉT ) = νTu′ASTA(θ0, ĉT ) +
1

2
ν2
Tu′AHTAA(θ0, ĉT )uA (B-19)

= νTu′ASTA(θ0, ĉT ) +
1

2
ν2
Tu′AH0AA(θ0, ĉT )uA +

1

2
ν2
Tu′A

(
HTAA(θ0, ĉT )−H0AA(θ0, c0)

)
uA + o(ν2

T )

≥− κ1‖uA‖
√
qT

√
log T

T
νT − κ3‖uA‖2qT

√
log T

T
ν2
T +

1

2
ν2
Tu
′
AH0AA(θ0, c0)uA.

By the conditions given in the statements of Propositions A1 and 1 and since ‖uA‖ = C, for
the first and second term on the rhs of (B-19) we have

− κ1C
√
qT

√
log T

T

λT
λT
νT = ν2

To(1) = o(ν2
T ), (B-20)

− κ3C
2qT

√
log T

T
ν2
T = ν2

To(1) = o(ν2
T ), (B-21)

and both terms can be neglected for T sufficiently large. Moreover, by Condition 1, we have

1

2
ν2
Tu
′
AH0AA(θ0, c0)uA ≥

1

2
ν2
TC

2µmin(H0AA) ≥ 1

2
ν2
TC

2L > 0. (B-22)

Then, notice that, by Cauchy-Schwarz inequality,(
m∑
i=1
i∈A

|ui|
|θ̃T i|

)2

≤ C2

m∑
i=1
i∈A

1

θ̃2
T i

. (B-23)

Moreover, for any i ∈ A,

1

θ̃2
T i

=
1

θ2
0i

− 2θ0i

θ4
0i

(θ̃T i − θ0i) + o((θ̃T i − θ0i)) ≤
1

θ2
0i

+
2

θ3
0i

|θ̃T i − θ0i|+ o(|θ̃T i − θ0i|). (B-24)

Define θ2
0 min = mini∈A θ

2
0i and notice that |θ0 min| > 0. Then, combining Assumption 2 and

(B-24), there exists a constant K > 0 such that for T sufficiently large and for any η > 0, we
have with probability at least 1−O(T−η)

C2

m∑
i=1
i∈A

1

θ̃2
T i

≤ C2qT
θ2

0 min

+ C2KqT

√
qT

log T

T
. (B-25)

Therefore, using (B-23) and (B-25), for the second term in (B-18), for T sufficiently large
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and for any η > 0, with probability at least 1−O(T−η), we have

−λTνT
m∑
i=1
i∈A

|ui|
|θ̃T i|

≥ −λTνTC
√
qT

[
1

|θ0 min|
+
√
K

(
qT

log T

T

)1/4]

≥ −ν2
T

C

|θ0 min|
+ ν2

T

√
K

(
qT

log T

T

)1/4

, (B-26)

and notice that the last term is o(ν2
T ), thus it can be neglected for T sufficiently large. Then,

by substituting (B-19) and (B-26) in (B-18), and using (B-20), (B-21), and (B-22), we have,
for T sufficiently large and for any η > 0,

Pr

(
QT (θ0 + νTu) ≥ 1

2
ν2
TC

2L− C

|θ0 min|
ν2
T = ν2

TC

(
L

2
C − 1

|θ0 min|

))
≥ 1−O(T−η).

Thus, if we choose C = 2/(L|θ0 min|) + ε, for any ε > 0, then for T sufficiently large and for
any η > 0

Pr

 inf
u:uAc=0
‖u‖=C

QT (θ0 + νTu) > 0

 = Pr

 inf
u:uAc=0
‖u‖=C

LT (θ0 + νTu, ĉT ) > LT (θ0, ĉT )

 ≥ 1−O(T−η),

which means that there exists a local minimum for the restricted problem within the disc
D(θ0) = {θ : ‖θ − θ0‖ ≤ νTC}, with probability at least 1− O(T−η). By choosing κ4 = C,
we complete the proof. �

Proof of lemma A8. Define νT =
√
qTλT , therefore νT → 0 as T → ∞. Then, any

θ ∈ S(θ0) can be written as θ = θ0 + νTu, where uAc = 0, ‖u‖ ≥ κ5, and ‖u‖ ≤ C < ∞.
For any θ ∈ S(θ0), we can write

ST A(θ, ĉT ) = ST A(θ0, ĉT ) + νTHT AA(θ0, ĉT )u

= ST A(θ0, ĉT ) + νT

(
HT AA(θ0, ĉT )−H0AA(θ0, c0)

)
u + νTH0AA(θ0, c0)u + o(νT ).

