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Defining returns

In the analysis of financial data, asset equity returns are typically
the main variable of interest (rather than prices)

There are at least two reasons for this:
1 Returns are easier to interpret

2 Returns have statistical properties which are easier to handle (e.g.
stationarity)

There are two types of return definitions: simple and log returns
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Defining returns

Simple returns
Let Pt be the price of an asset at period t (t = 1, .., T ).

The simple return is defined as the gross return

Rt =
Pt − Pt−1
Pt−1

In other words, Rt is the gross return generated by holding the
asset for one period

Note that since prices are nonnegative, Rt ∈ [−1,+∞)
(corresponding to Pt = 0 or Pt−1 = 0)
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Defining returns

What happens if I have been holding the asset for k periods?

The multiperiod simple return is given by

Rt−k:t =
Pt − Pt−k
Pt−k
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Defining returns

It is straightforward to check that

1 +Rt−k:t =
Pt
Pt−k

=
Pt
Pt−1

Pt−1
Pt−2

...
Pt−k+1

Pt−k
= (1 +Rt)(1 +Rt−1)...(1 +Rt−k)

=

k∏
j=0

(1 +Rt−j)

Thus, the multiperiod return can be expressed as a product of
single period returns

M. Barigozzi (LSE) June 2014 6 / 142



Defining returns

It is often of interest to know what is the average return on an
asset after holding the asset from t = 1 to T

RT =

[
T∏
t=1

(1 +Rt)

]1/T
− 1

that is, the geometric mean of 1 +Rt (minus 1)

The geometric mean is the correct average in the sense that it
produces the constant rate of return that would give the same
multiperiod return from period 1 to T
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Defining returns

Log returns
Simple returns are a natural way of measuring the variation of the
value of an asset, however, it is more common to work with
log returns

Log returns are defined as

εt = logPt − logPt−1 = log
Pt
Pt−1

= log(1 +Rt)

Note that εt ∈ (−∞,+∞), thus it is possible to have negative
returns lower than −100%
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Defining returns

One of the advantages of the log returns is that the multiperiod log
return

εt−k:t = logPt − logPt−k

can be simply expressed as a sum of one period returns

εt−k:t =

k−1∑
i=0

εt−i =
k−1∑
i=0

logPt − logPt−1−i = logPt − logPt−k
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Defining returns

Are Log and Simple Returns that different?

Not really. If price variations are small, then log and simple
returns are very close to each other. This can be seen via a Taylor
expansion. If Rt is close to 0, then

εt = log(1 +Rt) ≈ log 1 +
1

1 +Rt

∣∣∣∣
Rt=0

Rt = Rt
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Defining returns

In practice, we will work almost exclusively with log returns

It is a good habit to multiply returns by 100 to express them as a
percentage. Some statistical packages are sensitive to the scale of
the data. Since log differences can be small, sometimes this creates
numerical difficulties

Thus, we are going to work with returns defined as

εt = 100× (logPt − logPt−1)
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Defining returns

Portfolios

A portfolio p is defined as a collection of N assets and portfolio
weights w1, ..., wN reflecting the percentage of wealth invested
N assets is defined as a weigheted average of the simple returns
with weights equal to the percentage of

Rp t =

N∑
i=1

wiRi t

Unfortunatelly, this doesn’t hold for log returns. However, if the
magnitude of the returns is small then the approximation error is
moderate

εp t ≈
N∑
i=1

wiεi t

In practice, in portfolio analysis this approximation is used often
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Defining returns

Which kind of financial assets are we going to look at?
(US) Common Stocks: IBM, Apple, General Motors, Goldman
Sachs, ...

Stock Indices: S&P 500 index, Dow Jones Industrial average,
FTSE 100, CAC 40, DAX, ...

ETFs: Index ETFs, Commodity ETFs, ...
Exchange Traded Funds are investment fund which can be traded
on an exchange. ETFs are designed to track the performance of
specific types of investment such as investing on an index, a
country, a commodity and so forth

...but the models considered are also useful for: exchange rates,
inflation, interest rates
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Defining returns

Which horizon?
So far we haven’t specified the length of a period

In practice, the choice of the frequency depends on the context of
the application
From an industry perspective, it is reasonable assume that
different agents are focused on different horizons

Fund Manager: Monthly
Risk Manager: Daily
Traders: Intra–Daily

We are going to work mostly with daily and monthly data
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Defining returns

Which price?
For each time period, there are typically multiple prices available

For instance, at a daily frequency, data providers typically report:
Opening, Low (min), High (max) and Closing Prices

Returns are computed using the last price available in each period
(i.e. the closing)
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Defining returns

Stock prices are affected by Stock Splits and Dividends

It is preferable to work with “Adjusted” series which take care of
these features of the data

Luckily, data providers take care of adjusting the series for us
We only need to make sure we are working with an adjusted series
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Defining returns

Databases
For daily and monthly data, some of the most used (commercial)
databases are the one of the Center of Research in Security Prices
(aka CRSP) at U. Chicago and Datastream.
These are commercial DBs.

Google and Yahoo also provide daily and monthly series (for free!).
We are going to rely on these sources to get some sample series for
practice.
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Defining returns

For illustration purposes we make use of the Standard & Poor’s
500 index

The S&P500, is a stock market index based on the market
capitalizations of 500 large companies having common stock listed
on the NYSE or NASDAQ. The components and their weightings
are determined by S&P Dow Jones Indices. It is one of the most
commonly followed equity indices, and many consider it one of the
best representations of the U.S. stock market, and a bellwether for
the U.S. economy.

