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@ Introduction
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Introduction

@ Factor analysis is one of the earliest proposed multivariate statistical
techniques.

@ It dates back to the studies in experimental psychology (spearman, 1904).

@ Main idea:
a vector of n observed random variables/time series decomposed into the
sum of

@ few, less than n, latent factors
@ capturing co-movements;
© many idiosyncratic factors
@ capturing item specific or local features or measurement errors.

@ We can retrospectively consider factor analysis as a pioneering technique in
the filed of unsupervised statistical learning.
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Introduction

Examples:

@ equity returns are driven by few factors representing the “market” plus some
factors specific of a given company or sector;

@ GDP or inflation are driven by few factors representing the “business cycle”
plus some measurement errors.
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Introduction

Finance example stock returns:
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Blue: IBM;

Green: AIG;

Purple: Goldman Sachs;
Red: S&P500 (weighted average) capturing the co-movements.
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Introduction

Macro example:
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Blue: CPI quarterly inflation;
Green: GDP quarterly growth rate;
Red: Average of GDP and CPI capturing some of the co-movements.
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Introduction

Main intuition:

CO-MOVEMENTS ARE CAPTURED BY
AGGREGATING THE DATA (DYNAMICALLY)
i.e. BY CROSS-SECTIONAL (WEIGHTED*) AVERAGES!

(* the weights are selected starting from the data, not a priori.)

THE MORE DATA WE AGGREGATE THE MORE CO-MOVEMENTS EMERGE
OVER IDIOSYNCRATIC DYNAMICS

7/162



Introduction

Features of large datasets of time series available today:

number of periods for which we have data is limited and constrained by
passage of time;

more and more time series are collected and made available by statistical
agencies;

we denote by

o T the the sample size, points in time;
o n the number of series;

we are in a setting where n ~ T or even n > T

o hard problem in statistics: high-dimensional setting;
in macro n ~ 100, 1000 and T ~ 100, 1000 (quarterly or monthly series);
in finance n ~ 100, 1000 and T ~ 1000, 10000 (daily series).
(moderately) big datal
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Introduction

Main fields of applications:

© psychometrics
(Spearman 1904; Bartlett, 1937, 1938; Lawley, 1940; Thomson, 1951; Jéreskog, 1969; Lawley & Maxwell,
1971; Bartholomew, Knott & Moustaki 2011),

@ econometrics with applications to

o the analysis of financial markets
(Connor, Korajczyk & Linton, 2006; Ait-Sahalia & Xiu, 2017; Barigozzi & Hallin, 2020);
o the measurement and prediction of macroeconomic aggregates
(De Mol, Giannone & Reichlin, 2008; Giannone, Reichlin & Small, 2008; Barigozzi & Luciani, 2021);
o the study of the dynamic effects of unexpected shocks to the economy
(Bernanke, Boivin & Eliasz, 2005; Forni & Gambetti, 2010; Barigozzi, Lippi & Luciani, 2021);
o the analysis of demand systems (stone, 1045; Barigozzi & Moneta, 2014).

A Google search on “Dynamic Factor Model” brings no less than 435 million
entries—as many
“as the stars of the heaven and as the sand which is upon the seashore!”
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Taxonomy of Factor Models

@ Taxonomy of Factor Models
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Taxonomy of Factor Models

@ We model a panel of n time series {x; = (z1¢ - Tpnt)', t € Z} as

x;¢ = common;, + idiosyncratic;,,

where

e common component, i.e. driven by factors common to all z;’s;

e idiosyncratic component contains unit specific or local factors or
measurement errors;

e orthogonal contemporaneously and possibly also at all leads and lags.

@ Throughout, for simplicity we work with zero-mean centered data.
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Taxonomy of Factor Models

@ There are different kind of factor models:

e Static vs. Dynamic, this refers to common and idiosyncratic
components;

o Exact vs. Approximate, this refers to idiosyncratic components only.
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Taxonomy of Factor Models

Static vs. Dynamic.

@ Static:
zi = NFy +ey, (1)
~——

Cit

the factors F; and the loadings A; are r-dimensional vectors with r < n.
F; have only a contemporaneous effect on z;; and are called static factors.

@ Dynamic:
S
Tt = Z oo Ft—r it (2)
k=0
—_———
A (L) Fe=xit

the factors f; and the loadings A}, are g-dimensional vectors with g < n.
f; have effect on x;; through their lags too and are called dynamic factors.

@ Two cases of dynamic factor model:
e s < 00;

@ S = Q.
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Taxonomy of Factor Models

Exact vs. Approximate.
Static. We deal with contemporaneous correlations. Let e; = (e11---ent)’.
@ Exact: the elements of e; are not correlated:
e I'* = Ele,e}] is diagonal.

@ Approximate: mild cross-sectional correlations are allowed:
o I'° = Ele,€}] is not diagonal but has small eigenvalues or entries.

Dynamic. We deal also with autocorrelations. Let & = (&34 &ne)’-
@ Exact: T'¢ = E[¢;£]] is diagonal and I‘i =E[£&,_,] = 0,,x, forall k # 0.

@ Approximate or Generalized: T'¢ = E[£,£}] is not diagonal but has small

eigenvalues or entries and possibly I‘i = E[&:&,_ 1] # 0,xn for some k # 0,
or even for all k € Z but we control for serial dependence.
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Taxonomy of Factor Models

@ Classical factor analysis considers a static exact model, n is small and fixed;

@ In a static exact model we can estimate the loadings via Maximum
Likelihood even if n fixed, but the factors cannot be estimated consistently,
they are incidental parameters;

@ Lack of degrees-of-freedom: ~ n loadings and ~ T factors. If only T' — o0,
too many parameters to estimate, as we have < T observations and < T
unknowns;

@ If also n — oo, we have < n + T parameters to estimate but < nT
observations;

@ But in a high-dimensional setting, n — 0o, an exact model is not realistic;

@ Modern factor analysis considers an approximate model for high-dimensional
data;

@ Contrary to the usual “curse of dimensionality” an approximate model can be
identified and estimated if and only if n — oo and provided we have mild
cross-sectional idiosyncratic correlations so it enjoys a “blessing of
dimensionality”.
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Taxonomy of Factor Models

@ The condition on mild idiosyncratic cross-sectional correlations must depend
on n. The most common for a static model are:

sup, ey 1§ < M, with p§ the max eigenvalue of I'%;
SUp,en ZZj:l |Elesesel| < M;

SUD,, ey MAX;=1, . p Z?:I |[Eleireji]] < M;
|Eleseji]| < Mj s.t. sup, ey Doy Mij < M and
SUP,en Z;:l M;; < M.

@ Under these conditions the factors are retrieved by static aggregation of the
data, provided n — oo.
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Taxonomy of Factor Models

Example: static factor model
xi = Fy + e,

For homoskedastic idiosyncratic components, as n — oo,

2 2
Ly 1y L Bl
E (n ;xit_Ft> = E (n;eit> = E;E[ett] = T —>0

Under heteroskedasticity

n

2
1 1 <& 5 max;=1,...n E[e?t]
E (n Z%t) 2 ; Blea] < n —0

i=1

We need n — oo to consistently estimate the factors.
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Taxonomy of Factor Models

Examplel (cont.):
T = Fy + e,

The same argument would hold also for an approximate model as long as

2
n n
£ 1 1 E T < MaXpwrv=1 v'Tv  p§
- E €it = — E [eitejt] =5 > = —
n n n n n
P

ij=1

where ¢ = (1---1)".

Moreover, the max eigenvalue of ¢ = (E[F?]¢ is u$ = nE[F?].

As n — oo eigengap increases since u{ — oo while sup,,cy p§ < 0o

= we can identify the common component, and we can recover the factors

= blessing of dimensionality!

— 0,
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Taxonomy of Factor Models

@ In the static case contemporaneous aggregation is enough to get rid of
idiosyncratic components as we care only about contemporaneous
correlations.

@ Consider weights a; with 7 € N such that lim,,_, Z?zl af = 0, then, under
the idiosyncratic mild cross-sectional dependence assumptions:

2

n n
lim E E A; Tt — E CLiCit
n—oo

i=1 i=1

2

n—00

n
= lim E E a;€C;t
i=1

n
= lim g a;a;Ele;reqs] =0,
1,7 =1

n—o0 )

so the idiosyncratic component is wiped out.

@ In the example above a; = 1/n for all i.
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Taxonomy of Factor Models

@ In the dynamic case we also care about autocorrelations so to get rid of

idiosyncratic components aggregation should be dynamic.
@ Consider weights a;; with i € N, j € Z such that
1
n;&oZl >
i=1j=—k

then, we need conditions on the idiosyncratic components such that

2
n}clglooE E § azszt Jj = § E aZszt 7
i=1 j=—k i=1 j=—k
2
= lim E E g a
n,k— o0 'ngzt g
i=1j=—k

n

k
— lim Z Z Qiiair it EIE 1 Er v ] =0
nohsoo 4 i Ai’ §/ [fz,t ]§u,t ]’] )
IR

=1].j'=—k

which requires controlling idiosyncratic cross- and auto-covariances.
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Taxonomy of Factor Models
@ Comparison of the static vs dynamic model - classical approach
(A) zit = NFy + eqr, (B) wie = A} (L) ft + i,

@ The two representations are equivalent if (stock & Watson, 2011, 2016)

o AY'(L) has lag s < oo;

o ey =&t
o Let Fy = (f]-- fl_.) st. r=q(s+ 1) > g, then (B) reads (say s = 1)

Tit = [Agi AL ( fft ) teit
~—— t—1
——

Al
i F,

@ More in general F, = R(f/--- f/_,)’ for some r x r invertible R so

ft—l

F.

Tit = [Aél y{7;]].:{_1 R ( ft ) +€it.
———
Al
@ If we estimate (B) we immediately have estimates for (A) and R can be
chosen arbitrarily, i.e., to make F; orthonormal.

@ The viceversa is less understood and studied.
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Taxonomy of Factor Models

@ To go from (A) to (B) add a VAR specification for F; and f; (with same lag
for simplicity):

(A)F; = AF,_1 + vy, (B) fi =®fi—1 +u,.

o If F, =R(f/ f/_1) and e;+ = &+ then

d 0 I

F,=R > \R7'F,_; +R 4
! (Iq OleJ> t 0q><q e
N—————

A Vi

@ So we must have v; = Hu; for some H which is » x ¢ and F; follows a
singular VAR.

@ If we estimate (A) we get to estimates for u; in (B) by multiplying (A) by
(HH) 'H'.

@ However, studying the solution of a singular VAR is not trivial especially for
higher lag orders (Forni & Lippi, 2025; Forni, Gambetti, Lippi & Sala, 2025).
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Taxonomy of Factor Models

@ Comparison of the static vs dynamic model - general approach

(A) 23y = NFy +ei, (B) it = N} (L) fy +C0,
~—~—— N—_——
Cit Xit

@ The idiosyncratic component does not need to be the same and so the
common components would differ.

@ In general, Var(&;;) < Var(e;), since dynamic aggregates of data capture
more variance than static aggregates.

o The general relation iS (Gersing, Barigozzi, Rust & Deistler, 2025)
€4t
—_——
— X
xi = Oy + ey + &t
————

and € is the weak common component.
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Taxonomy of Factor Models

Models and estimation.

@ Static factor model
T = NF +eq

@ Estimation in the approximate case:

Principal Components
(Chamberlain & Rothschild, 1983; Stock & Watson, 2002; Bai, 2003).

Quasi Maximum Likelihood
(Bai & Li, 2016).

@ Estimation in the exact case:

Principal Components
(Hotelling, 1933).

Maximum Likelihood
(Thomson, 1936; Bartlett, 1937; Lawley, 1940; Anderson & Rubin, 1956; Joreskog, 1969;
Lawley & Maxwell, 1971; Amemiya, Fuller & Pantula, 1987; Tipping & Bishop, 1999; Bai & Li, 2012).
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Taxonomy of Factor Models

@ Dynamic factor model in state-space formulation

Ty = NFy + e,
F, = N(L)u;.