Thus, by Lemma A5, for T sufficiently large and for any η > 0, we have, with probability at
least 1−O(T−η),

‖ST A(θ, ĉT )‖ ≥ − κ0
√
qT

√
log T

T
− κ2‖u‖νT qT

√
log T

T
+ νT‖H0AA(θ0, c0)u‖.

The first and second term on the rhs of the last expression are both o(νT ). Then, using
Condition 1, for T sufficiently large and for any η > 0, with probability at least 1−O(T−η)
we have

‖ST A(θ, ĉT )‖ ≥ νT‖H0AA(θ0, c0)u‖ ≥ νT Lκ5.

Define θ∗0 = mini∈A |θ0i| and notice that θ∗0 > 0. By choosing κ5 = 1/(Lθ∗0) + ε for any ε > 0,
we complete the proof. �
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Proof of lemma A9. In the following define vT = (θ̂AT − θ0). For any j ∈ Ac we have

ST j(θ̂
A
T , ĉT ) = ST j(θ0, ĉT ) +HT j(θ0, ĉT )vT + o(‖vT‖)

= ST j(θ0, ĉT )︸ ︷︷ ︸
A1T j

+H0 j(θ0, c0)vT︸ ︷︷ ︸
A2T j

+ [HT j(θ0, ĉT )−H0 j(θ0, c0)] vT︸ ︷︷ ︸
A3T j

+o(‖vT‖).

(B-27)

Start from the first term on the rhs of (B-27). By an argument analogous to the proof of
Lemma A5 (a) we have that for T sufficiently large and for any η′ > 0 there exists a constant
K1 > 0 such that

Pr

(
|A1T j| ≤ K1

√
log T

T

)
≥ 1−O(T−η

′
). (B-28)

For the second term on the rhs of (B-27) from Condition 1 we have

|A2T j| ≤ ‖H0 j(θ0, c0)‖ ‖vT‖ ≤ µmax(H0(θ0, c0)) ‖vT‖ ≤ L ‖vT‖.

Therefore, if we define K2 = κRL, by Proposition A1 we have that for T sufficiently large
and for any η′ > 0

Pr (|A2T j| ≤ K2
√
qTλT ) ≥ 1−O(T−η

′
). (B-29)

For the third term on the rhs of (B-27), we have

|A3T j| ≤ ‖ [HT j(θ0, ĉT )−H0 j(θ0, c0)] ‖ ‖vT‖.

Then, using an argument similar to the proof of Lemma A5 (c) and by Proposition A1 and
by defining K3 = κ2κR we have that for T sufficiently large and for any η′ > 0

Pr

(
|A3T j| ≤ K3qTλT

√
log T

T

)
≥ 1−O(T−η

′
). (B-30)

Moreover, by Assumption 2 there exists a constant K4 > 0 such that for T sufficiently large
and for any η′ > 0 we have

Pr

(
1

maxj∈Ac |θ̃Tj|
> K4

√
T

log T

)
≥ 1−O(T−η

′
). (B-31)

From (B-31) and (B-27) we have

Pr

(
|ST j(θ̂AT , ĉT )| ≤ λT

maxj∈Ac |θ̃Tj|

)
≥ Pr

(
|A1T j|+ |A2T j|+ |A3T j| ≤

λT

maxj∈Ac |θ̃Tj|

)

≥ Pr

(
|A1T j|+ |A2T j|+ |A3T j| ≤ K4λT

√
T

log T

)
.

(B-32)
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Notice that, as T →∞, we have

λT

√
T

log T
→∞, √

qTλT → 0, qTλT

√
log T

T
→ 0,

√
log T

T
→ 0. (B-33)

where the first three conditions are assumed in Proposition 1 while the last one is trivial.