Daily series: January 2000 - May 2012 (3123 Obs.)
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Defining returns

S&P500 Daily Adj. Closing Prices
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Defining returns

S&P500 Daily Returns
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Defining returns

A similar series worth looking at is also
The Dow Jones Industrial Average which is an average of 30 major
US public companies.
It is one of the oldest market indices

Daily series: January 1990 - December 2011 (5555 Obs.)
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Defining returns

Dow Jones Monthly Returns
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Defining returns

Dow Jones Daily Returns
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Stylized Facts

Mandelbrot (1956)
Nonstationarity of prices Pt (random walk), stationarity of returns
Absence of autocorrelation of returns εt (white noise)
Autocorrelation of squared returns ε2t or |εt| (weak white noise)
Volatility clustering large returns (in absolute value) tend to be
followed by large returns (in absolute value), and vice versa
Fat–tailed distribution of returns, kurtosis >> 3 (leptokurtic), i.e.
non–Gaussian
Leverage effects, i.e. negative returns (decrease in prices) tend to
increase volatility by a larger amount than positive returns
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Stylized Facts

These stylized facts have been documented starting from at least
the 1960’s but the first models able to capture volatility clustering
were proposed starting from the 1980’s

We are going to analyse volatility clustering and introduce
nonlinear dynamic models able to capture it
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Stylized Facts

S&P500 Daily Returns

2000 2005 2010
10

5

0

5

10

15

M. Barigozzi (LSE) June 2014 27 / 142



Stylized Facts

S&P500 Daily Absolute Returns
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Stylized Facts

S&P500 Daily Squared Returns
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Stylized Facts

The inspection of the daily return time series plot suggests that:
returns appear to have weak or no serial dependence

absolute or squared returns appear to have strong serial
dependence
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Stylized Facts

S&P500 Daily Returns ACF
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Stylized Facts

S&P500 Daily Absolute Returns ACF
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Stylized Facts

S&P500 Daily Squared Returns ACF
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Stylized Facts

The inspection of the autcorrelograms suggests that:
returns appear to have weak or no serial dependence

absolute and square returns appear to have strong serial
dependence
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Stylized Facts

S&P500 Daily quantiles vs. Gaussian quantiles
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Stylized Facts

S&P500 Daily returns and prices
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Volatility Models

The strong evidence of serial dependence in absolute and square
returns suggest that the scale of returns changes in time

In other words, the variance of the process is time varying

In order to capture volatility clustering, we need to introduce
appropriate time series processes able to model this behavior
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Volatility Models

General model
Consider the covariance stationary time series {yt}Tt=1, i.e. with
E[yt] = µ and Var[yt] = σ2 not depending on time

We define conditional mean µt of the process as

µt = E[yt|It−1]

and conditional variance σ2t as

σ2t = Var[yt|It−1] = E[(yt − µt)2|It−1]

where It = {y1, y2, ..., yt} is the information set available at time t

The shorthand notation Et−1[·] in place of E[·|It−1] is used
sometime
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Volatility Models

Can we use ARMA models?
Consider the simple ARMA(1,1) model

yt = φ0 + φ1yt−1 + εt − θ1εt−1 εt ∼ D(0, σ2ε )

For the simple ARMA(1,1) we have that

µt = φ0 + φ1yt−1 − θ1εt−1

and
σ2t = σ2ε

Thus, while the conditional mean of an ARMA is time varying, the
conditional variance of an ARMA is constant. An ARMA(p, q) is
not able to capture time varying volatility
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Volatility Models

In general we have the following model (for simplicity consider the case
µt = 0, i.e. of zero mean and zero autocorrelation in yt)

conditional heteroskedasticity: σ2t 6= const. and

yt ≡ εt = σtzt

the volatility σt > 0 is a function of It−1
the innovations zt are i.i.d. with E[zt] = 0 and E[z2t ] = 1

innovations are independent of past returns, i.e. Cov(ztσt) = 0 and
Cov(ztεt−k) = 0 for k > 0
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Volatility Models

Moments of conditional heteroskedastic models
mean of returns E[εt] = E[σtzt] = E[σt]E[zt] = 0

conditional mean of returns Et−1[εt] = 0

conditional variance of returns

Et−1[ε
2
t ] = Et−1[σ

2
t z

2
t ] = Et−1[σ

2
t ]Et−1[z

2
t ] = σ2t

autocovariance of returns

Cov(εtεt−k) = E[εtεt−k]− E[εt]E[εt−k] = E[εtεt−k] =

= E[σtztεt−k] = E[zt]E[σtεt−k] = 0

thus εt is weak white noise but in general E[ε2t ε
2
t−k] 6= 0 thus not

strong white noise

kurtosis κε = κz

[
1 +

Var(σ2
t )

(E[σ2
t ])

2

]
, leptokurtic distribution of zt
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Volatility Models

In order to model volatility, the literature has proposed specific
types of time series models

There are two approaches in modelling the conditional variance σ2t :

1 ARCH Approach: σ2
t is a deterministic equation

2 Stochastic Volatility Approach: σ2
t is a stochastic equation

In practice, the ARCH approach is more popular while Stochastic
Volatility models are typically harder to work with
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Volatility Models

The ARCH Model
In order to capture volatility clustering, in 1982 Robert Engle
proposed the AutoRegressive Conditional Heteroskedasticity
(ARCH) model

This simple model has started the literature on nonlinear
quantitative modelling of financial time series

In 2003 Robert Engle won the Nobel prize for economics
The ARCH model was mentioned as one of his most significant
contributions
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Volatility Models

The ARCH(1) model is

εt =
√
σ2t zt zt ∼ D(0, 1)

where D is a distribution with mean 0 and variance 1 and

σ2t = ω + αε2t−1

where ω > 0 and α ≥ 0.
The α coefficient needs to satisfy other regularities conditions to
ensure that the process is “well behaved” (i.e. finite variance and
stationarity)
In words, the current conditional variance of returns is
proportional to the past squared return
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Volatility Models

The ARCH(q) model is

εt =
√
σ2t zt zt ∼ D(0, 1)

where D is a distribution with mean 0 and variance 1 and

σ2t = ω + α1ε
2
t−1 + α2ε

2
t−2 + ...+ αqε

2
t−q

where ω > 0 and αi ≥ 0. (Again, the αi coefficient needs to satisfy
other regularities conditions to ensure that the process is “well
behaved”)
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Volatility Models

In the early 1980’s, the simple idea of making the current
conditional variance of the process a deterministic function of the
past history of the process opened the door to a new way of
modelling time series

Since the original contribution of Engle, a vast number of
alternative specifications for the conditional variance of returns
have been proposed
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Volatility Models

ARCH(q) is equivalent to an AR(q) for the squared returns
(if the model is stationary)

Define the innovations of squared returns

νt = ε2t − Et−1[ε
2
t ] = ε2t − σ2t

then σ2t = ε2t − νt and the ARCH(q) becomes

ε2t − νt = ω +

q∑
i=1

αiε
2
t−i

which is an AR(q)