@ Estimation in the approximate case
aka as Approximate Dynamic Factor Model:
Principal Components plus VAR

(Forni, Giannone, Lippi & Reichlin, 2009; Forni, Gambetti, Lippi & Sala, 2025).

Principal Components plus Kalman smoother
(Doz, Giannone & Reichlin, 2011).

Expectation Maximization algorithm
(Doz, Giannone & Reichlin, 2012; Barigozzi & Luciani, 20xx).

@ Estimation in the exact case:

Expectation Maximization algorithm
(Shumway & Stoffer, 1982; Watson & Engle, 1983; Quah & Sargent, 1993).
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Taxonomy of Factor Models

@ Dynamic factor model with finite lags s < oo

it = > Mufiok + &in,
k=0
fi=G(L)w

@ Estimation in the approximate case
aka Restricted Generalized Dynamic Factor Model

Spectral Principal Components plus Principal Components
(Forni, Hallin, Lippi & Reichlin, 2005).

Principal Components and Distributed Lags Regression
(Gersing, 2025).

@ Estimation in the exact case

Spectral Expectation Maximization algorithm
(Sargent & Sims, 1977; Fiorentini, Galesi & Sentana, 2018).
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Taxonomy of Factor Models

@ Dynamic factor model with infinite lags s = co

oo
’
it = Y N Fion + iy
k=0

ft = G(L)ut

@ Estimation in the approximate case
aka Generalized Dynamic Factor Model (GDFM)

Spectral Principal Components
(Forni, Hallin, Lippi & Reichlin, 2000).

Spectral Principal Components plus singular VAR

(Forni, Hallin, Lippi & Zaffaroni, 2017; Barigozzi, Hallin, Luciani & Zaffaroni, 2024).
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Taxonomy of Factor Models

Spearman (1904)

Hoteling (1933a.0), Bartes (1937, 1938)

Lawley and Maxwell (1971, Joreskog (1969)
‘Anderson and Rubin (1956), Amemiya, Fullr, and Pantla (1987)

7 T

— E— Chambrin (1950 o (1957)
FR————" Geveke 177 Chamranand R (953 o Ty 959
———— Geveke nd St 1951 ———
Scheres o et 1995) / /
wmuuwrﬁf/////// \\\t:}mwwm, Skt W c10a
Hcon Sl o0t Fom.Halln, Lipp, s Recin 300 P
Vi Lk 207, 2011) 5

Rnderson snd Déister (2008)
ione, and Refclin (2011,2012)  Forn, Halln, Lippi, and Z4ffaroni (2015, 2017)  Forni, Halin, Lippi, and Reichlin (2005)  Forn, Giannone, Lippi, and Reichlin (2009)  Bernanke, Boivin, and Eliasz (2005) Lam, Yao, and Bathia (2011)
[Barigozzi und Luciani (2019)] Barig ) RN v

sz, Hallin, Luciani,and ZafTaroni ( Lam sad Yao (20

Reichl Barigozzi, Cho, Hissimo, Cristadoro, Forni, Lippi, and Veroncse (2010)  [Forni, Gambe;, L Wang, Liu, and Chen (2019)
Badbura and Modugno (2014) Hallin and Trucios (2021) Chen,
Vo, He, Kong, and Zhang (2022) [Guo, Qino, and Wang (2023)]
Tavakoli, Nisol, and Hallin 2023a.6)

[Barigozzi, He, Li,and Trapani (2023)]

Source: Barigozzi & Hallin, 2024.
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Approximate Static Factor Model - Aggregation and Identification

@ Approximate Static Factor Model - Aggregation and ldentification
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Approximate Static Factor Model - Aggregation and ldentification

@ Scalar notation (i =1,...,nand t=1,...,T):
zie = N Fy +eir.
~— =
1xr rx1

———
Cit

@ Vector notation (i =1,...,nort=1,...,T):

x, = A Fy + e, x; F X\ + e
~— N =~ ~—~ \/v ~—
nx1 nXT rx1  nxl1 Tx1 Txr rx1  Tx1

—— ——
C, C;
@ Matrix notation:
X =F N + E
L S S
Txn TXr rXn Txn
———
C
@ Stacked notation:
X L F + &
~— N =~
nTx1 (A®IT) nTx1
———
nTXrT

30/162



Approximate Static Factor Model - Aggregation and ldentification

Weighted averages. Large n to recover factors.
@ Take any n x r weight matrix Wr = (wp1 -+ - wr,)" and such that
nTTWLA =K -0, nTIWioWrp =1,
and ||lwg,|| < c for some ¢ > 0 independent of i.
@ For any given t an estimator of a linear combination of the factors is

. Wix, WLAF, Wke 1 —
F,o=—1"t =0ty gt:KFt‘i’E;w}’,ieib

n n

1=

@ Then we have y/n-consistency if as n — oo (assume r = 1 for simplicity):

2 /e 2
o P U< S =0(h).
El|=) wrien| | < or
n 4 2
= < (50 Xy Eleaesd ) = 0 (3)

which are standard assumptions in approximate factor model.

@ It is enough to have n"!W,A — K and n 'W,Wp — I, as n — oco.
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Approximate Static Factor Model - Aggregation and ldentification

Weighted averages. Large n to recover factors. Example.

@ For known A, the OLS estimator of the factors is, for any given ¢,

FO'S = (A'A) 'A%, = (MA) ' A/(AF, + e;)
1< A
j— . / J— . .
=F, + (n §l_1: )\z)\i> <n E‘_l Am) :

@ For consistency it is enough that, as n — oo:
0 % Z?:l Aieit —p 07’;
Q LYy AN =423, 0
and 1 is ensured by ||A;]| < M) plus weak cross-sectional dependence of
idiosyncratic components:

1 n n
sup sup — Elejieis]| < M.,
nGNtGZn;;‘ [lt ]t” ‘

@ This is equivalent to choose the optimal unfeasible weights
Wp =nA(A'A)7!, then K =n"'WLA =1,.
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Approximate Static Factor Model - Aggregation and ldentification

Weighted averages. Large T to recover loadings.

@ Take any T x r weight matrix W = (wa 1 ---wa,7)" and such that
T'W F=K=>=0, T 'WW,=1I,
and ||lwa || < ¢ for some ¢ > 0 independent of ¢.

@ For any given ¢ an estimator of a linear combination of the loadings is

_ — L K+ —
AZ T T + T AZ+

X W/’\:E, W//\FAZ WAei 1 Z w, e
Atit

@ Then we have v/T-consistency if as T — oo (assume 7 = 1 for simplicity):

1 2 o 1
T;wzx,ten < = (ng [eireis] ) -0 <T> ’

which is a standard assumption for stationary time series.

@ It is enough to have T-'W}F — K and T"'W W, — I, as T — oo.
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Approximate Static Factor Model - Aggregation and ldentification

Weighted averages. Large T to recover factors. Example.

@ For known F', the OLS estimator of the loadings is, for any given 1,

AOS — (F'F) " 'F'a; = (F'F)"'F'(F\; + ¢)

1 & T
=\ (T ;FtFt> <T ;Ftelt> )

@ For consistency it is enough that, as T' — oc:
T
ZI“Zt 1 Fieit _>p 0 ;
Q@ Ay FF,=EF , TF .

and 1 and 2 are ensured by standard time series assumptions: finite fourth
order cumulants, strong mixing, ergodicity....plus

sup sup—ZZ|E eireis)| < M.

TGNlGN =1 s—1

@ This is equivalent to choose the optimal unfeasible weights
Wr=TF(F'F)™!, then K=T"'W,F =1,.
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Approximate Static Factor Model - Aggregation and ldentification

Identification problem.

@ We can always rewrite the model as:

—1
Xt = AHH Ft +€t,
P G
for some invertible r x r matrix H.
@ To pin down H we need r? constraints.

@ The common component C; = AF; = PG is always identified.
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Approximate Static Factor Model - Aggregation and ldentification

Main assumptions.

0 E[F,] = 0,, E[e;] = 0,,;

1 EF , TF —E[F,F}] = 0asT — oc;

2 A;LA — 34 > 0asn — 00, sUP, ey MaXi=1,... n ||Ni]| < My;
T T

3 SUup, TeN % Z?:l 22:1 Zt:l ZS:l |E[eitejs]| < M, and

infpen mini—1,.... Ele;] > Ce;
finite fourth order moments of {e;;} summable over ¢ and i;
{F:} and {e;} are mutually independent (or just uncorrelated);

the r eigenvalues of ZAT'F are distinct;

~N o b

CLTs, as n, T — oo,

n T
1
— >\z it — NOT,I‘ s it — Or;@i .
n E_ €it —d ( t) 5: Fieqr —q )
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Approximate Static Factor Model - Aggregation and ldentification

Alternatively to A.1 we can make assumptions on the process {F;} such that

2
1 T
E —E F,F, - TF <M
\/thl{tt b | = Me

e.g. assume finite fourth order moments of {F,} summable over ¢.
Alternatively to A.2 and part of A.3 we can assume

2’ largest r eigenvalues of T'C diverge (linearly) as n — oo

u¢ ué
< < liminf & < limsup —- <g¢, j=1,...,r
n—oo N n—oo 1

3’ largest eigenvalue of T'¢ is bounded for all n

sup p§ < M,
neN
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Approximate Static Factor Model - Aggregation and ldentification

By Weyl's inequality, since T'" = T'C + T'°, then by 2’

c
T .M . ¢ .
hm—Jth—J—i—hm'u—"Zgj, i7=1...,7
n—oo N n—oo N n—oo M

c
T L1 . $ .
hm—Jghm—]Jrhm&gcj, j=1...,7
n—oo M n—oo N n—oo N

and by 3’

SUPMJzSSUPH9+1+SUPMTSM7 j=7"—|—1,...,n,
neN neN neN

@ Eigen-gap in eigenvalues u of I'
@ As n — oo we identify the number of factors!

@ The viceversa is also true: if eigenvalues of I'” have an eigen-gap, then 2’
and 3’ hOld (Chamberlain & Rothschild, 1983; Gersing, 2023; Barigozzi & Hallin, 2025)
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Approximate Static Factor Model - Aggregation and ldentification

Canonical Decomposition (Barigozzi & Hallin, 2024).

@ SF the Hilbert space of all Ly-convergent linear static combinations of z;;'s
and limits (as n — 00) of Ly-convergent sequences thereof.

@ Let w, x: € S* be a static aggregate, i.e.,
n
Wn,x,t = Z a;Ti, tELZL,
i1

with lim,, oo Z?zl(ai)Q =1

® (¢ €8X,,, if Var(¢;) = oo and

{0}

. w t Ct
lim E X

_ =0.
n—>00 VVar(wnx:)  v/Var(¢)

a common r.v. is recovered as n — oo by static aggregation

X _ eX
@ Let also Sidio’t = Scom’l’t

@ This gives the canonical decomposition: SX = Sc)gmi &Sk,
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Approximate Static Factor Model - Aggregation and ldentification

Static aggregation Hilbert space

@ Define a static aggregating sequence (SAS) any n-dimensional row-vector
a,, such that
lim a,a, =0
n—oo
@ The common static aggregation space is Szf,m’t and contains elements
wE™ = liMy,—y 00 Ap@py With Var(w™) > 0.

X

. k .
com,t depends on ¢, since a,, L" is a

@ However, the static aggregation space S
SAS for x,, ;1 and not for x,,.
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Approximate Static Factor Model - Aggregation and ldentification

Plot of ;i when r =1, simulated data

120

100 PR

80 f T 1
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Approximate Static Factor Model - Aggregation and ldentification

Plot of 0 when 7 = 1, real data
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Dimension
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Approximate Static Factor Model - Principal Components Analysis

@ Approximate Static Factor Model - Principal Components Analysis
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Approximate Static Factor Model - Principal Components Analysis

PC for dimension reduction (Pearson, 1902).