Finally, consider the complementary of (B-32), then, by combining (B-28)-(B-30) with (B-33),
we have that for T sufficiently large and for any η′ > 0

Pr

(
|A1T j|+ |A2T j|+ |A3T j| ≥ K4λT

√
T

log T

)
≤

3∑
k=1

Pr

(
|AkT j| ≥ K4λT

√
T

log T

)
= O(T−η

′
),

which implies that

Pr

(
|ST j(θ̂AT , ĉT )| ≤ λT

maxj∈Ac |θ̃Tj|

)
≥ 1−O(T−η

′
). (B-34)

Given n = O(T ζ), define η′ = η + ζ, then for T sufficiently large and for any η > 0, from
(B-34) we have

Pr

(
max
j∈Ac
|ST j(θ̂AT , ĉT )| ≥ λT

maxj∈Ac |θ̃Tj|

)
≤ nPr

(
|ST j(θ̂AT , ĉT )| ≥ λT

maxj∈Ac |θ̃Tj|

)
= O(T−η).

By considering the complementary event we complete the proof. �
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C Ticker List

Table C-1 contains the list of tickers used in the empirical application.

Table C-1: U.S. Bluechips
Ticker Company Name Sector Ticker Company Name Sector

AMZN Amazon.com Cons. Disc. ABT Abbott Laboratories Health Care
CMCSA Comcast Cons. Disc. AMGN Amgen Health Care
DIS Walt Disney Cons. Disc. BAX Baxter International Health Care
F Ford Motor Cons. Disc. BMY Bristol-Myers Squibb Health Care
FOXA Twenty-First Century Fox Cons. Disc. GILD Gilead Sciences Health Care
HD Home Depot Cons. Disc. JNJ Johnson & Johnson Health Care
LOW Lowes Cons. Disc. LLY Lilly (Eli) & Co. Health Care
MCD McDonalds Cons. Disc. MDT Medtronic Health Care
NKE NIKE Cons. Disc. MRK Merck & Co. Health Care
SBUX Starbucks Cons. Disc. PFE Pfizer Health Care
TGT Target Cons. Disc. UNH United Health Health Care
TWX Time Warner Cons. Disc. BA Boeing Company Industrials
CL Colgate-Palmolive Cons. Stap. CAT Caterpillar Industrials
COST Costco Cons. Stap. EMR Emerson Electric Industrials
CVS CVS Caremark Cons. Stap. FDX FedEx Industrials
KO The Coca Cola Company Cons. Stap. GD General Dynamics Industrials
MDLZ Mondelez International Cons. Stap. GE General Electric Industrials
MO Altria Cons. Stap. HON Honeywell Intl Industrials
PEP PepsiCo Cons. Stap. LMT Lockheed Martin Industrials
PG Procter & Gamble Cons. Stap. MMM 3M Company Industrials
WMT Wal-Mart Stores Cons. Stap. NSC Norfolk Southern Industrials
APA Apache Energy RTN Raytheon Industrials
APC Anadarko Petroleum Energy UNP Union Pacific Industrials
COP ConocoPhillips Energy UPS United Parcel Service Industrials
CVX Chevron Energy UTX United Technologies Industrials
DVN Devon Energy Energy AAPL Apple Technology
HAL Halliburton Energy ACN Accenture plc Technology
NOV National Oilwell Varco Energy CSCO Cisco Systems Technology
OXY Occidental Petroleum Energy EBAY eBay Technology
SLB Schlumberger Ltd. Energy EMC EMC Technology
XOM Exxon Mobil Energy HPQ Hewlett-Packard Technology
AIG AIG Financials IBM IBM Technology
ALL Allstate Financials INTC Intel Technology
AXP American Express Co Financials MSFT Microsoft Technology
BAC Bank of America Financials ORCL Oracle Technology
BK Bank of New York Financials QCOM QUALCOMM Technology
C Citigroup Financials TXN Texas Instruments Technology
COF Capital One Financial Financials T AT&T Technology
GS Goldman Sachs Financials VZ Verizon Technology
JPM JPMorgan Chase Financials DD Du Pont Materials
MET MetLife Financials DOW Dow Chemical Materials
MS Morgan Stanley Financials FCX Freeport-McMoran Materials
SPG Simon Property Financials MON Monsanto Materials
USB U.S. Bancorp Financials AEP American Electric Power Utilities
WFC Wells Fargo Financials EXC Exelon Utilities

The table reports the list of tickers, company names and industry sectors.
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