ε2t = ω +

q∑
i=1

αiε
2
t−i + νt

but νt is not i.i.d. as Cov(ε2t ε
2
t−k) 6= 0.
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Volatility Models

ACF of squares
The AR representation allows for computing the ACF of ε2t

For an AR(1) we have

yt = ayt−1 + et ⇒ ρ(h) =
Cov(yt, yt−h)

Var(yt)
= ah

where et ∼ N(0, 1) and E[yt] = 0

An ARCH(1) is equivalent to an AR(1) for the squared returns

ρ(h) =
Cov(ε2t , ε

2
t−h)

Var(ε2t )
= αh

Notice that ρ(h) > 0 for any h
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Volatility Models

For higher order ARCH we have to solve Yule Walker difference
equations

ρ(h) =

q∑
i=1

αiρ(h− i)

For an ARCH(2) we have

ρ(2) = α1ρ(1) + α2ρ(0)

ρ(1) = α1ρ(0) + α2ρ(−1) = α1ρ(0) + α2ρ(1)

Then

ρ(2)

ρ(1)
= α1 + α2

ρ(0)

ρ(1)
= α1 + α2

1− α2

α1

Thus ρ(2) < ρ(1) implies a restriction on the coefficients and in
general ACF do not decrease to zero monotonically
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Volatility Models

Detecting ARCH effects
Engle (1982) introduces a simple test to detect the presence of
ARCH effects using the AR representation

The ARCH-LM test is constructed as follows
1 Estimate the coefficients of the following autoregression by OLS

ε2t = α0 + α1ε
2
t−1 + ...+ αqε

2
t−q + ut

2 The null of no ARCH effects is formulated as
H0 : α1 = 0, α2 = 0, ..., αq = 0

3 The test statistic for the ARCH-LM is

T ·R2

where R2 is the usual “R-squared” coefficient. Under the null of no
arch effects the test statistic is asymptotically distributed as a χ2

q
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Volatility Models

Estimating ARCH
ARCH models are typically estimated by Maximum Likelihood

The ML estimator has no closed form expression and needs to be
found numerically

This will be the topic of the next lectures
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Volatility Models

Residuals’ diagnostics
Model adequacy can be checked by inspection of the so called
“standardized residuals” defined as

ẑt =
εt
σ̂t

=
εt√

ω̂ +
∑q

i=1 α̂iε
2
t−i

where ω̂ and α̂i are obtained by ML under distribution D
If the specification is correct, standardised residuals should be

1 Approximately distributed according to distribution D
2 Should not exhibit dependence in levels, absolute levels, square

levels, etc... i.e. the must be i.i.d.
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Volatility Models

Forecasting
Forecast formulas of the variance of the ARCH(1) are analogous to
those of the AR(1)

1–step ahead forecast of the variance is

σ2t+1|t = Et[σ
2
t+1] = Et[ω + αε2t ] = ω + αε2t

2–steps ahead forecast of the variance is

σ2t+2|t = Et[ω + αε2t+1] = ω + αEt[ε
2
t+1] = ω + ασ2t+1

= ω + α(ω + αε2t ) = ω(1 + α) + α2ε2t

k–steps ahead forecast of the variance is

σ2t+k|t = Et[ω + αε2t+k−1]

= ω

(
k−1∑
i=0

αi

)
+ αkε2t
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Volatility Models

S&P500 Daily Volatility Analysis
As an empirical illustration, we are going to use an ARCH(3)
model (with intercept, i.e. µt = c) to fit daily returns

The ARCH(3) with intercept is defined as

yt = c+ εt = c+
√
σ2t zt zt ∼ N(0, 1)

where the variance equation is defined as

σ2t = ω + α1ε
2
t−1 + α2ε

2
t−2 + α3ε

2
t−3
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Volatility Models

S&P500 Daily Returns
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Volatility Models

Estimates
param se t-stat

c 0.01 0.020 0.5
ω 0.60 0.014 42.9
α1 0.12 0.014 8.6
α2 0.37 0.019 19.5
α3 0.23 0.021 11.0
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Volatility Models

S&P500 Annualized Volatility
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Volatility Models

SP&P500 Std Residuals
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Volatility Models

S&P500 Daily Returns (left) vs. Std. Residual (right) QQ-plot
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Volatility Models

S&P500 Daily Squared Returns (left) & Squared Std. Residual (right)
ACF
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Volatility Models

S&P500 exhibits strong evidence of volatility clustering

The ARCH(3) model captures a substantial portion of clustering

However, residual diagnostic signal that the specification is not
fully satisfactory
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Volatility Models

In practice, only rather rich ARCH parameterizations are able to
fit financial series adequately

However, largely parameterized models can be unstable in
forecasting and a hard to estimate

In order to overcome the shortcomings of the ARCH, Tim
Bollerslev proposed a generalisation of the ARCH model called
GARCH (Bollerslev, 1986)

The model allows to fit financial returns adequately while keeping
the number of parameters small

In practice, the GARCH model is one of the most successfully
employed volatility models
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Volatility Models

The GARCH(1,1) model is

εt =
√
σ2t zt zt ∼ D(0, 1)

where D is a distribution with mean 0 and variance 1 and

σ2t = ω + αε2t−1 + βσ2t−1

where ω > 0, α ≥ 0 and β > 0 and α+ β < 1 (in order to have
stationarity, see next)
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Volatility Models

The GARCH(p, q) model is

εt =
√
σ2t zt zt ∼ D(0, 1)

where D is a distribution with mean 0 and variance 1 and

σ2t = ω + α1ε
2
t−1 + ...+ αqε

2
t−q + β1σ

2
t−1 + ...+ βqσ

2
t−q

where ω > 0, αi ≥ 0 and βi > 0 and
∑
αi +

∑
βi < 1 (in order to

have stationarity, see next)
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Volatility Models

Stationarity
A necessary condition for weak stationarity of GARCH (1,1) is

α+ β < 1 (1)

We have E[ε2t ] = E[Et−1[ε
2
t ]] = E[σ2t ] which because of stationarity

does not depend on t

Taking expectations in a GARCH(1,1) we have

E[ε2t ] = ω + αE[ε2t ] + βE[ε2t ] ⇒ E[ε2t ](1− α− β) = ω

In order to have ω > 0 we need condition (1)

Condition (1) is also a sufficient condition for weak stationarity
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Volatility Models