Assume 7 = 1. To reduce the dimension of X we look to minimize the
distances between the observations and their projections onto a one
dimensional subspace (line).

the linear projection of x; = (z1¢- -+ zpnt) onto a = (ay - --ay)’ with
la]| = a’a=1is aa’x;.

We want to minimize the sum of distances between all x; and their
projections

T n

T
min Zth —aa'x|]? = min ZZ Ty — a;a'x;)?
a:a’a=1 P} a;: =1

@i t=1 =1

This is different from LS where we have a dependent variable, say x1; and
n — 1 independent variables and we solve miny, Zle(a:u =3 S bizi)?

In PC we minimize Euclidean distance in R™ in LS we minimize a distance in
R in the subspace of the dependent variable.
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Approximate Static Factor Model - Principal Components Analysis

15 20
1

10
|

T T T T T
20 30 40 50 60
Here n =2 and r = 1.
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Approximate Static Factor Model - Principal Components Analysis

PC for dimension reduction (cont.)

@ Now, by Pythagora theorem (x; — aa’x;)’aa’x; = 0 (the error is orthogonal
to the projection)

Z |x; — aa’x||? =

T
( x; —aa'xy) (x; — aa'x;) = Z(Xt —aa'x;)'x;
t=1

; Xt — E xtaaxt— E XtXt_ E axtxt

HMH uMﬂ

It follows that

argagnn Z |x; — aa'x||? = arg max Za X X,a
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Approximate Static Factor Model - Principal Components Analysis

PC in high-dimensions.
@ We can rewrite the maximization problem as

1
arg max —a’'X'Xa
a:a’a=1 nT’

@ The solution is @ = V? the leading eigenvector of (nT)~!X'X which is the
same as the leading eigenvector of 771 X’X and of X'X.

@ The value of the objective function at its max is n~7i¥ which is finite since
we rescale by n.

@ The optimal linear projection V'x, is the 1st PC of X'X which has
variance /i¥, so the 1st normalized PC is (%)~ '/?V® x,.

@ In population the PCs are defined in the same way but now the norm is a
variance, so as a result we have for the weights the eigenvectors of
I'" = E[x¢x}).
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Approximate Static Factor Model - Principal Components Analysis
Principal components representation vs. static factor model.
@ Since the eigenvectors are an orthonormal basis in R™, for a given r
n T n
_ x x’ _ x z’ x z’
= Vi (Vi) =S v (Vi) + X v (Vs
=1 j=1 j

—— j=r+1
i th PC

Lit,[r] €it

Ty ] is the optimal linear r-dimensional representation of x;;, it is such that
> El€Z] = tr(T€) is minimum. It minimizes the sum of covariances since

(nT)~1 szzl Eleire;e] < pg < tr(I9), but I'C is not necessarily diagonal.

PC is a representation since no assumption is made on ¢;;.

T
@ A static r-factor model is z;; = Z AijFj +eq
j=1
(S
Cit
@ If the model is exact I'® is diagonal, and C;; accounts for all covariances,
but this depends on the assumptions we make. This is a statistical model.

@ Under an approximate factor model the two approaches are reconciled,
provided n — co.
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PC estimation of factors.

@ PCs are linear combinations of the data with optimal weights. This is what
we are looking for when retrieving the factors.

@ Considering the weights wp defined above such that wwr = n the PC

maximization becomes

arg  max wr X' Xwp

wwrwrp=n n2T

so that one solution is W = \/ﬁ{/z and the value of the objective function
at its max is still n =%,

@ Since wr are the optimal weights, they are an estimator of the unfeasible
optimal weights n(A’A)~!'A’ so we can write Wr = n(A’A)~1A/.
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Approximate Static Factor Model - Principal Components Analysis
PC estimation of factors (cont.).

@ An estimator of the factor is the 1st normalized PC

FPe = V'/Xt_ VNWEXy wFAFt
T vy

ert
V T4

R RN =1 R
= /ﬁf(AA) AAFt—FO (ﬁ)’

K

where for the one-factor case K is just a scaling.

@ Indeed, by Weyl's inequality and since 1§ = O(n) by assumption,
1 1 d
— (A < — |af - u |+ luf| < Z x;x; — T+ 0(1)

T

Z tX; -I”

t:

o) ro(3) oo

IN
| —

1
— ||T¢ 1
+ [P+ o)
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PC estimation of factors (cont.).

@ If we choose A = \Af’”\/ﬁf and assume that A = V©/u§’, which is
equivalent to impose E[F?] =1,

R = Va(z) 'V ve, /iy "\Afx’vcy/“lc 4140 ( LI 1)
= n = _—= —_— — y

H1 I25) :uf n p \/T n
for the one-factor case the factor is consistently estimated up to a sign.

@ Indeed, by Davis Kahan theorem and since u& = O(n) by assumption,

T — 1 _ 0,(nT™%) + 0(1)
us O(n)

V¥'VC 11| <

@ The 1st normalized PC is a min(y/n, V'T) consistent estimator of F}.

) ] ~ ~ o~
@ The common component is estimated as C; = V*V?® x,.
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Approximate Static Factor Model - Principal Components Analysis
Least squares estimation of a static factor model:

n

T
~ o~ . 1 / 2
(A, F) = argmin ZZ(:M - NF,)7,

i=1 t=1
which is equivalent to
1 /
wip 7o { (X - FA) (X - EA) '}
or

1
Ripapt (X~ EAY (X -EA)).

We need to impose 2 constraints to identify the minimum. Two choices:

(1) A;LA diagonal and % =1,

(2) A;LA =1, and E/TE diagonal.
Then,

(a) solve for A with constraints 1 or 2 and then we get F by linear projection;
(b) solve for F with constraints 1 or 2 and then we get A by linear projection.
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Approximate Static Factor Model - Principal Components Analysis

Sample covariance matrix. Define:

o " = % which is n x n with

e M7 r x r diagonal with r largest evals of T'";
e V% n x r with as columns the r corresponding normalized evecs.

o I'“ = XX which is T x T with

o M” r x r diagonal with 7 largest evals of re;
e VZ T x r with as columns the r corresponding normalized evecs.

@ Notice that, provided r < min(n, T,

M®  M®

n T

. / ’ . .
since the non-zero evals of % and of % coincide.
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Approximate Static Factor Model - Principal Components Analysis

FOUF SOlUtionS. Norma|ized PCS Of X (Forni, Giannone, Lippi & Reichlin, 2009).

(1a) Minimize wrt A under the constraint % is diagonal which gives

~

A— {/z(ﬁz)l/Q
Then:

AR M
n n
and R R o
F=XAAA)" =XV (M)
This solution is such that, as required:

' X' X
T

~

F'F

_ (1/\\/_[93)71/2{}a: {}z(ﬁx)fl/Q

_ (ﬁx)—1/2v;v/ ({/wﬁw"\/w' +szfrﬁrx7,frvf1/—r) {}w(ﬁw)—l/Q

= (M®)"1/2V*' VoMoV Ve (M?) V2 = 1.
The common component is estimated as:

C=FA =XV*V®,
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Approximate Static Factor Model - Principal Components Analysis

Four solutions (Bai, 2003).

F _1,
F =TV~
Then, obviously # =1, and
~ ~ 1 X've

A = X'F(F'F)

VT &
This solution is such that, as required:
ANA XX -
=V*
n nT
VMV 4V ML VEL) e
V¥ =
T

VZL‘

ool

The common component is estimated as:
C=F\N =V*V"X
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Four solutions (Stock and Watson, 2002).

(2a) Minimize wrt A under the constraint A;A =1,
A=/nV*®

F'F . X'Xg
— VI T
T nT
(VM Ve ME_ VL) e
—V* Ve = —.
n n

The common component is estimated as:
C=FN = XV°V¥,
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Approximate Static Factor Model - Principal Components Analysis
Four solutions. Normalized PCs of X".
L. . F'F .
(2b) Minimize wrt F under the constraint == diagonal

F =V*(M")"/2,
Then, o
F'F M°

T T

and
A=X'F(F'F)™' = X'V*(M*)" /2,

This solution is such that, as required:
AN~ XX
= (M*)"1Ave =
n

_ (Mz)fl/Q{}z' ({/mﬁxv:ﬂ' + vi—rﬁﬁ—rvil—r> {/I(Mm)*l/Q

Vm(Mm)fl/2

n

_ (Mm)—1/2{[z/vzﬁz{}m’vx(ﬁm)—l/2 =1,.
The common component is estimated as:
C=FA =V*V"X.
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The solutions (1a) and (1b) are equivalent, and so (2a) and (2b).

@ Consider the Singular Value Decomposition

X
—— =UDV'+Z
vnT

where U and V' are n x r, having orthonormal columns, and D contains the
r largest singular values of X.

@ Then,
r* X'X r* XX/
- = =VD>V'+Z'Z and — = =UD*U' +2Z'.
n nT T nT

@ SVD is the best rank-r approximation of \/% SO (Eckart & Young, 1936)

—_ —~

D? = :1\2;, U=V® V=V

n

58/162



Approximate Static Factor Model - Principal Components Analysis

The solutions (1a) and (1b) are equivalent, and so (2a) and (2b).

@ By computing PCs via the alternating least squares approach the PC
estimators are (Bai & Ng, 2021)

A=nVD, F=VTU.

@ Therefore, A = V(M®)1/2 = A asin (1a), F = VT V® = F as in (1b).
@ But also
F=XAAA"'=VnTUDV'V(ynD) ' =VTU = F,

~ _ .~ X'V* nTVDU'U
VT VT

=nVD =A.
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Approximate Static Factor Model - Principal Components Analysis

@ We focus on solution (1a):
SPC _ ~x' (naz 1/2 ™PC /AT —1/2xrz’
AP — g (MIF)/2, FPC = (M®) V2V x,.
@ This is the classical solution.
(Pearson, 1902; Hotelling, 1933; Mardia, Kent & Bibby, 1979; Jolliffe, 2002; Pefia, 2002).

@ Indeed, dynamic factor models are about time series, so we treat A as
deterministic while {F;} are r-dimensional stochastic processes, weighted
averages of the n dimensional stochastic process {x;}.

@ It is then natural to study the properties of the solutions written in terms of
the eigenvectors of the n x n covariance matrix I'*.

@ Notice that it is not necessary to have a consistent estimator of the whole
sample covariance. So I'” does not have to be consistent, indeed it cannot
be consistent if n > T', we just need n=!||T'" — T'*|| = 0,(1).
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Approximate Static Factor Model - Principal Components Analysis

Asymptotic properties. Loadings - Consistency.
(Bai, 2003; Barigozzi, 20xx).

@ Foranygiveni=1,...,n
e~ (1 & g 11
(AP _H'A) = B ( ZFJ@) ( ZFte“> +0, ( + )
rs r= vnT

0 ( 11, )
- P\VT n nT)’
with J¢ diagonal matrix of signs and Y are evec of (T'F)/23, (T'F)1/2,

@ Asn,T — oo, R
[H' — ToXH(TF) 2| = 0,(1).

The rates are not needed but the obvious rates would be min(y/n, vT).
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Asymptotic properties. Loadings - Asymptotic normality.
e If ? — 0 then

VT(APC —H'A;) =4 N (0,, V).
@ Asymptotic covariance

v;’C — Té(FF)1/2vZQLS(I‘F)1/2TO,

_ . E[F'E[e;€}| F)
OoLS __ Fy—1 )
ves = @ { i S5

by
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Approximate Static Factor Model - Principal Components Analysis

Asymptotic properties. Factors - Consistency.
(Bai, 2003; Barigozzi, 20xx).

@ Forany givent=1,...,T

(FPC —H'F,) = (ii >_ ( szen>+0 ( \/L)

) N 1/20% 11
= JoXH(TF)"V2(F® —Fy) + O, ( nT)

0, < 1 1 1 >
\f T VnT )~
with Jo diagonal matrix of signs and Y are evec of (I'¥")1/2%, (T'F)1/2,

@ Asn, T — oo, N
[H™' = ToXHTF) 72| = 0,(1).