A necessary condition for strong stationarity of GARCH(1,1) is

−∞ ≤ E[log(αz2t + β)] < 0

This implies β < 1

If α+ β < 1 we have strict stationarity, indeed

E[log(αz2t + β)] ≤ log E[αz2t + β] = log(α+ β) < 0

Thus α+ β < 1 is a sufficient condition for weak and strong
stationarity

For a GARCH(p, q) condition (1) generalizes to

q∑
i=1

αi +

p∑
j=1

βj < 1

M. Barigozzi (LSE) June 2014 67 / 142



Volatility Models

Unconditional variance
If we have α+ β < 1 (sufficient condition) then we have a
stationary GARCH(1,1)

By the law of iterated expectations we have
E[ε2t ] = E[Et−1[ε

2
t ]] = E[σ2t ]

Taking expectations in a GARCH(1,1) we have

E[ε2t ] = ω + αE[ε2t ] + βE[ε2t ]

The unconditional variance is

E[ε2t ] = σ2 =
ω

1− α− β
> 0 if ω > 0

For a GARCH(p, q) we have

E[ε2t ] = σ2 =
ω

1−
∑q

i=1 αi −
∑p

j=1 βj
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Volatility Models

Kurtosis
The kurtosis coefficient is defined as

κε =
E[ε4t ]{
E[ε2t ]

}2 =
E[Et−1[ε

4
t ]]{

E[Et−1[ε2t ]]
}2 =

E[σ4t ]{
E[σ2t ]

}2κz
where κz = E[z4t ] and if zt ∼ N(0, 1) then κz = 3

Since E[σ4t ] = Var[σ2t ] +
{
E[σ2t ]

}2 then κε ≥ κz

Thus even if zt ∼ N(0, 1) we have κε ≥ 3

If there are no ARCH effects, i.e. σ2t is constant, then Var[σ2t ] = 0
and κε = κz
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Volatility Models

Kurtosis for ARCH(1)

E[σ4t ] = ω2 + α2E[ε4t−1] + 2ωαE[σ2t−1]

= ω2 + α2E[σ4t−1]κz + 2ωαE[σ2t−1]

which implies

E[σ4t ] =
ω2 + 2ωαE[σ2t−1]

1− α2κz

Then

κε =
E[σ4t ]{
E[σ2t ]

}2κz =
ω2 + 2ωαE[σ2t−1]

(1− α2κz)
{
E[σ2t ]

}2κz
Using E[σ2t ] = E[ε2t ] = σ2 = ω/(1− α) we get

κε =
1− α2

1− α2κz
κz

which for the Gaussian case is defined for 0 ≤ α2 < 1/3
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Volatility Models

Kurtosis for GARCH(1,1) is

κε =
1− (α+ β)2

1− (α+ β)2 − α2(κz − 1)
κz

It increases with κz and when the coefficients approach the zone of
non–stationarity

The excess kurtosis measures deviations from Gaussianity

κ∗ε = κε − 3
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Volatility Models

Alternative parameterization: Exponential Weighted Moving Average
The GARCH model can be seen as an infinite ARCH models
for GARCH(1,1) we have

σ2t = ω + αε2t−1 + β[ω + αε2t−2 + β(ω + αε2t−3 + βσ2t−3)]

= ω

( ∞∑
i=0

βi

)
+ α

∞∑
i=0

βiε2t−i−1

=
ω

1− β
+ α

∞∑
i=0

βiε2t−i−1

This representation shows how a GARCH(1,1) is a parsimonious
way of characterizing ARCH dynamics

The conditional variance of a GARCH(1,1) can be seen as a
weighted average of recent returns such that the weight given to
past information decreases exponentially fast (β < 1)
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Volatility Models

Alternative parameterization: ARMA
GARCH models can also be represented as an ARMA models by
defining the innovations νt = ε2t − σ2t

in case of the GARCH(1,1) we get:

ε2t = ω + (α+ β)ε2t−1 + νt − βνt−1
in case of the GARCH(p, q) we get:

ε2t = ω +

r∑
i=1

(αi + βi)ε
2
t−i + νt −

p∑
j=1

βjνt−j

where r = max(p, q)

Thus, a GARCH can be seen as an ARMA model for squared
returns but νt is not white noise
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Volatility Models

IGARCH
If α+ β = 1 we have an Integrated GARCH(p, q) or IGARCH(p, q)
Its ARMA representation is

ε2t = ω + ε2t−1 + νt − βνt−1

thus it has a unit root

The term α+ β measures the “persistence” of the process ε2t

But while ARIMA have not a stationary solution an IGARCH can
admit (under some conditions) a strictly stationary solution
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Volatility Models

ACF of squares
The ARMA representation allows for computing the ACF of ε2t

A GARCH(1,1) is equivalent to an ARMA(1,1) for the squared
returns

ρ(h) =
Cov(ε2t , ε

2
t−h)

Var(ε2t )
= ρ(1)(α+ β)h−1

where
ρ(1) =

α[1− β(α+ β)]

1− (α+ β)2 + α2

Notice that ρ(h) > 0 always and in this case ACF are decreasing
monotonically

M. Barigozzi (LSE) June 2014 75 / 142



Volatility Models

Forecasting
1–step ahead forecast of the variance is

σ2t+1|t = Et[σ
2
t+1] = ω + αε2t + βσ2t

2–steps ahead forecast of the variance is

σ2t+2|t = Et[σ
2
t+2] = ω + αEt[ε

2
t+1] + βσ2t+1|t

= ω + ασ2t+1|t + β(ω + αε2t + βσ2t )

= ω + (α+ β)σ2t+1|t = σ2 + (α+ β)(σ2t+1|t − σ
2)

since ω = σ2 − σ2(α+ β)

k–steps ahead forecast of the variance is

σ2t+k|t = σ2 + (α+ β)k−1(σ2t+1|t − σ
2)

since α+ β < 1, as k →∞, we have σ2t+k|t → σ2
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Volatility Models

As an empirical illustration, we are going to use a GARCH(1,1)
model (with intercept i.e. µt = c) to fit daily returns

The GARCH(1,1) with intercept is defined as

yt = c+ εt = c+
√
σ2t zt zt ∼ N(0, 1)

where the variance equation is defined as

σ2t = ω + αε2t−1 + βσ2t−1
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Volatility Models

S&P500 Daily Returns

2000 2005 2010
10

5

0

5

10

15

ARCH-LM Stat (3 lags): 516.694 - p–value = 0.000

M. Barigozzi (LSE) June 2014 78 / 142



Volatility Models

Estimates
param se t-stat

c 0.04 0.020 20.0
ω 0.02 0.002 10.0
α 0.09 0.008 11.3
β 0.90 0.008 112.5
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Volatility Models

S&P500 Annualized Volatility
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Volatility Models

SP&P500 Std Residuals
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Volatility Models

S&P500 Daily Returns (left) vs. Std. Residual (right) QQ-plot
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Volatility Models

S&P500 Daily Squared Returns (left) & Squared Std. Residual (right)
ACF
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Volatility Models

S&P500 Daily Returns 95% conditional confidence intervals
±1.96
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Volatility Models

S&P500 exhibits strong evidence of volatility clustering

The simple GARCH(1,1) model captures adequately conditional
heteroskedasticity in the data

The hypothesis of normality of the standardized shocks however is
still forcefully rejected by the data
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Volatility Models

The simple GARCH(p, q) has some limitations

The most important is that it cannot take into account the dependence
between volatility and the sign of past returns

Standard GARCH models assume that positive and negative error
terms have a symmetric effect on the volatility, i.e. good and bad
news have the same effect on the volatility
In many real situations the volatility reacts asymmetrically to the
sign of the shocks. In particular negative past returns have a
bigger effect on σ2t than positive returns of the same size
This dependence is due to the leverage effect, i.e. a negative shock
to returns would increase the debt to equity ratio which in turn
will increase uncertainty of future returns
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Volatility Models

S&P500 absolute returns |εt| vs lagged returns εt−1
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Volatility Models

Consider the model for returns

εt = σtzt

σ2t = ω +

p∑
i=1

αiε
2
t−i +

q∑
j=1

βjσ
2
t−j

Then we can re-write the volatility as

σ2t = ω +

p∑
i=1

αiz
2
t−iσ

2
t−i +

q∑
j=1

βjσ
2
t−j

which is invariant to changes in the sign of zt

M. Barigozzi (LSE) June 2014 88 / 142



Volatility Models

Empirically we find that

Corr(εt, εt−h) ' 0, Corr(ε2t , ε
2
t−h) > 0, Corr(|εt|, |εt−h|) > 0,

which are properties reproduced by GARCH models

But we also find Corr(ε+t , εt−h) < 0. When εt = σtzt, with σt a
positive function of εt as in GARCH, we have

Corr(ε+t , εt−h) = KCov(σt, εt−h) < 0,

for some constant K > 0

This is the leverage effect that GARCH models cannot reproduce

GARCH models with leverage (asymmetric) effects are the subject
of next lectures
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Volatility Models

Corr(ε+t , εt−h)
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Maximum Likelihood estimation
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Maximum Likelihood estimation

General model
Consider a stochastic process {yt} such that

yt = µt + εt

with εt ∼ w.n.(0, σ2)

The conditional mean of the process is

Et−1[yt] = µt

since Et−1[εt] = 0
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Maximum Likelihood estimation

For {εt} we assume a conditional heteroskedastic model

εt = σtzt

with zt ∼ i.i.d.(0, 1)

Then the conditional variance of the process is

Vart−1[yt] = Et−1[(yt − Et−1[yt])
2] = Et−1[ε

2
t ] = σ2t Et−1[z

2
t ] = σ2t
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Maximum Likelihood estimation

Consider the ARMA(P,Q)-GARCH(p, q) process

yt = µt + εt = c0 +

P∑
k=1

a0kyt−k +

Q∑
h=1

b0hεt−h + εt,

εt = σtzt,

σ2t = ω0 +

p∑
i=1

α0iε
2
t−i +

q∑
j=1

β0jσ
2
t−j .

where zt ∼ i.i.d.(0, 1), ω0 > 0, α0i ≥ 0, β0j ≥ 0.

We assume that the orders P,Q, p, q are known

In the conditional mean we can also include exogenous variables
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Maximum Likelihood estimation

Notation
We have the vectors of parameters

φ = (c, a1, . . . , aP , b1, . . . , bQ)′, θ = (ω, α1, . . . , αp, β1, . . . , βq)
′,

We collect all parameters in a single vector

ψ = (φ′,θ′)′ ∈ Ψ ⊂ RP+Q+1 × (0,+∞)× [0,+∞)p+q.

The true values of the parameters are:

ψ0 = (φ′0,θ
′
0)
′

We assume ψ0 ∈ Ψ with Ψ compact

We want to estimate ψ0
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Maximum Likelihood estimation

Assume to observe T realizations (y1 . . . yT ) of {yt}. We know that

f(y1 . . . yT ) = f(yT |y1 . . . yT−1)f(y1 . . . yT−1)

By iterating we have

f(y1 . . . yT ) = f(y0)

T∏
t=1

f(yt|y1 . . . yt−1) = f(y0)

T∏
t=1

f(yt|It−1)

So we need to find f(yt|It−1)
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Maximum Likelihood estimation

Distribution of the i.i.d. innovations zt
We call the pdf fz(zt,ψ,η) and it depends on

the conditional mean and variance parameters ψ = (φ′,θ′)′

the shape parameters η

Since we do not observe {zt}, we need the distribution of {yt} for
which we observe T realizations
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Maximum Likelihood estimation

Conditional distribution of yt
If fz is known then

f(yt,ψ,η|It−1) = fz(g
−1(yt,ψ),η)

∣∣∣∣∂g−1(yt,ψ)

∂yt

∣∣∣∣ ,
where g is such that

yt = g(zt,ψ) = µt(ψ) + σt(ψ)zt,

zt = g−1(yt,ψ) =
yt − µt(ψ)

σt(ψ)

It follows that

f(yt,ψ|It−1) = fz(zt,ψ,η)
1

σt(ψ)

Hereafter, unless necessary we omit the dependence on η
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Maximum Likelihood estimation

Likelihood
By taking logs we have the log–likelihood for one observation

`t(ψ) ≡ log f(yt,ψ|It−1) = log fz(zt,ψ)− 1

2
log σ2t (ψ)

The sample log–likelihood is

LT (ψ) =

T∑
t=1

`t(ψ)