The rates are not needed but the obvious rates would be min(y/n, v'T).
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Approximate Static Factor Model - Principal Components Analysis

Asymptotic properties. Factors - Asymptotic normality.

o If g — 0 then
V(EPC —H7IF,) =4 N (0, WEC).
@ Asymptotic covariance

W?C _ T6(FF)_1/2W?LS(I‘F)_1/2TO,

n—oo n

W?LS _ (EA)_l { lim E[A/E[etei]A] } (EA)_l.
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Approximate Static Factor Model - Principal Components Analysis

Asymptotic properties. Common Component.
(Bai, 2003; Barigozzi, 20xx).

@ Foranygiveni=1,...,nandt=1,...,T

~ 1 1
et -cul=0,(z) + 0 ()

A ~ P
with CHC = APCFPC = v V¥ x,.
@ And, asn,T — oo,

(ChC — Cy)

NWPCA, | FVPCE, \ /2
n + T

@ It does not depend on H.

—>dN(0,1).
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Identification and inference.

-~ ’ N T 1
@ The above results depend on H = (F F) (A A) (1\2 ) which is
unknown.

@ Alternative expressions for H are:

N R o1

H-(AA) AR =0p (L1 L

I ()R] = 0p (1 1)

[ — FFFF)| =0 (1 L 1) .
n’ nT T

@ No inference is possible unless restrictions are imposed so that H is fixed.
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Approximate Static Factor Model - Principal Components Analysis

Local identification and inference. Let J be diagonal with entries £1.
Q@ IfTF =1, and =, is diagonal and | EE — TF| = 0,(T~1/?),
[AA 3, || = Op(n=1/2) then H = J + Op(n~1/2,771/2),
@ IfTF =1, and 2’2 is diagonal for all n € N and || EE —TF|| = 0,(T~1/?)
then ﬁ =J + Op(nil, Tﬁl/z) (Anderson & Rubin, 1956).

QIf F/TF =1, forall T € N and NTA is diagonal for all n € N then
H=J+ Op(n=1, T71) (Bai & Ng, 2013).

@ 1 and 2 are not enough for the CLT to hold without ﬁ;

@ 3 allows to get rid of H but it is not credible for stochastic factors;

@ if we impose 3 either we treat factors as deterministic or the CLTs must be
considered as conditional on a specific T-dimensional realization of the
factors F.
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Approximate Static Factor Model - Principal Components Analysis

@ Under the classical identification assumptions 2:
n~'A’A diagonal for all n € N and T'F =1,..

@ Writing TX = VXMXVX' | imply
o A = VX(MX)Y/2 and AA — M*.

o F = CVX(MX)~1/2 by linear projection of C onto A;
o Xy =lim, 50 MTX;
o I'F =1,.

@ So the true factors are identified as the population PCs of the common
component.

@ If we assumed conditions 3, the true factors would be identified also as the
sample PCs coinciding with the population ones, hence the common
component must have population and sample covariance coinciding, so it
must be deterministic.
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Approximate Static Factor Model - Principal Components Analysis

Global identification.

@ Regardless of the identification scheme, the factors are identified up to a
sign.
@ To fix the sign
© Letting V¥ and v;< be the jth eigenvectors of T'® and T'X, we assume

V;—CIVX >0, forallj=1,...,r;
© Ml hasentries A\;; >0, forall j=1,...,7.

@ This guarantees global identification and J =1I,..
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Approximate Static Factor Model - Principal Components Analysis

Is PC the best we can do? We could use ML and GLS.

@ PC is nonparametric (no assumption on idiosyncratic distribution), ML is
fully parametric.

@ GLS is better than OLS for factors when idiosyncratic is heteroskedastic
across 1.

@ GLS is better than OLS for loadings when idiosyncratic is heteroskedastic
across t (but we assume stationarity).

@ ML/GLS coincides with PC in the case of i.i.d. idiosyncratic components.
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@ Approximate Static Factor Model - Quasi Maximum Likelihood
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Approximate Static Factor Model - Quasi Maximum Likelihood

Consider the stacked version of the model

X=(AIp)F+E.
——

L

Let:
Q" =EXX'], QF =E[FF], Q°=EEE].

Gaussian quasi log-likelihood:

T 1 1 ;
(X, ) = _"7 — 5 logdet @7 — Str (XX'(Q") )

1

~ 5 logdet (LOFL + 907 - % (x'care +o9 ' x).

The parameters to be estimated are ¢ = (A, QF, Q°).
ML is in general unfeasible:
@ too many parameters not enough degrees of freedom:

o the ML estimator of £2¢ cannot be positive definite;
o for time series Q¥ is a full matrix.
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Approximate Static Factor Model - Quasi Maximum Likelihood

We introduce some mis-specifications:

1. we treat the idiosyncratic components as if they were uncorrelated
= Q¢ is replaced by It ® X¢ where X¢ is diagonal with entries 07 = E[€?,].

We always work with the log-likelihood:

1
fo(X, ) =~ — 5 log det (corc +1rox)

1
-5 (x'(r, Q L + 1y @2@)*%) .

We are doing QML rather than ML!
Moreover,

2a. for static model we consider the factors as if they are serially uncorrelated
and QF is replaced by I @ T'F" = I,.p;

2b. for dynamic model we assume a parametric model for factor dynamics and
parametrize Q" accordingly.
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Approximate Static Factor Model - Quasi Maximum Likelihood
The log-likelihood is

lo,s(X,p) ~ ——logdet (AA +X°) (x{AA + 327 %),

l\.’)\»—l
MH

t=1
The parameters to be estimated are ¢ = (A, X°).

We work under the classical global identification assumptions:
n~'A’A diagonal for all n € N and T'¥" = I,. and sign fixed.

Issues

© No closed form solution for QML estimator exists, we need numerical
approaches, e.g., EM algorithm, Newton-Raphson
(Rubin & Thayer, 1982; Bai & Li, 2012, 2016; Ng, Yau & Chan, 2015; Sundberg & Feldmann, 2016).

© How to estimate the factors which are not appearing in the log-likelihood?
Least-squares or regression estimators
(Thomson, 1951; Bartlett, 1937).
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Asymptotic properties QML estimator - Loadings
(Bai & Li, 2016; Mao, Gao, Jing & Guo, 2024).

@ foranygiveni=1,...,nasn,T — o0

> 1 1
XQMLS _ zOLS|| _ = .
s = a2 =0, () +0, (=)

o if g — 0 then
V(RS — x) 4 N (0, VOS5)
v?LS — (]_-\F)fl {hmT—>oo E[F E[]?iei}F] } (I\F)fl = limp_, o E[F E[J?iei]F].

@ QML is asymptotically equivalent to OLS.

@ Vo has sandwich form due to neglected serial idiosyncratic correlation
since the likelihood is misspecified.

@ QML estimation of T'® is unfeasible but neglecting cross-sectional
idiosyncratic correlation has no asymptotic impact.

@ Treating factors as serially uncorrelated does not affect the result since
autocorrelation of regressors does not affect OLS.
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Asymptotic properties QML estimator - Loadings

(Barigozzi, 20xx).

@ foranygiveni=1,...,nasn,T — o0

- - 1
s~ &) =0, (1)

~ 1 1
e a0, (1) vo, (L),
H 7 7 H p n p \/ﬁ
o if YL — 0 then
VT(APC = X)) =4 N (0, VO5)

v?LS _ (]_'\F)fl {hmT_>oo E[F E[]?iei}F] } (I‘F)fl — hmT—>oo E[F E[]?iei]F].
@ PC is asymptotically equivalent to QML and OLS;

@ this solves the identification issue of PC.
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Approximate Static Factor Model - Quasi Maximum Likelihood

@ Consistency of loadings requires n — 00, otherwise we cannot identify the
model.

@ The mis-specification error, which we introduce by using a mis-specified
log-likelihood, vanishes asymptotically only if n — oo.

@ The QML estimator produces consistent estimates only in a
high-dimensional setting, i.e., it enjoys a blessing of dimensionality.
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Special cases.

@ Exact not autocorrelated heteroskedastic case, Q¢ = I+ ® 3¢. The
estimated loadings are the same as before, so have no closed form but now
are v/ T-consistent and asymptotically normal (Anderson & Rubin, 1956).

@ Exact not autocorrelated homoskedastic case, Q¢ = ¢21,,7. The estimated
loadings are given by A8M-0 — (ﬁ’” - ?7\2‘3'\"L'°IT)1/2 vZ they are
\/T-consistent and asymptotically normal (Tipping & Bishop, 1999).

@ In both cases (Bai & Li, 2012)

< 1
A - ags] =0, ().
AR =22 = 0, ( (%

@ if n fixed the asymptotic covariance is very complicated because () is not
negligible, this is the classical case (Amemyia, Fuller & Pantula, 1987).

@ if n — oo then () is negligible so the asymptotic covariance is
VOLsS” = o2(TF) =1 = 021, or V50 = ¢2(I'F)~! = 51, since now the
likelihood is correctly specified (Bai & Li, 2012).
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idiosyncratic PC QML

1. Q€ full min(n, VT) V?Ls min(n, VT) V?LS

2. Q°=1IrQr*° min(n, VT) V?Ls’* min(n, VT) V?Ls’*

3.Q°=Ip; ®%° | min(n, vT) VOLS” VT VOLS™ (if n — oo)
too complex (if n fixed)

4. Q0211 min(n, VT) V?LS’O VT V?LS,O (if n — o0)

too complex (if n fixed)

Asymptotic covariances

’ o
VOLS _ (pFy—1 {limTﬁoo ELF E[;zei,]F] } (DF)=1, YOLS* _ ;2(pF)~1 OLSO _ ,2(pF)~1

F'F

rf = limyp o0 =, here TF = I, by assumption

Estimators

PC S\fc = (M"’)l/20‘f cases 1, 2, 3, 4;

QML S\?ML’S no closed form, case 1, 2, 3; S\?ML’O = (M?* — EQQML'O)U?V;”, case 4
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How to estimate factors given ML estimator of the parameters?

@ If factors are treated as parameters, the log-likelihood can be written as
(Anderson & Rubin, 1956; Anderson, 2003)

l\D\>—~
Mﬂ

bos(X, 0, F) = —= logdet (=) F)(Z) ' (x: —AFE,)).

t:l

For given ¢ = (A, X°) and any given ¢ the ML estimator of the factors is
FWLS (A/<Ee) IA) A/(E ) Xy,

@ When we compute the WLS using the QML estimator of the parameters we
have the classical "least-squares estimator” F}'"° (Bartlett, 1937).

@ F = (F}---F/.) are additional T parameters to be estimated, and this is
possible only if n — oo = blessing of dimensionality!

@ Both the log-likelihood and its maximum WLS need X¢ positive definite.

80/162



Approximate Static Factor Model - Quasi Maximum Likelihood
How to estimate factors given ML estimator of the parameters?

@ If we treat the factors as random variables, but we do not model their
dynamics, then their optimal (in mean-squared sense) linear estimator is the
linear projection of the true factors onto the observed data:

FP = TFA (ATFA +39) 'x, = (A/(39) A + 1) A/(29) 'x,.
by Woodbury formula and since we assume I'" = 1I,..

@ When we compute the LP using the QML estimator of the parameters we
have the classical “regression estimator” FL (Thomson, 1951).

@ For finite n the LP has always a smaller MSE than the WLS.

@ Foranygivent=1,...,T as n — o0,

1
Fins - F) =0, (1),

since ||n(A/(Z)TA+ L) —n(A/(Z€)IA) 7| = O(n™1), because
[[(Ze)~1]| = O(1) and ||A|| = O(y/n) (Taylor expansion).
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Asymptotic properties WLS and LP estimators - Factors
(Bai & Li, 2016).