The Maximum Likelihood (ML) estimator of the parameters ψ0 is
defined as

ψ̂ = arg max
ψ

LT (ψ)
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Maximum Likelihood estimation

Asymptotic properties of MLE
If the distribution of zt is correctly specified then under some
regularity conditions and as T →∞

ψ̂ is consistent estimator of the true parameter vector ψ0

ψ̂ is asymptotically normally distributed

ψ̂ is efficient, i.e. the asymptotic variance covariance matrix of ψ̂
is the inverse of the Fisher information matrix (lower bound)

B = E0

[
∂`t(ψ0)

∂ψ

∂`t(ψ0)

∂ψ′

]
where the expectation is with respect to the true density
f(yt,ψ0|It−1) and derivatives are computed in ψ0
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Maximum Likelihood estimation

Possible choices for fz are
Gaussian

Student-t

Generalized error distribution (GED)
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Maximum Likelihood estimation

Gaussian ML.
We assume

zt ∼ N(0, 1)

and since E[ztzt−k] = 0 for k 6= 0, then, because of normality, we
have also independence.

The pdf is

fz(zt,ψ) =
1√
2π

exp

(
−z

2
t

2

)
Notice that the parameters ψ are implicit in zt = g−1(yt,ψ) and
the shape parameters η are not present in this case
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Maximum Likelihood estimation

The conditional pdf is

f(yt,ψ|It−1) =
1√

2πσ2t (ψ)
exp

(
−(yt − µt(ψ)2

2σ2t (ψ)

)
which is like saying yt|It−1 ∼ N(µt, σ

2
t )

The log–likelihood is

`t(ψ) = −1

2
log(2π)− (yt − µt(ψ))2

2σ2t (ψ)
− 1

2
log σ2t (ψ)

The estimated parameters are solutions of (first order conditions)

T∑
t=1

st(ψ̂) ≡
T∑
t=1

∂`t(ψ̂)

∂ψ
= 0

which requires a numerical solution
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Maximum Likelihood estimation

Student-t ML
The unconditional distribution of zt and of εt in financial time
series usually display fatter tails than allowed by the Gaussian
distribution.

The Student-t can take into account this feature

fz(zt,ψ, ν) =
Γ[(ν + 1)/2]

Γ[ν/2]

1√
(ν − 2)π

(
1 +

z2t
ν − 2

)−(ν+1)/2

ν > 2

Notice that the parameters ψ are implicit in zt = g−1(yt,ψ) and
the shape parameters η is the number of degrees of freedom ν
which determines the tail behavior. Indeed the kurtosis is

κz = 3

(
ν − 2

ν − 4

)
> 3

and it is defined only if ν > 4

M. Barigozzi (LSE) June 2014 104 / 142



Maximum Likelihood estimation

The conditional distribution of the observations is then

f(yt,ψ, ν|It−1) =
Γ[(ν + 1)/2]

Γ[ν/2]

1√
(ν − 2)πσ2t (ψ)

(
1 +

(yt − µt(ψ))2

(ν − 2)σ2t (ψ)

)−ν+1
2

and ML can be used to estimate the parameters (ψ0, ν0)
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Maximum Likelihood estimation

Gaussian and Student-t
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Maximum Likelihood estimation

GED ML
An even more flexible distribution is the Generalized Error
Distribution

fz(zt,ψ, ν) =
ν

λ21+1/νΓ[1/ν]
exp

(
−1

2

∣∣∣zt
λ

∣∣∣ν) ν > 0

where λ = [2−2/νΓ[1/ν]Γ[3/ν]−1]1/2

When ν < 2 (> 2) the GED has heavier (lighter) tails than the
Gaussian. When ν = 2 we have a Gaussian

The conditional distribution of the observations is

f(yt,ψ, ν|It−1) =
ν

λ21+1/νΓ[1/ν]σ2t (ψ)
exp

(
−1

2

∣∣∣∣yt − µt(ψ)

λσ2t (ψ)

∣∣∣∣ν)
and we can use ML again to estimate (ψ0, ν0)
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Maximum Likelihood estimation

Gaussian and GED
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Quasi Maximum Likelihood estimation
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Quasi Maximum Likelihood estimation

Consider a family of parametric distributions P = {Pψ,ψ ∈ Ψ}, to
which correspond densities g(y,ψ). Define the true unknown
distribution as P0 defined through the true value ψ0 such that
P0 = Pψo with density f(y,ψ0)

We know that if the model is correctly specified ML estimators
have all the “good” asymptotic properties

However, in general there may be specification errors P0 /∈ P and
the best we can do is to find P ∗0 ∈ P that minimizes the distance
with P0. To this distribution corresponds the quasi true value of
the parameters ψ∗0 such that P ∗0 = Pψ∗o
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Quasi Maximum Likelihood estimation

The value ψ∗0 is such that it minimizes the Kullback-Leibler
information criterion (a measure of the informational distance
between distributions)

min
ψ

I(Pψ, P0) = min
ψ

E0

[
log

f(y,ψ0)

g(y,ψ)

]
=

∫
Y

log
f(y,ψ0)

g(y,ψ)
f(y,ψ0)dy

Which is equivalent to solve

max
ψ

E0[log g(y,ψ)]

i.e. ψ∗0 is the value that maximizes the expected log–likelihood

M. Barigozzi (LSE) June 2014 111 / 142



Quasi Maximum Likelihood estimation

QML
In the present context we have

ψ∗0 = arg max
ψ

Et−1E0[log g(yt,ψ|It−1)].

Define `t(ψ) = log g(yt,ψ|It−1), then the estimator of ψ∗0 is
defined as

ψ̂ = arg max
ψ

T∑
t=1

`t(ψ).