@ foranygivent=1,...., T asn,T —

E 1 1 1
e —rrs) =0, (1) +0, (=) IR =0, ().

o if Y — 0 then

VT(FMS — Fp) =4 N (0, W)

W™ = (Zhen) ™ {limn%oo A/(EE)AE[?E;](T)?IA} (Znea) ™,
Yiner = limy, o0 n_lA/(EE)_lA.
@ The same properties hold for the LP estimator.

@ W' has sandwich form due to neglected cross-sectional idiosyncratic
correlation when implementing WLS or LP. Note that GLS which requires
estimating (I'¢)~! is unfeasible.

@ Serial correlation has no impact for }JA“}N'-S and serial heteroskedasticity is
ruled out by assumption.
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Efficiency of WLS/LP (Barigozzi & Luciani, 20xx)
£ 371y IT¥]i3] = o), then
WOLS o WWLS
t t
WLS is more efficient than PC.

The assumption on I'¢ implies some form of sparsity (Bai & Liao, 2016).
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Special cases.

@ Exact heteroskedastic case I' = 3¢, WLS/LP and PC are
min(+/n, T)-consistent and the asymptotic covariances are

o for WLS/LP: W™ = (Zpcn) L
o for PC: WtOLS'* = (EA)71 {hmn—wo A,?%} (2/\)71'

o So WP = WIVS™ 'WLS is more efficient than OLS.
@ Exact homoskedastic case, I'® = ¢21,,.
e OLS and WLS coincide

FYS — (A (0°1,)'A) T A(0%L,) 'x, = (A'A) T Alx; = FOLS,

o OLS and LP are asymptotically equivalent as n — oc.
e WLS/LP and PC are min(y/n, T')-consistent and the asymptotic
covariance is W0 = ¢2(2,) L.
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idiosyncratic PC WLS/LP

1. Q€ full min(vn,T) WO | min(vn,7) WWLS
2. Q°=Ip®T° | min(vn,T) WO | min(ym,7) WWLS

3.0°=Ip @ =° | min(vn,T) WO | min(yn, ) wWLS®

4. Q° = o1, min(y/n, T) W?Ls’o min(/n, T) WtOLS,U

Asymptotic covariances

E[A/Elese]
n

PCWOLS = () {hmn%o “‘]}(EArl,

0

!’ e
WOLS® _ (33,)-1 {nmn_mo E[ATETA] } (Za)~ 1, WOLSO _ ;2(5,)~1

_ . A (=€)~ 1E[ese)(=6)" 1A _ _
WLS/LP WWLS — (2,,4)~! {hmnﬂm (=) [E;Et]( ) }(EAEA) LWWLS® (s )t

’

. A(ze)— !
DA Shen =limy o0 %

A =limp oo A, here either £\ or 3 5. are diagonal.
Estimators
~ ~ /o~ -~ ’
PC FPC = (APC APC)~1APC x;, case 1, 2, 3, 4;
=~ -~ !~ —~ ~ !~
WLS F¥VLS — (AQML,S (Ec,QML,S)—1AQML,S)—1AQML,S (EC,QML,S>—lxt’ case 1, 2, 3;
1?‘\!\”‘s = l?‘fc, case 4;

LP FLP = (KQML,S'(ie,QML,S)—lj\QML,S + IT>—1KQML,S’(ia,QML,s)—l,Ct’ case 1, 2, 3;

~ —~ PS —~ ’
F:,_P — (AQML,O AQML0 4 82,QML,OIT>—1AQML,O x¢, case 4.

85/162



Approximate Static Factor Model - Quasi Maximum Likelihood

Can we do better than ML plus WLS/LP?
@ In time series we could and should exploit the autocorrelation of the data.
@ Factors are autocorrelated.
@ Factors can have a lagged effect on the data.
@ PC does not account for dynamics.

@ ML is hard as it requires numerical maximization.
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Approximate Dynamic Factor Model - Expectation Maximization

@ Approximate Dynamic Factor Model - Expectation Maximization
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Approximate Dynamic Factor Model - Expectation Maximization

For simplicity assume a VAR(1) dynamics:

Ty = NFy + e,
F,=AF;_1 + vy,

Same assumptions plus:
8 stable VAR, eigenvalues of A inside the unit circle;
9 {v.}isi.i.d. with E[v;] =0,, TV => 0, finite 4th order moments.
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Approximate Dynamic Factor Model - Expectation Maximization

Since we are explicitly modeling the dynamics in the factors QF = Q¥ (A, T?),
eg ifr=1,

I—m AF’U Fv AT—l
T—A2 1—A? s T—A2
AF‘U Fv FUAT72
of — T—A2 T—A? e T—A2
- . . . . )
AT—-ll—m AT—.QFU F-’U
1—A2 1—A?2 s 1—A?

and we cannot assume it to be diagonal.
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Approximate Dynamic Factor Model - Expectation Maximization

Gaussian quasi log-likelihood with mis-specified idiosyncratic correlations:
fo.p(X,9) ~ — Slogdet (LQT(AI")L +1r & 5°)
S (veatare s es) X))
The parameters to be estimated are p = (A, A, TV, 3¢).

We work under the global identification assumptions.
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Approximate Dynamic Factor Model - Expectation Maximization

Issues
@ How to estimate the factors? Kalman filter or Kalman smoother.

@ The likelihood is intractable, we need the factors as input and alternative
maximization approaches.

o Newton-Raphson maximization of the prediction error log-likelihood
based on the Kalman filter. No closed form solution. Unfeasible in
high-dimensions. (Harvey, 1900; Stock & Watson, 1989, 1991; Hannan & Deistler, 2012).

o Multi-step approaches, but they do not exploit the feedback from
factors to loadings.

@ PC+VAR (Forni, Giannone, Lippi & Reichlin, 2009);
o PC+VAR+Kalman smoother (Doz, Giannone & Reichlin, 2011);
o QML+WLS+VAR+Kalman smoother (Bai & Li, 2016).

o Kalman smoother plus EM algorithm: fast, easy, and has closed form

solution (Quah & Sargent, 1993; Doz, Giannone & Reichlin, 2012; Barigozzi & Luciani, 20xx).
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Approximate Dynamic Factor Model - Expectation Maximization

Estimation of the factors.

They are autocorrelated so cannot be treated as parameters.

The optimal predictor is E,,[F|X] which under Gaussianity is the linear
projection

F' = (L) ' (Lof L' + 1029 tx
_ -1 o
=oL)Ire (A E) A+ (@) IreA (=) H)a
This is the unfeasible estimator obtained by taking the inverse Fourier

transform of the Wiener-Kolmogorov smoother.

At a given t we compute a weighted average of the elements of X which are
all T present, past, and future values of all n time series

= cross-sectional and dynamic weighted average!
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Approximate Dynamic Factor Model - Expectation Maximization

Estimation of the factors.
@ FYYK can be computed recursively by means of the Kalman smoother.

@ The Kalman smoother is computed with a backward recursion from T to 1
after the Kalman filter which is a forward recursion from 1 to 7.

@ After these recursions we get the estimates:

o one-step ahead Fy;_1;
o Kalman filter Fy;
o Kalman smoother Fyr.
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Approximate Dynamic Factor Model - Expectation Maximization

Estimation of the factors.

@ The Kalman filter is

Fyi =Fy 14+ Py A (AP A + 2) 7 (% — AFy_q)

Kalman gain prediction error
with

o Fyy 1 =AF,_y_1;
o Pyy_1 =AP, 1 1A'+ TY;
o Py =Py — Py A'(AP,, A" + »o)~! APy .

Kalman gain

@ The Kalman smoother is
Fyr =Fy + Pt\tA/P;r11|t(Ft+1\T —Fiape).

@ Consistently with the likelihood chosen we use 3¢ and not I'¢ so the
Kalman filter and smoother are mis-specified.
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Approximate Dynamic Factor Model - Expectation Maximization

Kalman filter in high-dimensions.

@ Kalman gain
Kij—1 =Py A'(APy A + »)!

requires inverting an n X n matrix, it seems unfeasible in high-dimensions.

Indeed, as n — oo,

o =l =0();
o |[APy,_1A'|| < nis n x n but rk(AP;_1A') =r < n.

@ Kalman gain + Woodbury formula

Kt\tfl — (A/(Ee)—lA_i_Pfl )_1A/(Ee)_1,

tjt—1

is feasible. Indeed, as n — oo,
o [I(Pye_1)~H| = O(1) (we need k(I™) = 7).
o |A(Z)IA| < nisr xrand rk(A'(Z¢)7IA) = .

@ Note that || K1 < n~/2 but [|x; — AF;_|| < v/n so Fy; is
well-defined and finite even as n — oc.
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Approximate Dynamic Factor Model - Expectation Maximization

Consistency of Kalman filter.
@ Ast— oo, |[Py—1 —P|| = O(e™"), and P is the steady-state.
o If [Pgoll = o(n) then, as n — oo, |[Pyi—1 — P|| = O(n~") forall t > 2.
@ At the steady-state and using Woodbury formula the Kalman filter is:

Fyi=Fy1 + (A (Z)TTA+PHTA(Z)  H (xe — AFy_1)

- Ft\t—l + (A,(Ee)ilA)flA/(Ee)fl(Xt - AFtIt—l) +0 <71L)

= (N(Z)'A) TN (Z) 7 (AF, + €/) 4O (i)

A(ze)~! 1 1
=F, +n(A'(Z)7'A)7! % o <n> =T Oy (ﬁ) '
—_————

o(1) —
0 (Z) )

A ) e |P] 1 & & NijAisElewesd] | M2M, 1

E t L 1j N\’ j 1tCe < N e:O ).
(*) H n n2 “zfz:ljzl E[e?t] e,t] - an n
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Approximate Dynamic Factor Model - Expectation Maximization

Consistency of Kalman smoother.

@ At the steady-state and using Woodbury formula
Py =P—(A(Z)'A+P ) T'A(2)7'AP

=P - (AN(Z)A) A (D) AP + O <;> =0 <1> .

n

@ From the above results at the steady-state the Kalman smoother is:

Fyr =Fyi+ Py AP (Friqyr — Frpape)
—

o(2) 0, (1)

1 1
o (2) o ()

@ Note that ||Ft|T — Ft|t|| = Op(n_l).
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Approximate Dynamic Factor Model - Expectation Maximization

Kalman filter MSEs.
@ Since we use 3¢ and not I'® so the Kalman filter is mis-specified.
@ Therefore, P;;_; and Py, are not the true MSEs.

@ The true MSEs accounting for this mis-specification are
(Harvey & Delle Monache, 2009):

I =Ty 4 Ky (ATL A"+ T°) 2\%1
— Ky 1 ALy — Iy AKG
I,y = AIL,_q, A’ + T,

these are feasible. Indeed, we need only to compute

o Ky, (see above);
o I'¢, which is a full matrix, but not its inverse.

@ As n — oo, ||[IL,|| = O(n™") implying again \/n-consistency of Kalman
filter (Barigozzi & Luciani, 20xx).
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Approximate Dynamic Factor Model - Expectation Maximization

Prediction error log-likelihood
(Harvey, 1990; Stock & Watson, 1989, 1991; Hannan & Deistler, 2012).

T
1
bo.p(X,p) = — 5 Zlog det Py _1(ep)

T
Z — AF i 1(9)) (Pyi—1() " (x¢ — AFy—1())

1
2 t=1

Unfeasible to maximize in high-dimensions. No closed form solution.
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Approximate Dynamic Factor Model - Expectation Maximization

By Bayes' law the log-likelihood is decomposed as

60 D(‘Xaf) = EO,D(XL?'?f) +€0,D(7v£) _goyD(:Fvaf)'

where
T 1 <&
lo,p(X|F, ) ~ — logdet( 52 — AF,)(Z°) 7} (x; — AFY)) ,
t=1
1 T
lo.p(F,p) ~ ——logdet(I‘” 52 (F; — AF;_1)' (Y)Y (F;, — AF;_1)).
t=1

Easy to maximize if F; is known.
The hard part would be to maximize o p(F|X, o) but it is not needed
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Approximate Dynamic Factor Model - Expectation Maximization

EM algorithm.

lo,p(X, @) = By [lo,p(X|F, @) + lo.p(F, )| X] — Ey [lo,p(F|X, )| X] .