This is the Quasi Maximum Likelihood (QML) estimator
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Quasi Maximum Likelihood estimation

Asymptotic properties of QMLE
We can prove that, under regularity conditions, and if
E[z4t ] = κz <∞,

√
T (ψ̂ −ψ∗0)→ N (0,A−1BA−1)

In general ψ̂ is a consistent estimator of ψ∗0 and not of ψ0
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Quasi Maximum Likelihood estimation

However, if the first two conditional moments are correctly
specified and P is the exponential family of distributions (e.g. the
Gaussian), then ψ̂ is a consistent estimator of the true value ψ0

The QML estimator is then consistent, asymptotically normal, but
it is no more efficient

In general
B−1 < A−1BA−1

we have a larger asymptotic variance covariance matrix which
accounts for the additional uncertainty due to possible
specification errors
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Quasi Maximum Likelihood estimation

In order to have the right confidence intervals and to do proper
inference, we have to compute the matrices

A = −E0

[
∂2`t(ψ0)

∂ψ∂ψ′

]
and

B = E0

[
∂`t(ψ0)

∂ψ

∂`t(ψ0)

∂ψ′

]
if the model is correctly specified, i.e. `t(ψ) = log f(yt,ψ|It−1),
then A = B and we are back to MLE
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Quasi Maximum Likelihood estimation

GARCH–QML
We assume a Gaussian log–likelihood, then

`t(ψ) = −1

2
log σ2t (ψ)− (yt − µt(ψ))2

2σ2t (ψ)

and for simplicity let’s start with the GARCH(p, q) model, i.e.
when µt = 0 and ψ ≡ θ

`t(θ) = −1

2
log σ2t (θ)− y2t

2σ2t (θ)
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Quasi Maximum Likelihood estimation

The score is

st(θ) ≡ ∂`t(θ)

∂θ
= − 1

2σ2t (θ)

∂σ2t (θ)

∂θ
+

y2t
2(σ2t (θ))2

∂σ2t (θ)

∂θ
=

=
1

2σ2t (θ)

∂σ2t (θ)

∂θ

(
y2t

σ2t (θ)
− 1

)
=

=
1

2σ2t (θ)

∂σ2t (θ)

∂θ

(
z2t − 1

)
.
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Quasi Maximum Likelihood estimation

We know that E0[st(θ0)] = 0

Therefore the variance of the score, i.e. the Fisher information B, is

B = E0

[
st(θ0)s

′
t(θ0)

]
= (κz − 1)E0

[
1

4(σ2t (θ0))
2

∂σ2t (θ0)

∂θ

∂σ2t (θ0)

∂θ′

]
where κz = E[z4t ] is the kurtosis coefficient of zt (remember that
E[z2t ] = 1)
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Quasi Maximum Likelihood estimation

To compute A we need the second derivatives

∂2`t(θ)

∂θ∂θ′
=

∂s′t(θ)

∂θ
= − 1

2(σ2t (θ))2
∂σ2t (θ)

∂θ

∂σ2t (θ)

∂θ′

(
y2t

σ2t (θ)
− 1

)
− 1

2(σ2t (θ))2
∂σ2t (θ)

∂θ

∂σ2t (θ)

∂θ′
y2t

σ2t (θ)

+
1

2σ2t (θ)

∂2σ2t (θ)

∂θ∂θ′

(
y2t

σ2t (θ)
− 1

)
=

=
1

2(σ2t (θ))2
∂σ2t (θ)

∂θ

∂σ2t (θ)

∂θ′
− z2t
σ2t (θ)

∂σ2t (θ)

∂θ

∂σ2t (θ)

∂θ′

+
z2t
2

∂2σ2t (θ)

∂θ∂θ′
− 1

2σ2t (θ)

∂2σ2t (θ)

∂θ∂θ′

with z2t = y2t /σ
2
t (θ)
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Quasi Maximum Likelihood estimation

By taking expectations and remembering that E[z2t ] = 1

The Hessian

A = −E0

[
∂s′t(θ0)

∂θ

]
= E0

[
1

2(σ2t (θ0))
2

∂σ2t (θ0)

∂θ

∂σ2t (θ0)

∂θ′

]
The Fisher Information

B = E0

[
st(θ0)s

′
t(θ0)

]
= (κz − 1)E0

[
1

4(σ2t (θ0))
2

∂σ2t (θ0)

∂θ

∂σ2t (θ0)

∂θ′

]
.

Notice that if the true distribution of zt were a Gaussian, then
κz = 3 and A = B
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The QML asymptotic variance covariance matrix for a GARCH
model is then V = A−1BA−1

V = =

(
E0

[
1

2(σ2t (θ0))
2

∂σ2t (θ0)

∂θ

∂σ2t (θ0)

∂θ′

])−1
(κz − 1)E0

[
1

4(σ2t (θ0))
2

∂σ2t (θ0)

∂θ

∂σ2t (θ0)

∂θ′

]
(
E0

[
1

2(σ2t (θ0))
2

∂σ2t (θ0)

∂θ

∂σ2t (θ0)

∂θ′

])−1
=

= (κz − 1)

(
E0

[
1

(σ2t (θ0))
2

∂σ2t (θ0)

∂θ

∂σ2t (θ0)

∂θ′

])−1
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Quasi Maximum Likelihood estimation

A consistent estimator of V is obtained by replacing expectations
with sums and the true value of the parameters with the QML
estimates:

V̂ =
1

T

T∑
t=1

(κ̂z − 1)

(
1

(σ2t (θ̂))2

∂σ2t (θ̂)

∂θ

∂σ2t (θ̂)

∂θ′

)−1

Confidence intervals for θ̂ are built using the square–root of the
diagonal elements of T−1V̂
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Quasi Maximum Likelihood estimation

If we have a model also for the conditional mean then derivatives
must be computed also with respect to the parameters φ
For an ARMA(P,Q)-GARCH(p, q) the conditional variance
depends both on θ and on ψ

σ2t = ω0 +

p∑
i=1

α0iε
2
t−i +

q∑
j=1

β0jσ
2
t−j =

= ω0 +

p∑
i=1

α0i

(
yt−i − c0 −

P∑
k=1

a0kyt−k−i −
Q∑
h=1

b0hεt−h−i

)2

+

q∑
j=1

β0jσ
2
t−j

which depends also on the conditional mean parameters
φ = (c, a1, . . . , aP , b1, . . . , bQ)′
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ARMA–GARCH QML
If we assume a Gaussian log–likelihood we have

`t(φ,θ) = −1

2
log σ2t (φ,θ)− ε2t (φ)

2σ2t (φ,θ)

which has to be maximized jointly with respect to φ and θ.
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Quasi Maximum Likelihood estimation

The score is

st(φ,θ) =

(
∂`t(φ,θ)
∂φ

∂`t(φ,θ)
∂θ

)
=

=

 1
2σ2

t (φ,θ)