Aes) H(pP)

For any k > 0, given an estimator of the parameters @),
E Compute Q(p, ).
M Solve @) = arg max, Q(p, ).
Start with PCA, e.g. A(© = APC.
Stop at k* s.t. [€o.p(X, % 1)) — £l p(X, %)) is small.
The EM estimator is @M = g(k"+1)
Main intuition

By construction H (@), ")) < H(p, ") for any ¢, so

lo.p(X, ")) > 0 p(x, ).
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Approximate Dynamic Factor Model - Expectation Maximization

EM estimators.
@ The EM estimator of the loadings is:

T -1,
NEM _ (") (k™) (k™) (k)"
AT = (Z Fir'Fyr +Pyp ) (Z Fir x”) ’

t=1 t=1

where F(‘T and P |T are obtained from Kalman smoother when using
5(k")
Pl

@ The EM estimator of the factors is the last run of the Kalman smoother
FEM F(k”rl)
t = fyr -

@ Both have a closed form expression!
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Approximate Dynamic Factor Model - Expectation Maximization

Asymptotic properties EM estimator - Loadings

(Barigozzi & Luciani, 20xx).

@ foranygiveni=1,...,nasn, T — o0

~ ~ 1 1 1
AEM _ AQMLD | — O ( >+O ( >+O ( ﬁ>
H 7 7 || p nT

~ ~ 1 1 1
AQMLD _ JauLs| — ( >+O < )+O (ﬁ>
H 7 i H p T

o if YL 0, then
VTAM — X)) =4 N (0,,VO5)

vOLS (]_-\F) {hmT—>oo E[F ej:t;eiF] } (]_-\F)fl — hmT—mo E[F ?eiF].

@ EM is asymptotically equivalent to QML of a dynamic as well as of a static
model and to PC and OLS.

@ Since the EM is initialized with PC then the loadings estimator is similar to
a one Step estimator (Lehmann & Casella, 2006).
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Approximate Dynamic Factor Model - Expectation Maximization

Asymptotic properties EM estimator - Factors
(Barigozzi & Luciani, 20xx).

@ foranygivent=1,...,T asn,T — oo

o~ ~ 1 =~ -~ 1
B -Ful =0, (1), IBu-El=0, (1)
o if g — 0, then

\/ﬁ(:/F\EM - Ft) —d N (O’H WWLS) )

WWLS _ EXeIA <1imn—>oo A/(ze)flE[(Zf,ei](ze)ﬂA> Ez_\elz\-

@ EM, which is the Kalman smoother, is asymptotically equivalent to the
Kalman filter and to the WLS and LP.

@ It can be more efficient than PC if T'® is sparse.
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Approximate Dynamic Factor Model - Expectation Maximization

Asymptotic properties. Common component.

(Barigozzi & Luciani, 20xx).

@ Foranygiveni=1,...,nandt=1,...,T

R 1 1
X5 — xitl = Op <ﬁ> +Op <\/ﬁ)

L
with REM = XEM'FEM,

@ And, as n,T — oo,

SEM
(Xa" — xit) =4 N (0,1).

AN WWLS ¥, +F;V?L5Ft 1/2
n T
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Approximate Dynamic Factor Model - Expectation Maximization

Asymptotic distribution of common component
Serially and cross-correlated idiosyncratic components - Robust covariances
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il | e .
000 Lttt ERMANANACARAATRRVRN RV, 000 Lem i UMIMEMENNR RO e
T ST s 2 o4 0 o1 o2 3 i s
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0 0ds
0a0l- 1 0w o
035k . . 4 035 I \
030} , . 1 o / )
02sh i s 8 025 i f
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020 [ N 4 0.20 ! b
015 7 M - 0.15 f »
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Approximate Dynamic Factor Model - Expectation Maximization

Kalman smoother and WLS.
@ Inthecaser =1 (Ruiz & Poncela, 2022).

24

Fyp = ——
t|T 21 B

B
F,_ 141+ F — F, —— WS
( t—1jt—1 + Fep1|T t+1\t>+2+B t s

with B = 2(A/(I'*)"'A)P and P ~ P,;_; for all t > { finite.

@ By assumption B < n and |P —T"?| = O(n~!), so as n — oo,
|Fyr — FM®) — 0.

@ But if factors are persistent A < 1 and do not fluctuate much I'” > 0, then,

at least in finite samples there might be considerable differences between the
Kalman smoother and the WLS.
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Approximate Dynamic Factor Model - Expectation Maximization

@ EM for loadings is as good as PC.

@ Kalman smoother for factors is equivalent to WLS which might be more
efficient than PC.

@ Why not PC or just QML+WLS?

@ EM+Kalman smoother is the most used method in institutions because it
allows for:

e missing data and mixed frequency, e.g., for now-casting;
e imposing constraints, e.g., for identification.

@ Kalman smoother might have better finite sample performance than WLS in
presence of small deviations for stationarity.
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Approximate Dynamic Factor Model - Expectation Maximization
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Generalized Dynamic Factor Model

@ Generalized Dynamic Factor Model
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Generalized Dynamic Factor Model

Define the spectral density matrix of {x;} (Discrete Fourier Transform, DFT):

1 o0
¥E(0) = Py e %% g ¢ [—m n],
k=—oc0

where ¢t = v/—1 and T} = E[x;x}_,] (recall T'* , = I‘i/), such that
(Inverse Fourier Transform, IFT):

e — | x*()e%d0, ke

The eigenvalues of 3% (6) denoted as 7 (6) are called dynamic eigenvalues.
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Generalized Dynamic Factor Model

The GDFM is: /
zi = A (L) fe +6its - fr = G(L)us
———
Xit
zie = A} (L)G(L)u; + & = bi(L)u, +Eir
——
Xit

Basic assumptions

A existence of X7(6) and XX () is rational;

B b;(L) has square-summable coefficients;

C {u;} is an orthonormal white noise;

D ¢;(0) <liminf, o “ife) < limsup,,_, . M;ife) <c(0), j=1,...,q,0-ae;

E SUPpeN SUPge[—7,x ,U§ (9) <M.
Recall that

@ if order of A¥'(L) is s < co restricted GDFM;
@ if order of A¥'(L) is s = 0o unrestricted GDFM or simply GDFM.
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Generalized Dynamic Factor Model

Representation Theorem (Forni & Lippi, 2001).

x; admits a Generalized Dynamic Factor representation with

lim pX(0) = oo, 0-ae. in[-m, 7],

n—oo
sup sup ,ui(ﬁ) < M.
neNge[—m,x)

{ if and only if

nli_)ngoug(ﬁ) =00, 0-a.e. in[-m 7],

sup sup pyq(0) < M.
neNfe[—m,n]

@ The necessary condition {} is easy to prove.

@ To prove the sufficient condition {} is much more difficult.

@ As n — oo we identify the number of factors!
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Generalized Dynamic Factor Model

Necessary condition - proof
1 By Weyl's inequality

p(0) + 5 (0) < pi(0),  0-ae. in [—m, ).
——

——
—00 <M

by D I:y E
2 By Weyl's inequality

sup sup p,.1(0) <sup sup {u;‘+1(9) +u5(0) }
neNfe[—n, x| NENGE[—7, 7] * N =~
=0 <M

by E
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Generalized Dynamic Factor Model
Sufficient condition - Sketch of proof

(1) construct a g-dimensional orthonormal white noise rf, z = {(z1t -~ zq) ' ,t € Z}
as a dynamic aggregate of z4's:

zjt = lim wypj(L)@n:, j=1,...,q, t €Z,
n—r 00

for some wy,; (L) such that lim, e o /7 wn;(0)w),

;i (0)d8 = 0;

(1) consider the unique canonical decomposition
xgr = proj{xe|Span(z)} + o = ver + 00, (€N, t €Z,
let 8, = {(01¢---0ne) ,t €Z} and vn = {(y1¢---Ynt) ', t € Z}, then

lim Var(an(L)8,:) = lim E / a, ()=’ (0)al (0)d0 =0,
n—oo n—oo 2 -

i = i 1 " v T
HILII;O Var(an(L)ynt) = HILII;O ﬂ/ a,(9)X,(0)a,,(0)dé > 0,

-

for any t € Z and all @, (L) such that lim, e 5= [ a.(0)al (0)dd = 0;

(1) it follows that pu$(0) < M, i.e., &, is idiosyncratic, and
limy, s 00 p13¥ (0) = 00, i.e., ¢ is common.
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Generalized Dynamic Factor Model

Canonical Decomposition (Hallin & Lippi, 2013).

@ D* the Hilbert space of all Ly-convergent linear dynamic combinations
of z;'s and limits (as n — 00) of Ly-convergent sequences thereof.

@ Let w, 5, € HX be a dynamic aggregate, i.e.,

n o0
Wy xt = E E GRTit—k, tE€ L,

i=1 k=—o0

with limy, o0 Yoy Dope o (aup)? = 1.

@ (; € DX  if Var((;) = oo and

hm E wn,x,t Ct

_ =0.
n—>00 VVar(wnxi)  v/Var(G)

a common r.v. is recovered as n — oo by dynamic aggregation

X _ 71X
@ Let also Dfy;, = Dcom,L

@ This gives the canonical decomposition: DX = DX & DX,
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Generalized Dynamic Factor Model

Dynamic aggregation Hilbert space

@ Define a dynamic aggregating sequence (DAS) any linear filter a,,(L) such
that

1 us
lim —/ a,(0)al (0)dd =0
@ The common dynamic aggregation space is DX
wE™ = limy,—y 00 @ (L)@ with Var(wge™) > 0.

@ However, also a,,(L)L* is a DAS for any k € Z, so w{°™ € DX for all

com
t € Z, thus the dynamic aggregation space DX, is independent of ¢.

and contains elements

@ Compare this with the static aggregation space S, , which instead
depends on t.
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Generalized Dynamic Factor Model

Dynamic weighted averages. Large n to recover factors.

@ Take any n x r filter matrix W, (L) = (wy,1(L) - - - wy n (L))" and such that

nilvvu(L)/B(L) = K(L) - 07 Tl71 Z Z wwikw;,ik =1

i=1 k=—o0
and with coefficients ||w, ;|| < ¢ for some ¢ > 0 independent of i.

@ For any given t an estimator of a linear dynamic combination of the factors is

WL (L)x, WL (L)B(L)u, W, (L)'&
u = = +
n n n

:K(L u; + — Z Z wuzk&zt k-

i=1 k=—o0

@ By dynamic averaging we do not recover white noise factors, but in general
we obtain autocorrelated factors.
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Generalized Dynamic Factor Model

@ Then we have y/n-consistency if as n — oo (assume ¢ = 1 for simplicity):

E||l— g E Wy ik&it—k < — < —
n u,zkfz,t k = n n

i=1 k=—o0

or

18 & 2 2 & 0o 1
E ﬁz > wuabiak| | < 2 > Y Elsiswéianl| =0 (n) :
i=1 k=—oo i,j=1 kyh=—o0

if we assume summability of cross-covariances and standard summability of

cross-autocovariances.
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Generalized Dynamic Factor Model

Dynamic PC - Population

Consider the case of one factor, ¢ = 1.

In the static case we know that the optimal weights are given by the solution

. . . ’ x
of PCs, which in population are such that we solve max,.a/a—1 al;l a

In the dynamic case to find the optimal weights we have to maximize the
variance of a@’(L)x; = Y po. . arX;_j such that the coefficients ay, are the
solution of . .
a'(e”)X*(0)a(e™"
. ()5 (B)a(e)
ay:a’(e?)a(e—+0)=1 n

where a(e™0) =37 ape *f.

The solution is given by P*(8) the leading eigenvectors of 3%(6) and the
value of the objective function is n=!u(0).

The common component is the IFT of the linear projection onto the 1st PC:
Xt = { > [ / Pm(a)vaT(e)e“"kde] L’“} x; = K'(L)x,
k=—oc0 -

By dynamic averaging we do not recover one-sided filters (dynamic
loadings), but in general we obtain two-sided filters.
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Generalized Dynamic Factor Model

Estimation of unrestricted GDFM - Dynamic PC
(Forni, Hallin, Lippi & Recihlin, 2000).
@ Consider the smoothed periodogram estimator of the spectral density matrix:
Br
S 1 |k| e —0hk mh
E(Qh)iﬂkZ ( BT) Lpe %, 0 = By |h| < Br,

— T _Tpa’ype _ _1 T /
where 1 = v/—1 and (recall T?, =TF ) T'{ = 525 D11 X¢X;_p- Let,

° i(@h) be the ¢ x ¢ diagonal matrix of ¢ largest eigenvalues of i(@h);
o P(0;) be the n x ¢ matrix of normalized eigenvectors of 3(6},).

@ The common component is estimated as

]\/IT BT
= S| S PP Ot | x,k = R(L)x,,
k=—Mz Lh=—Br

for some truncation integer M.
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Generalized Dynamic Factor Model

Asymptotic properties of dynamic PC estimator - Common component.
(Gersing, Barigozzi, Rust & Deistler, 2025).

@ Foranygiveni=1,...,nandt=1,...,T

PN MT MZBTlOgBT MT
|X?tPCX1f|Op<\/ﬁ>+Op<\/TT, +Op 37,11

@ The optimal bandwidth is By < T'/3.

@ If we use smoother kernel we can get better rates. E.g., with quadratic
kernel By = T2/5.

@ It depends on the truncation M7 which should be Mp < logT

@ No asymptotic distribution is available.
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Generalized Dynamic Factor Model

Estimation of restricted GDFM - Dynamic + static PC
(Forni, Hallin, Lippi & Recihlin, 2005).

@ From dynamic PC we also get

~ PP h
SX(0) = POILONP 01, Oh = |hl < Br

and 2£(0),) = (60, — £X(0)).
e By IFT

BT BT
Ty = > S¥Owe™™, Ti= 3 S0n)e™" |k < Br.
h=—Br h=—Br

@ In restricted GDFM: x; = AF; with F; = (us---u;—s) and ¢(s + 1) = 1.
@ Use r PCs on f‘%‘ having as r leading eigenvectors VX

LR = T x,
@ It accounts for dynamic loadings since in the first step we use dynamic PC.
@ Need to assume that e; = &; (static and dynamic idiosyncratic coincide).

@ To account for heteroskedasticity use the eigenvectors of T'¥ (diagl'§)~".
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Generalized Dynamic Factor Model

Asymptotic properties of dynamic + static PC estimator - Common component.
(Barigozzi, Cho & Owens, 2023).

@ Foranygiveni=1,...,nandt=1,...,T

] 1 BT log BT 1
i () o (V) o 3

@ The optimal bandwidth is By < T''/3.

@ If we use smoother kernel we can get better rates. E.g., with quadratic
kernel By =< T2/5,

@ No asymptotic distribution is available.
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Generalized Dynamic Factor Model

Unrestricted GDFM - one-sided representation
(Anderson & Deistler, 2008; Forni, Hallin, Lippi & Zaffaroni, 2015).

@ The unrestricted GDFM has an equivalent representation
A(L)x; = Ru; + A(L)&;

where

e A(L) has finite lag, is block diagonal, with blocks of size at least ¢ + 1;
e R is n x ¢ full rank;
e A(L)¢, is still idiosyncratic.

@ We can assume that the ¢ largest eigenvalues of RR/’ diverging with n.
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Generalized Dynamic Factor Model

Estimation of unrestricted GDFM - Dynamic PC 4+ VAR + static PC

(Forni, Hallin, Lippi & Zaffaroni, 2017).

From dynamic PC and IFT we get f‘?j for |k| < Br.
Estimate VAR( ) on each block by Yule-Walker, e.g., for p =1,
A (FX) 1I\X

Compute the g-largest PCs for the filtered process v; = fA(L)xt which is
now a white noise with covariance 'V having the ¢ leading eigenvectors V?
and eigenvalues M"

-~

R=V' (M"Y, & =(M")"2V5,

The common component is estimated as (say p = 1 for simplicity)

M~
’\FHLZ E A Rut &

for some truncation integer M.
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Generalized Dynamic Factor Model

Asymptotic properties of dynamic PC + VAR + static PC estimator - Common
component - Consistency.

(Barigozzi, Cho & Owens, 2023; Gersing, Barigozzi, Rust & Deistler, 2025).

@ Foranygiveni=1,...,nandt=1,...,T

PN MT MQBTIOgBT MT
|X§tHLZ_Xit:Op<\/ﬁ>+Op<\/TT + 0, By )

@ The optimal bandwidth is By =< T''/3.

@ If we use smoother kernel we can get better rates. E.g., with quadratic
kernel By =< T?/5.

@ It depends on the truncation My which should be My < logT.
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Generalized Dynamic Factor Model

Estimation of unrestricted GDFM - Dynamic PC + VAR + static PC

(Barigozzi, Hallin, Luciani & Zaffaroni, 2024).

\/7 T Br
@ Let: (7 = min (MT By oz By My ) such that (,7 — o0, as

n,T—>oo.

and T = y for some functions L1(-) and Ly(-) slowly

@ letn= i (C p
varing at infinity.

Lz(C

@ In the last step consider the PC estimators R and 1;_j, obtained from

T
1 R R N N
V= > (o Osme) @s(ye - Ds(ay.e);
t=T-T+1
for some {s(1),...,s(7)} C {1,...,n}.
@ Consider the resulting estimated common component (say p = 1 for
simplicity)

N

vFHLZ _ ZA Rut X

where A is 72 x 7 using only the rows and columns {s(1),...,s(n)}.
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Generalized Dynamic Factor Model

Asymptotic properties of dynamic PC + VAR + static PC estimator - Common
component - Asymptotic distribution.
(Barigozzi, Hallin, Luciani & Zaffaroni, 2024).

For any given i € {s(1),...,s(n)}and t =T —T +1,...,T, as n,T — oo we
can neglect the error of the first two steps

VFLHZ _ ..
WP oxie) L v (0.),
r;chri u;Vfcut
n T

with obvious definitions of W< and VF©.
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Generalized Dynamic Factor Model

Common component (red) of EA GDP growth rate (blue)
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Applications and Extensions

@ Applications and Extensions
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Applications and Extensions

Forecasting

@ Coincident indicators

Impulse response functions
@ The case of unit roots

@ Counterfactuals

132/162



Applications and Extensions

Direct forecasts

Let y; be a target variable and let the predictors be z, = u, + A Fy + £,

Instead of regressing y;. 5, onto z; we can use the factors F; as proxies of
the predictors.

In fact we can also have y; = 1, + A} F¢ + &1 50 y; is also driven by the
same factors.

Let x; = (y¢ z;)’, then
x¢=p+ AF + &

We can regress x;, onto the factors
Xith = ap + BpFr +epp

and compute direct forecasts.
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Direct forecasts

@ Direct forecast from a static factor model
(Stock & Watson, 2002; Bai & Ng, 2006; De Mol, Giannone & Reichlin, 2008).

~O0LS HOLSTAPC _ = R yrz/\or pexre\—1xrz’ (o =
xT+h|T—ah + B,"F =x+T7, VH(VEPT{VY) T V® (Xr — X)

using OLS and FPC = (M®)~1/2V*' (%p — ).
@ Direct forecast from a restricted GDFM
(Forni, Hallin, Lippi & Reichlin, 2005).

SFHLR ~OLS | POLSTRFHLR _ = X X (UX XX —1vx

using OLS and FFHLR — (MX)~1/2VX (%7 — ).
@ Comparison:

° §PTSrh|T does not require factors, it is the standard PC regression.

SFHLR

T+hT exploits the dynamic factor structure.

o X
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Applications and Extensions

Recursive forecasts

@ Recursive forecast from a dynamic factor model with VAR(1) for the factors.

e Use the EM algorithm
RS, — x + RE(RE ) F

with FEM from the Kalman filter which at ¢ = T is also the smoother.

o Since the Kalman filter can deal with missing data (just predicting and
not updating), this is the method to be used for nowcasting.

o Alternatively use PC and fit VAR on estimated factors
ﬁ;c-‘rh‘T =X+ KPC(APC)hf‘S—vC
. - T e e N T = e ’
with APC = (30, , FPS FPC)) 1 (30, FIS, FEC).

@ Recursive forecast from an unrestricted GDFM

M
oFHLZ 2 :’\k+hAA
XT+h|T =X+ A RuT,k.
k=0

@ Obvious generalizations to VAR(p).
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Applications and Extensions
The role of idiosyncratic components.
@ The optimal one-step ahead forecast of series i is
Elzir|Xi] = EN (Dfigr + i | X))
N (D) | Xo] + ElGinga | X))
= EA(D)fis1|F] +E[&ir41|20)

Xi, T+1|T 5i,T+1\T

@ Previous forecasting methods are for computing linear estimates of x; 741|7-

@ Adding one series to the dataset does not increase complexity for x; 717,
term which is driven by ~ ¢ parameters only.

@ Adding forecast for the idiosyncratic components might help.

e exact factor model: add univariate forecasts, e.g., AR;
e approximate factor model: add multivariate sparse forecasts, e.g., lasso.

@ For macroeconomic variables this is seldom the case
(Boivin & Ng, 2005; Bai & Ng, 2008; Luciani, 2014).
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Applications and Extensions
Factor plus sparse.

@ FarmPredict - AR + PC + VAR [asso (Fan, Masini & Medeiros, 2023)

(1= ail)wis = ci + NFr+ > pij&je1 +uir.
——

j=1
————

&it

Xit

@ Forecast:

| ~oL ~LASSO
T = Ti + AT 4+ X, T+1\T + E pif 517
j=1

with PLASSO — {P5%%°,4,5 = 1,...,n} such that

R R N 2
o PYASSO — aromin Zle (& — P6t71> + 7| Pl1;

° Eit =€t — X', € = (1 —aP"®)zy, and YEF obtained by PC from
(€1¢ - €nt).
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Applications and Extensions

Factor plus sparse.

@ fnets - GDFM —+ VAR |asso (Barigozzi, Cho & Owens, 2023).

n
Ty = ¢; + bj(L)u; + Z a1 Vit
——

Xit \]:1 ,
it
@ Forecast:
= OFHLR ’\LASSO
Ty, 71T = Ti + X1 T Z a; fj,
with AMASSO = [GLASSO 4 j = 1,...,n} such that

o AMASSO — argmin tr {Af‘gA’ — 2Af‘§}
° f‘i from dynamic PC and IFT;
o &t =z — X1 R, and XE'R obtained by dynamic + static PC.
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Applications and Extensions

Comparison FarmPredict vs. fnets
High-low range measures of US financial companies - n = 46.

Rolling window out-of-sample 2012 using as sample the T' = 252 previous days.

fnets AR FarmPredict
FE®v& Mean 0.7258 0.7572 0.7616
Median  0.6029 0.6511 0.6243
FE™* Mean 0.8433 0.879 0.8745
Median  0.7925 0.8437 0.8259
Fegs, = Bz R’ g pepry = Pl P
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Applications and Extensions
Coincident indicators
EU rOCOin (Altissimo, Cristadoro, Forni, Lippi & Veronese, 2010)

Core inflation (Cristadoro, Forni, Reichlin & Veronese, 2005)

@ x; are monthly stationary predictors such that
=p+AFM + ¢,
@ Y; is log of monthly GDP or Inflation in month ¢ such that
Ul =Yi = Yiea = py + NFP 4 6
this is observed only at lower frequency (quarterly).
@ The monthly and quarterly factors are such that (Mariano & Murasawa, 2003)
FY = FM 4 oFM | 4+ 3FM, + 2FM, + FM, = (1 4+ L+ L?)’FM

@ Indeed, if we assume the approximation for levels ¥,% = Zi:o Y;_i then

y? =Y2 -V = (Vi +Yio1 +Yia) — (Yies + Vi + Yios)

=y 2y + 3y + 2y s+
= (14 L+ L*)*yM
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Applications and Extensions

Coincident indicators

@ Since y? is observed at quarterly frequency it must first be transformed to a
monthly series, by, e.g., linear interpolation, thus giving y. This step has
not a big effect on estimates due to the subsequent smoothing.