∂σ2
t (φ,θ)
∂φ

(
ε2t (φ)

σ2
t (φ,θ)

− 1
)
− εt(φ)

σ2
t (φ,θ)

∂εt(φ)
∂φ

1
2σ2

t (φ,θ)

∂σ2
t (φ,θ)
∂θ

(
ε2t (φ)

σ2
t (φ,θ)

− 1
) 

The second row is the same we had for the simple GARCH model

Using the score the matrices A and B can be computed
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If zt has a symmetric distribution, i.e. E[z3t ] = 0

The Fisher Information is

B = E0[st(φ0,θ0)s
′
t(φ0,θ0)] =

(
I1 0
0 I2

)
with

I1 = (κz − 1)E0

[
1

4(σ2t (φ0,θ0))2
∂σ2t (φ0,θ0)

∂φ

∂σ2t (φ0,θ0)

∂φ′

]
+

+E0

[
1

σ2t (φ0,θ0)

∂εt(φ0)

∂φ

∂εt(φ0)

∂φ′

]
I2 = (κz − 1)E0

[
1

4(σ2t (φ0,θ0))2
∂σ2t (φ0,θ0)

∂θ

∂σ2t (φ0,θ0)

∂θ′

]
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The Hessian is

A =

(
J1 0
0 J2

)
with

J1 = E0

[
1

2(σ2t (φ0,θ0))2
∂σ2t (φ0,θ0)

∂φ

∂σ2t (φ0,θ0)

∂φ′

]
+

+E0

[
1

σ2t (φ0,θ0)

∂εt(φ0)

∂φ

∂εt(φ0)

∂φ′

]
J2 = E0

[
1

2(σ2t (φ0,θ0))2
∂σ2t (φ0,θ0)

∂θ

∂σ2t (φ0,θ0)

∂θ′

]
In case of zt Gaussian, κz = 3 and J1 = I1 and J2 = I2
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Quasi Maximum Likelihood estimation

Therefore, if zt has a symmetric distribution, the asymptotic
variance covariance matrix is block diagonal

V =

(
J−11 I1J

−1
1 0

0 J−12 I2J
−1
2

)
We have asymptotic independence between estimated ARMA and
GARCH coefficients

However notice that the distribution of the estimators of the
ARMA coefficients depends on the GARCH coefficients, while on
the other hand the asymptotic accuracy in the estimated GARCH
coefficients is not affected by the ARMA part

We can first estimate an ARMA with heteroskedastic errors and
then take the residuals and estimate a GARCH
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Example
Let us consider a simpler model, an AR(1)–ARCH(1) process:

yt = a0yt−1 + εt

εt = σtzt

σ2t = ω0 + α0ε
2
t−1 = ω0 + α0(yt−1 − a0yt−2)2.

We have the parameters

φ = a, θ = (ω, α)′.
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Quasi Maximum Likelihood estimation

Then

∂εt(a)

∂a
= −yt−1,

∂σ2t (a,θ)

∂a
= −2αyt−2(yt−1 − ayt−2) = −2αyt−2εt−1,

∂σ2t (a,θ)

∂ω
= 1,

∂σ2t (a,θ)

∂α
= (yt−1 − ayt−2)2 = ε2t−1.
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For the ARCH parameters we have

I2 =
(κz − 1)

4
E0

(
ε4t−1/σ

4
t ε2t−1/σ

4
t

ε2t−1/σ
4
t 1/σ4t

)
which does not depend on the AR parameters

For the AR parameter we have

I1 = (κz − 1)E0

(
y2t−2ε

2
t−1α

2

σ4t

)
+ E0

(
y2t−1
σ2t

)
If we had homoskedasticity we’d had only the second term which
would be the usual term from OLS estimation but due to the
ARCH effects the asymptotic variance depends also on the ARCH
parameters
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Quasi Maximum Likelihood estimation

Notice that, by exploiting the fact that

E[ε2t ] ≡ σ2ε =
ω

1− α

we have one parameter less in the ARCH which is replaced by σ2ε
that is easily estimated as

σ̂2ε =
1

T

T∑
t=1

ε2t

and finally
ω̂ = σ̂2ε (1− α̂)

This method is called variance targeting and is useful when we
have many parameters to estimate
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S&P500 Daily Returns
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Quasi Maximum Likelihood estimation

MLE of a GARCH(1,1) model with Gaussian innovations:

ω = 0.0149 α = 0.0870 β = 0.9042

If we believe that the innovations zt = εt/σt are truly Gaussian then
the asymptotic variance covariance matrix is given by the inverse Fisher
information which is equivalent to the inverse Hessian:

J−1 =

 1.0755 1.1689 −2.0443
1.1689 7.9883 −7.5113
−2.0443 −7.5113 8.5347

 · 10−05

and the standard errors are the squared root of the diagonal elements:

seω = 0.0033 seα = 0.0089 seβ = 0.0092
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Quasi Maximum Likelihood estimation

Actually the matrices I and J are not equal and the QML asymptotic
variance covariance matrix is given by:

JI−1J =

 2.8104 1.0996 −3.3160
1.0996 11.9537 −10.4660
−3.3160 −10.4660 11.8708

 · 10−05

and the QML (robust) standard errors are

se∗ω = 0.0053 se∗α = 0.0109 se∗β = 0.0109

and as expected

se∗ω > seω se∗α > seα se∗β > seβ
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Is normality the right assumption? Let’s look at the empirical quantiles
of zt (vertical axis) vs. the quantiles of a standard normal (horizontal
axis)
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Fat tails?
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We can use ML with Student-t or GED distribution. Here are the
estimated coefficients with their errors.

Student-t:

ω = 0.0106(0.0035) α = 0.0834(0.0104) β = 0.9119(0.0102)

and ν = 8.8296(1.4565)

GED:

ω = 0.0123(0.0041) α = 0.0846(0.0105) β = 0.9089(0.0103)

and ν = 1.4489(0.0612)
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Estimated volatility with Gaussian innovations
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Estimated volatility with Student-t innovations
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Estimated volatility with GED innovations
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Kernel density estimations of Std. Residuals (log–scale)
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Textbook references:

Hamilton, J. D. “Time Series Analysis”, Chapter 21, Princeton
University Press, 1994.

Francq, C. and Zakoian, J.M. “GARCH Models”, Wiley, 2010.
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