@ Consider a smoothed version of y which is also a monthly series
ct =1 +L+... 4+ L)} yM

@ A smoothed monthly indicator is given by the projection of ¢; onto
smoothed estimated F?

T T -1
’élt:HLR =g+ (Z(Ct . E)ﬁ?,FHLR') (Z ﬁ?,FHLRﬁ?,FHLR') f‘?,FHLR

t=1 t=1

@ Clearly the scale of F&™"® does not matter.
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In practice.
. FQ,FHLR _ 7y/

@ Up to an irrelevant scale the (smoothed) factors are F; =VX'x,

VX'x;), where VX' (VX') are n x r eigenvectors of

(F?,FHLR _
fX = ET f]x(ﬁh) 0n, = ﬂ |h| < Br
0 ) BT, >~
h=—Br
~ 5, mh
Ly= > SX(0), Oh=-— [h<B
0 ( h)7 h 6137*7 | ‘ = DT

with f)X(Hh) computed via the ¢ largest dynamic PCs on monthly data, with
g < r. Note that cycles of frequency 7/6 correspond to periods of one year.

@ Compute the smoothed covariance

yF Z Ey H}L

h=—Br

Th
O = ——, |h| < Br,
" 6By [hl < Br

where S9F (6),) is the spectral density of (y@ F@FHR )/,
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In practice.
T T -1
_ FHLR’ Q,FHLRTQ,FHLR’ =Q,FHLR
MR =g+ [ D (e —OFY > FSTEY Fy
t=1 t=1

1 -
— g+ TYF (VXT”“VX> VXx,.

EA GDP growth rate (blue) and Eurocoin, efHLR, (red)
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Applications and Extensions

|mpu|se response fUnCtiOnS (Forni, Giannone, Lippi & Reichlin, 2009)

@ From the dynamic factor model

iy = NF + &, F,=AF,_,+Hu

@ Once estimated via PC + VAR the reduced form IRFs and shocks are
o~ K —~ o~
ST(L)Tfc = AT ) (AP FHPCArS,
k=0

@ However, we can just prove |[uf“ — Ru;| = 0,(1), with R invertible unless
further restrictions are imposed:
o statistical: 7! 23:1 u,u; =1, = R is orthogonal;
o statistical: 77! Zthl uw,u; = I, plus H'H diagonal = R diagonal £1;
e economic: 7! Zthl usu; = I, plus structure on some c;(L)
(sign, recursive, long-run) ;
e economic: identify u; via external proxies (IV).
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Applications and Extensions

Effects of EA monetary policy - PC + sign restrictions (Barigozzi, Conti & Luciani, 2014).

GDP

20

CPI

Short Term Interest Rate

5 10 15
Dollar/Euro Exchange Rate
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- -
-

-
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Applications and Extensions

Effects of EA monetary policy - PC + sign restrictions (Barigozzi, Conti & Luciani, 2014).
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Applications and Extensions

Effects of EA monetary policy - PC + sign restrictions (Barigozzi, Conti & Luciani, 2014).

Germany France Netherlands Belgium Finland
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Applications and Extensions

Effects of EA monetary policy - PC + sign restrictions (Barigozzi, Conti & Luciani, 2014).
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Applications and Extensions

Effects of EA monetary policy - PC + IV identification (Barigozzi, Lissona & Tonni, 2024).

3-Months Interest Rate " Real GDP
-0.02
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Applications and Extensions

Effects of EA monetary policy - PC + 1V identification (garigozzi, Lissona & Tonni, 2024).
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Applications and Extensions

EfFeCtS O'F EA monetary pOllcy - PC + IV identification (Barigozzi, Lissona & Tonni, 2024).
Unemployment Rate
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Applications and Extensions

Lon-run impulse response functions (Barigozzi, Lippi & Luciani, 2021)

@ To estimate the long-run effects we must account for unit roots and
cointegration.

@ We need a dynamic factor model for I(1) data.

@ The factors are I(1) but cointegrated, so their dynamics is either a VECM or
a VAR in levels.

@ The idiosyncratic components are I(1).

@ There are deterministic trends.
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Applications and Extensions
Long-run impulse response functions (Barigozzi, Lippi & Luciani, 2021)
@ The model is
Yit = ai + bit + N[Fy + &y
F, = AF,_; + Hu,, &it = piii—1 + €.
where b; # 0 for n, = o(n) series and p;; = 1 for ny = o(n) series or p;z =0
otherwise.

@ Estimation:

© De-trend via OLS 7 = yiy — a¥F9 — bP L5,

© Loadings by PC on AZ;; = AP,

© Factors FPC = (APCAPC)~1APCR,

© VAR (or VECM) by OLS on F{< = AP and HPC.
@ The reduced form IRFs and shocks are

/\PC ( ’\PC )‘Pc ZZ APC hHPCAPCh.
k=0 h=0

@ This estimator is consistent as n, T — oo. The rate depends on n; and n;.
@ If ny = ny = 0 the consistency rate is min(y/7, V7).
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Applications and Extensions

Effects of news shocks - Stationary vs I(1) factor model
(Forni, Gambetti & Sala, 2014; Barigozzi, Lippi & Luciani, 2021).

TFP Stock prices Hours
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Consumption Output Investment

VAR in levels
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Applications and Extensions

Effects of news shocks - Stationary vs I(1) factor model

(Forni, Gambetti & Sala, 2014; Barigozzi, Lippi & Luciani, 2021).
TFP Stock prices Hours

B 0 ouom® oo w oW m % 4
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Consumption Investment
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Applications and Extensions

COinCident indicators - OUtpUt gap (Barigozzi & Luciani, 2023; Barigozzi, Lissona & Luciani, 2025).
@ Identification can be made on the factors instead of the impulse responses.

@ Given an I(1) dynamic factor model, we can identify a common trend is
identified from
Ft:\Ith—i—wt, T = Ty—1 + V.

@ For GDP we have

Yir = a; +bit + N[Fy + &ip = ai + bt + N7+ Nwy  +&i
—_— —~—

Potential output Output gap

@ We can estimate the model using the EM algorithm twice.
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bhUb bbb btomuan

1970

Output gap

(Barigozzi & Luciani, 2023.) (Barigozzi, Lissona & Luciani, 2025).
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Generalized Impulse Response FUnCtionS (GIRF) (Barigozzi, Lissona & Luciani, 2025)

@ Given a T x n dataset X = (y Z) where y = (y1---yr)’ is a variable of
interest, and such that

Xt :AFt+€t:Xt+£t7 t:]-v"‘vTv
Ft = AFt_1+ut, til,...,T,

@ Define the GIRF for y as:
GIRFY(h —1) = ypin —¥Yrn  h2>1,

where

e the unconditional linear prediction is
Yrn = Proj{xf, | x1,%a,..., X1}
o the conditional linear prediction is
Yryn = Proj{xgﬂ_,_h | X1,X2,..., X7} E%Jﬂ}

with 5%_1 being a shock to y at time T+ 1, that is to say when y7;
is replaced by yry1 + €% .
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Applications and Extensions

Generalized Impulse Response Functions (GIRF) (Barigozzi, Lissona & Luciani, 2025)
@ The GIRF is GIRFY(k) = %, 11 — YPipr £ >0
@ For given estimated parameters (via QML, EM, or PCA) at k = 0 we have

the unconditional linear prediction

~

~u VA
Yro1 = ANFrpr

where f‘T+1|T is computed via the Kalman filter. Notice that, in this case,

given no information available from time T" + 1, there is no update step in
the filter.
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Generalized Impulse Response Functions (GIRF) (Barigozzi, Lissona & Luciani, 2025)
® The GIRF is GIRFY(k) = 45,1y — Yy, k>0

@ the conditional linear prediction is

~

?/J\%+1 = )‘;,f‘T+1\T+1
Friorm = Frogr +Ker(xre — AFpo)p)
= f‘T+1|T =+ RT+1|T(XT+1 = XT+1/T)
where now we can update the Kalman filter, due to the shock at T+ 1 to y
Here KT+1|T = f’T+1|TK’(1AXlA3T+HT1AX’ + 25)71 is the Kalman gain.
@ Since we do not know x71, we can substitute it with:

-~ SY Yy
2 _ o Yryur \ _ [ Xr+yr TR
T = | g = >Z
T+1|T XT+1|T
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Applications and Extensions

Generalized Impulse Response Functions (GIRF) (Barigozzi, Lissona & Luciani, 2025)

@ The GIRF for y is GIRFY(k) = 95,01 — Y% py1 k>0

@ At k=0 we have

GIRF,(0) =

= A, (FT+1T + Krpr (

YR €741
= ANKrar |

“~C “~Uu
Yr+1 — Y141

SIS ~
Ay (Friyrer — Fror)

y
6 A~

T+1
0 +1 ) - FT+1T>
n—

n—1

@ The GIRFs for x; are obtained as

PN Yy
GIRF,(0) = AKT+1|T( ETE )
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Generalized Impulse Response Functions (GIRF) (Barigozzi, Lissona & Luciani, 2025)

@ At k =1 we have

GIRF, (1) =

R

C ~U

T+2 — YT+2
A(Friori1 — Fryor)
A(

‘&f‘T—&-HT—H - ;&f‘T—&-HT)
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Generalized Impulse Response Functions (GIRF) (Barigozzi, Lissona & Luciani, 2025)

@ For a generic horizon k, we can write:

PN Yy
GIRF, (k) = = AA’fKT+1|T( ETS )

A~ o~ A~ ~ ~ A~ ~ A _ ey
= AAF {PT+1|TA/(APT+1|TA/+EE) 1} ( OTJ_ri )

If we wish to attribute the entire effect of the shock to comovements, i.e. to
the common component, we can set 3¢ to a very small value.

@ Generalizations to

© a single shock to multiple variables and/or horizons

@ multiple shocks to multiple variables

© multiple shocks at multiple horizons to a single variable
(counterfactual)
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Applications and Extensions

A shock to Unemployment rate - EA

Common component: UR ~ Common component: GDP
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A shock to Inflation rate - EA

Common component: core HICP  Common component: GDP

3
2

1
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Applications and Extensions

Other applications and extensions I've been working on

Brea kS (Breitung & Eickmeier, 2011; Cheng, Liao & Schorfeide, 2016; Corradi & Swanson, 2014;
Barigozzi, Cho & Fryzlewicz, 2018; Barigozzi & Trapani, 2021; Bai, Duan & Han, 2021, 2022; Barigozzi,
Cho & Trapani, 2025).

Volatility (Barigozzi & Hallin, 2016, 2017, 2020).

Networks (Barigozzi & Hallin, 2017; Barigozzi, Cho & Owens, 2023).

Local stationarity (Motta, Hafner & von Sachs, 2011; Barigozzi, Hallin, Soccorsi & von Sachs, 2021).
Random flelds (Barigozzi, La Vecchia & Liu, 2024).

Matrix time Series (Yu, He, Kong & Zhang, 2022; He, Kong, Trapani & Yu, 2023; Barigozzi &

Trapin, 2025).
Tensor time series (Barigozzi, He, Li & Trapani, 2023).

Ta|| robust estimators (Barigozzi, He, Li & Trapani, 2023; Barigozzi, Cho & Maeng, 2025).
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Lectures hold at:

Universidad de Alicante;

IHS, Vienna;

LSE;

Chinese University of Hong Kong;
Universita di Bologna;
CREST-ENSAE, Paris;

Scuola Normale Superiore, Pisa.
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Thank you!
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